
University of Würzburg
Institute of Computer Science

Research Report Series

An O(n log n) Heuristic for the Euclidean

Traveling Salesman Problem

Evgeny Yanenko, Eckart Schuhmacher1

and
Ulrich Spörlein, Kurt Tutschku2

Report No. 358 April 25, 2005

1 atg test systems GmbH & Co KG.
Zum Schlag 3, 97877 Wertheim, Germany.

{eianenko,eschuhmacher}@atg-test-systems.de

2 University of Würzburg, Department of Distributed Systems.
Am Hubland, 97074 Würzburg, Germany.

{spoerlein,tutschku}@informatik.uni-wuerzburg.de

An O(n log n) Heuristic for the Euclidean Traveling Salesman Problem

Evgeny Yanenko, Eckart

Schuhmacher
atg test systems GmbH & Co KG.

Zum Schlag 3, 97877 Wertheim, Germany.
{eianenko,eschuhmacher}@

atg-test-systems.de

Ulrich Spörlein, Kurt Tutschku
University of Würzburg, Department of

Distributed Systems.
Am Hubland, 97074 Würzburg, Germany.

{spoerlein,tutschku}@informatik.
uni-wuerzburg.de

Abstract

In this paper we present a fast approach for solving large scale Traveling Sales-
man Problems (TSPs). The heuristic is based on Delaunay Triangulation and its
runtime is therefore bounded by O(n log n). The algorithm starts by construction
the convex hull and successively replaces one edge with two new edges of the
triangulation, thus inserting a new city. The decision which edge to remove is
based on edge ranks. Finally the tour is subject to a node insertion improvement
heuristic.

By extensive case studies it will be shown that only highly optimized 2/3-Opt
heuristics are superior to this approach in both running time and tour lengths for
very large TSP instances.

1 Introduction and Motivation

Atg test systems GmbH & Co. KG is the global market leader for automatic test
equipment (ATE) for unpopulated printed circuit boards (PCBs). The product line
comprises two families of machines one of them the so called flying probe testers.
These machines determine boards with open circuits or shorts between networks of
the PCB. Multiple moving probe heads are being positioned on all test points of the
PCB. By contacting these test points, electro-static properties are captured by various
kinds of measurements. Today typical PCBs contain several tens of thousands of test
points and in peak can hold up to 250 000 test points. Goal of the cooperation is to
find solutions for this TSP that are close to the optimum yet in very short computation
times.

2 Related Work

A comprehensive overview of tour constructing heuristics and tour improving algo-
rithms can be found in [1]. The results in [1] shows that established tour constructing
heuristics (Nearest Neighbor, Insertion heuristics, Christofides, Savings) usually range
about 10 %–30 % above the lower bound of the instances. The Savings heuristic, being
the best, had an average of 11.11 % above the lower bound for some selected instances
of the TSPLIB [2].

1

Several well known tour improvement algorithms are compared: Node/Edge In-
sertion, 2-Opt and 3-Opt exchanges as well as the Lin & Kernighan heuristic. The
tour quality improves from heuristic to heuristic and is rather independent from the
initial tour. That is, even with random starting tours, the average quality of tours ob-
tained with 3-Opt and Lin-Kernighan lies between 6.82 % and 2.47 %, respectively. For
Christofides starting tours an average tour quality of 3.55 % for 3-Opt and 1.95 % for
the Lin-Kernighan heuristic are achievable. An iterated approach to Lin-Kernighan
yields tours that lie on average only 1.26 % above the lower bound.

In fact the Lin-Kernighan heuristic implemented by CONCORDE [3] has been used
to solve many instances of the TSPLIB. Several improvements have been made to the
original algorithm and the question of how to obtain a good initial tour is still open.
As of this writing, the record for the optimal solution lies at 24 978 cities [4].

However, running time constrains often forbid long runs of improvement heuristics,
only to shorten the tour by 1 %–2 %. Therefore we focus more on achieving acceptable
results (5 %–8 %) in a short time.

An overview of existing algorithms and how they perform can be obtained from
the 8th DIMACS (Center for Discrete Mathematics and Theoretical Computer Science)
Implementation Challenge [5].

3 Algorithm

3.1 Triangulation

This heuristic is based on the properties of plane triangulation. As the TSP is closely
connected to proximity problems, the first choice is a Delaunay triangulation. But it
is important to understand that the optimum tour for the TSP is not a subset of the
Delaunay graph (see Figure 1).

From another point of view, the optimum tour is a subset of some triangulation,
because it contains no intersecting edges. Therefore it is also interesting to investigate
other types of triangulation, which may appear to be more suitable for the TSP.

On each step, the heuristic will operate with a non-empty set of directed tours Ti.
Tour Ti itself contains i edges Emn of the triangulation graph, connecting cities Cm and
Cn. Each edge Emn, which does not belong to the convex hull, has two adjacent triangle
faces, one on the left, city CL(Emn), and one on the right, city CR(Emn), respective to
the tour direction (see Figure 2). The edges forming the convex hull have only one
adjacent triangle face.

For simplicity, let us consider only left faces and cities. It is easy to see that if the
direction of the tour is changed—so that the edge Emn changes to Enm—then CL(Enm)
is equivalent to CR(Emn) and vice versa.

3.2 Construction

Starting with some tour Ti, the next tour Ti+1 can be constructed, if an edge Emn is
replaced with edges EmL (connecting Cm to CL(Enm)) and ELn (connecting CL(Enm)

2

Figure 1: Optimum tour is not a subset of Delaunay graph.

to Cn), with the restriction that the city CL(Enm) does not yet belong to the tour (see
Figure 3).

Associated with each edge Emn is the pre-calculated edge quality Qmn. In the general
case Qmn and Qnm can be different. Later we will discuss different possibilities to
calculate the edge quality.

So the heuristic starts with some plane triangulation, taking the cities as vertices,
and some directed initial tour Tk. As we will extend the tour always to the left, the
initial tour may be any clockwise tour around triangle face, or counterclockwise tour,
consisting of the edges on the convex hull.

To keep track of the edge with the worst quality, references to all edges of the initial
tour have to be put into an additional data structure D (heap or balanced tree). Now
we can proceed to the main loop.

1. If D is empty, finish the loop.

2. Find the edge Emn with worst quality Qmn and remove it from D.

3. If CL(Enm) does not exist (this can happen if Emn is a clockwise edge on the
convex hull), return to step 1.

4. If CL(Enm) already belongs to some tour, return to step 1.

5. Construct the tour Ti+1, replacing the edge Emn with edges EmL and ELn. Add
references to EmL and ELn to D and return to step 1.

3

CL(Emn)

CR(Emn) = CL(Enm)

Cm

Cn

Emn

Figure 2: Edge with two adjacent faces.

3.3 Finishing the Tour

It can happen that several cities are not included into the tour. Each of these cities Cx

can be included into the tour, as it is shown in Figure 4.
After finding an edge Emn, which belongs to the tour and contains a city Cm, adjacent

to Cx, this edge is replaced with edges Emx and Exn. If several edges can be replaced,
one which minimizes the increase of tour length Lmx + Lxn − Lmn is selected, where
Lmn is the length of the edge Emn. Note that the edge Exn does not necessarily belong
to the triangulation graph.

3.4 Quality function

There remains one unresolved item in the described algorithm—how to calculate edge
quality Qmn. Several approaches are possible. It is not yet clear which of them gives
the best result. Here are the classic methods. The city CL(Enm) is denoted as Cl . In
each case the edge with minimum Qmn will be on the top of the heap D.

• Farthest insertion: Qmn = −min(Lml , Lln).

• Nearest insertion: Qmn = min(Lml , Lln).

• Cheapest insertion: Qmn = Lml + Lln − Lmn.

Other quantities for the edges can also be used. Best results till now were achieved
using edge ranks. For each city we can rank the edges on their length and assign rank
0 for the shortest edge, rank 1 to the next and so on. Each edge Emn will get two such
ranks: Rm

mn from the city Cm and Rn
mn from the city Cn. Here is the function, which

performed best till now.

Qmn = Lml + Lln − Lmn(Rm
mn + Rn

mn) (1)

4

CL(Emn)

CR(Emn) = CL(Enm)

Cm

Cn

Emn

Ti

Ti+1

Figure 3: Construction of the new tour.

Cm

Cn

Cx

EmnEmx

Exn

Ti

Ti+1

Figure 4: Inserting cities into the tour.

This quality function is purely empirical, so further investigation is necessary to
understand it theoretically and to improve the calculation of edge qualities.

3.5 Improvements

Many improvements to the core algorithm were tried. The following two proved to be
beneficial for a wide range of problem instances.

3.5.1 Clustering

What we call clustering is nothing more than additional subtours that get started inside
the main tour. The main tour starts with the convex hull and successively expands into
the interior of the graph by removing one edge and including a new city with two new
edges (see Section 3.6). Once it is decided that the cost for doing so exceeds the cost

5

E
(E

(a) Result (b) Threshold (c) Linear cluster (d) New result

Figure 5: Behaviour towards end of the main loop (rl5934)

of creating a new subtour, such a new subtour is created inside the graph—a cluster
is formed. Several such tours may exist and they can be combined (see Algorithm 9).
This clustering approach appeared to be better suited for several instances at first,
however, some refinements in the normal version of the algorithm closed this gap.

3.5.2 Linear Clusters

Towards the end of the edge removing process we run into the problem depicted in
Figure 5. The process is trying too hard and includes cities with relatively high cost.
The process is therefore ended, once a certain threshold of the cost has been reached.

The remaining cities could be inserted via the tour finishing function (see Algorithm
11), but an approach with so called linear clusters provided slightly better results. These
linear clusters are non-closed tours, that are inserted into the tour en bloc.

3.6 Pseudo Code

Algorithm 1 shows the main structure of the heuristic. After generating all the nec-
essary data structures and the Delaunay triangulation of the cities, the initial tour is
constructed via the convex hull. These first edges get placed onto a heap, sorted by
the quality of the edges (see Section 3.4). The triangles are sorted by function (2).

Qt =
min(La, Lb, Lc)

mid(La, Lb, Lc)
(2)

Where Li is the length of edge i and min and mid are the minimum and middle
operations. Lower Qt are better, because the resulting triangle has one very small
angle and two rather long edges. These are good starting points for our edge removal
process, as such constructs appear at regular shaped lines of points, as can be seen in
Figure 5.

The main loop in line 8 then gathers the cost of all possible four actions: removing
an edge from the tour, removing an edge from a cluster, construction a new cluster

6

(a new triangle) or merging two clusters or cluster and tour. If the threshold has not
been reached yet, the step with minimum cost is performed (line 16–24).

Algorithm 1 Heuristic pseudocode

1: procedure SolveTSP
2: calculate the delaunay triangulation, edge quality and triangle quality
3: set initial, directed tour← convex hull
4: heap E← all edges in the convex hull ⊲ =̂ initial tour
5: heap C ← all edges in the clusters ⊲ empty upon start
6: heap T ← all triangles ⊲ sorted by function (2)
7: heap M← all cities for cluster merging ⊲ empty upon start
8: while true do

9: ec← TourEdgeCost(E)
10: cc← ClusterEdgeCost(C)
11: tc← TriCost(T)
12: mc← ClusterMerge(M)
13: if ec > threshold and cc > threshold then

14: break ⊲ Do linear clusters instead
15: end if

16: if ec is best then

17: TourEdgeRemove(E)
18: else if cc is best then

19: ClusterEdgeRemove(C)
20: else if tc is best then

21: TriBuild(T)
22: else if mc is best then

23: ClusterMerge(M)
24: end if

25: end while

26: LinearCluster()
27: TourFinish()
28: TourImprove()
29: end procedure

Algorithms 2, 3, 4 and 5 show what is necessary to calculate the cost of (1) removing
an edge from the tour, (2) from the cluster, (3) generating a new triangle, or (4) merging
two clusters or cluster and tour, respectively. They consist of pulling the first object
from the heap and performing some plausibility checks to see, if the given object is
usable in the following step. Algorithms 2 and 3 have one additional task. If removing
an edge from the tour or cluster is not possible—because the city to add is already
a member of the tour or another cluster—it must be decided, if these two tours can
be merged. The cost associated with merging is calculated and the city in question is
placed onto heap M.

7

Algorithm 2 Pseudocode calculating the cost of removing an edge from the tour

1: procedure TourEdgeCost(E)
2: get top element e from heap E
3: e1 and e2 are the corresponding edges, which form a triangle ⊲ see Figure 3

4: v← vertex shared by e1 and e2

5: if v ∈ tour then

6: restart procedure
7: else if v ∈ cluster then

8: calculate cost to merge with cluster
9: add the edge e to M

10: restart procedure
11: end if

12: return the cost associated with edge e ⊲ city v is still free
13: end procedure

Algorithm 3 Pseudocode calculating the cost of removing an edge from the cluster set

1: procedure ClusterEdgeCost(C)
2: get top element e from heap C
3: e1 and e2 are the corresponding edges, which form a triangle ⊲ see Figure 3

4: v← vertex shared by e1 and e2

5: if v ∈ cluster then

6: if v ∈ same cluster then

7: restart procedure
8: end if

9: calculate cost to merge with other cluster
10: add the edge e to M
11: restart procedure
12: else if v ∈ tour then

13: calculate cost to merge with tour
14: add the edge e to M
15: restart procedure
16: end if

17: return the cost associated with edge e ⊲ city v is still free
18: end procedure

Algorithm 4 Pseudocode calculating the cost of creating a new cluster

1: procedure TriCost(T)
2: get top element t from heap T
3: if one city is in tour or cluster then

4: restart procedure
5: end if

6: return the cost associated with triangle t
7: end procedure

8

Algorithm 5 Pseudocode calculating the cost of merging cluster and tour or cluster
and cluster

1: procedure MergeCost(M)
2: get top element m from heap M
3: if both cities already in tour then

4: restart procedure
5: else if both cities belong to the same cluster then

6: restart procedure
7: end if

8: return cost associated with m
9: end procedure

Algorithm 6 Pseudocode removing an edge from E and adding two new edges

1: procedure TourEdgeRemove(E)
2: remove top element e from heap E
3: e1 and e2 are the corresponding edges, which form a triangle ⊲ see Figure 3

4: v← vertex shared by e1 and e2

5: add city v to the tour
6: add e1 and e2 to E
7: end procedure

Algorithm 7 Pseudocode removing an edge from C and adding two new cluster edges

1: procedure ClusterEdgeRemove(C)
2: remove top element e from heap C
3: e1 and e2 are the corresponding edges, which form a triangle ⊲ see Figure 3

4: v← vertex shared by e1 and e2

5: add city v to the cluster
6: add e1 and e2 to C
7: end procedure

Algorithm 8 Pseudocode building a new cluster out of three edges

1: procedure TriBuild(T)
2: remove top element t from heap T
3: create a cluster consisting of a simple triangle
4: add all three edges to C
5: end procedure

9

Algorithm 9 Pseudocode merging two clusters or one cluster with the tour

1: procedure ClusterMerge(M)
2: remove top element m from heap M
3: if cluster↔ cluster then

4: merge clusters by removing two edges and adding another two
5: put these two new edges onto C
6: else ⊲ tour↔ cluster
7: merge cluster with tour by removing two edges and adding another two
8: put these two new edges and all edges from the cluster onto E
9: end if

10: end procedure

Algorithms 6 and 7 are nearly identical and perform the removal of the worst edge
e from either heap, adding another city v and putting the newly used edges back onto
the heap. Algorithm 8 simply pops off the first triangle structure and transforms it
into a minimal cluster, adding three edges to the cluster heap. Algorithm 9, however,
is fairly complex. There are not only three possible calls (tour ↔ cluster, cluster ↔
tour, cluster ↔ cluster) but also two possible ways to merge the two constructs (see
Figure 6).

Algorithm 10 Pseudocode building linear clusters and merging them into the tour

1: procedure LinearCluster

2: for all cities not in tour do

3: create linear, open clusters with delaunay edges
4: merge them into the tour
5: end for

6: end procedure

Algorithm 10 for linear clusters—that is, clusters that do not form a closed cycle—
has even more cases to check. There are two endpoints to consider. Then each facing
edge has to be checked for the best possible way to integrate the cluster. This can be
done in four different ways.

Algorithms 11 and 12 are very similar too. They have been separated, because
TourImprove is not strictly necessary to obtain a valid tour, whereas TourFinish is (see
also Section 3.3 on page 4). They are rather straightforward and check for every city v,
if it could be better inserted before or after every adjacent city. If the tour improvement
would be positive, the city is then detached from its current position in the tour, and
reinserted into the better position. The difference to TourFinish is that it then places
all cities, that share an edge with the five changed cities—city v, its old previous and
next city and its new previous and next city—back onto the heap. This is basically a
node insertion heuristic with the candidate set limited to cities, that are at most two
delaunay edges away from the current city.

10

(a) Two tour sections

(b) Solution 1 (c) Solution 2

Figure 6: Possible ways of merging two tours

Algorithm 11 Pseudocode connecting remaining cities to the tour

1: procedure TourFinish

2: put all remaining cities onto heap H
3: for all cities c in H do

4: search all facing edges e for the best spot to insert c
5: if no e could be found then ⊲ no facing edge is yet part of the tour
6: re-add c to the bottom of H
7: continue for loop
8: end if

9: remove edge e and add two new edges connecting c to the tour
10: end for

11: end procedure

11

Algorithm 12 Pseudocode performing Node Insertion optimization

1: procedure TourImprove

2: put all remaining cities onto heap H
3: for all cities c in H do

4: search all facing edges e for a better spot to insert c
5: if no better e could be found then

6: continue for loop
7: end if

8: remove c from current tour
9: put c between the two cities connected through e

10: put all adjacent cities to the five changed cities back onto H
11: put the five changed cities back onto H
12: end for

13: end procedure

4 Results

4.1 Test setup

All tests were conducted on a Dell Inspiron 8600c laptop (Intel Banias CPU, 1 MB L2

cache, 1.5 GHz and 1 GB RAM) running Freebsd 5.4. The program itself, as well as
CONCORDE, was compiled using the Intel C Compiler (ICC) version 8.1.028 with very
high optimization settings (CFLAGS=-O3 -xB).

All times reported are the user times (i. e., the time the program spend executing
code in userland). It does not contain the time the process waited for I/O to finish or
was otherwise blocked from running.

Because of the Delaunay triangulation this approach uses, only instances with either
euclidean or ceiling norm can be computed. Thus, only those instances were used from
the following libraries: TSPLIB, National TSPs and the Very Large Scale Integration
(VLSI) TSPs. The first can be obtained from [2], the latter two from http://www.tsp.
gatech.edu/. The results will be limited to instances with more than 10 000 (TSPLIB,
National TSPs) and 50 000 (VLSI TSPs) cities, to avoid showing endless tables. Besides,
the goal of this heuristic is to get good tours of huge instances in short time.

The resulting tours are compared against the known optimal solution or the best
known lower bound. This provides an exact or slightly pessimistic overview of the
quality of tours achieved. However, no lower bounds exist for the VLSI instances,
therefore the solution is compared to the best known tour as of this writing. Com-
parisons for the VLSI instances are thus rather optimistic, as the real solution could
actually be an even shorter tour. The figures shown are the percentages above the
known lower bound, calculated via:

quality of tour =

(
calculated tour

lower bound
− 1

)
· 100

12

4.2 Version with linear clusters

The first version of woptsa only used the TourEdgeRemove (Algorithm 6) and the
LinearCluster function (Algorithm 10), i. e., it used no triangles/cyclic clusters at all.
The quality function (3) was used (compare also equation (1) on page 4).

Qmn = Lml + Lln − p · Lmn(Rm
mn + Rn

mn) (3)

The parameter p describes a weighting of the edge rank computation. The origi-
nal version ran the algorithm eleven times varying p (p ∈ {0.20, 0.25, . . . 0.70}) and
returned the shortest tour achieved. The results can be seen in Table 1. N is the num-
ber of cities, M the number of cities left for OptTourFinish to include, O denotes the
number of tour changes done in OptTourImprove. p is the weighting parameter for
function (3). q and t show the excess above the lower bound/known optimal tour and
the running time.

4.3 Version with cyclic clustering

A different quality function was used for the cyclic clustering case:

Qmn =
Lml + Lln − 2 · Lmn

Lmn
(4)

This provided a normalized increase in tour length for Qmn. Once the removal of
edge Emn and the addition of edges Eml and Eln would result in the new edges being
at least twice as long as the old edge, the value of Qmn will be greater than 1.

This value is critical for the threshold t. The main loop ran an additional three times
with t varying between {1.0, 1.5, 2.0}. The best tour of those 14 runs was then passed
to OptTourImprove for further improvement.

As it stands now, the additional clustering helps with a few small instances of the
TSPLIB, where the original code with linear clustering only achieved tour qualities of
21 % (fl3795 and fl1577, see Figure 7). These could be brought down to 13 % and 9 %
above the lower bound, respectively. Comparing all the results from the TSPLIB, the
average excess could be reduced from 5.69 % to 5.19 % and the standard deviation
from 4.18 % to 3.04 %. A lower deviation is very good, as it improves the estimation of
qualities for unknown instances.

4.4 Comparison

Besides woptsa, the running times and tour qualities were compared to several other
algorithms as implemented by CONCORDE (see Table 2). Namely a 2-Opt and 3-Opt
heuristic starting with a Greedy tour (kdtree) and a Chained Lin-Kernighan heuristic
provided via linkern (Quick-Boruvka starting tour, one round, # kicks = # cities). All
CONCORDE-tools used 99 as random seed, woptsa is not relying on random numbers
and is not seeded.

13

TSPLIB

Instance N M O p q · 100 t · s−1

rl11849 11849 26 1068 0.55 9.32 0.33
usa13509 13509 39 1667 0.45 6.31 0.35
brd14051 14051 49 1369 0.50 5.31 0.36
d15112 15112 45 1605 0.50 5.38 0.43
d18512 18512 56 1834 0.55 5.30 0.52
pla33810 33810 94 3085 0.25 7.39 0.92
pla85900 85900 166 8819 0.60 8.21 2.68

total 6.75 5.59
stddev 1.60

National TSPs

Instance N M O p q · 100 t · s−1

fi10639 10639 20 1083 0.40 5.89 0.26
mo14185 14185 38 1423 0.40 6.71 0.36
it16862 16862 39 1636 0.40 5.75 0.47
vm22775 22775 51 1970 0.50 6.42 0.65
sw24978 24978 64 2609 0.35 6.51 0.72
ch71009 71009 193 7348 0.45 6.05 2.38

total 6.22 4.84
stddev 0.38

VLSI

Instance N M O p q · 100 t · s−1

fna52057 52057 102 3523 0.45 8.58 1.73
bna56769 56769 123 3893 0.50 8.06 1.91
dan59296 59296 161 4201 0.35 8.94 2.00
sra104815 104814 274 7975 0.40 9.80 3.65
ara238025 238025 581 18594 0.40 9.51 9.25
lra498378 498378 1078 42601 0.50 11.06 21.74
lrb744710 744710 1638 51267 0.40 9.11 32.48

total 9.29 72.76
stddev 0.97

Table 1: Qualities and times for the first version of woptsa

14

(a) Without clusters

(b) With clusters

Figure 7: Final tours for fl1577

15

TSPLIB

woptsa 2 Opt 3 Opt linkern

Instance N q · 100 t · s−1 q · 100 t · s−1 q · 100 t · s−1 q · 100 t · s−1

rl11849 11849 9.32 0.33 9.41 0.11 5.81 0.20 0.35 20.82
usa13509 13509 6.31 0.35 10.75 0.17 7.48 0.27 0.24 40.84
brd14051 14051 5.31 0.36 9.13 0.16 6.28 0.24 0.19 28.58
d15112 15112 5.38 0.43 9.10 0.19 6.27 0.32 0.19 35.43
d18512 18512 5.30 0.52 9.38 0.23 6.51 0.33 0.21 35.39
pla33810 33810 7.39 0.92 12.13 0.36 8.50 0.60 0.57 73.39
pla85900 85900 8.21 2.68 10.00 1.10 7.24 1.58 0.29 211.88

total 6.75 5.59 9.99 2.32 6.87 3.54 0.29 446.33
stddev 1.60 1.11 0.92 0.14

National TSPs

woptsa 2 Opt 3 Opt linkern

Instance N q · 100 t · s−1 q · 100 t · s−1 q · 100 t · s−1 q · 100 t · s−1

fi10639 10639 5.89 0.26 12.10 0.12 8.84 0.19 0.28 22.47
mo14185 14185 6.71 0.36 10.06 0.17 6.98 0.26 0.25 30.26
it16862 16862 5.75 0.47 12.52 0.20 8.25 0.47 0.19 44.37
vm22775 22775 6.42 0.65 12.20 0.29 8.91 0.41 0.24 50.18
sw24978 24978 6.51 0.72 11.00 0.31 7.51 0.59 0.31 55.61
ch71009 71009 6.05 2.38 9.27 1.28 5.91 1.87 0.23 186.17

total 6.22 4.84 11.19 2.37 7.73 3.79 0.25 389.06
stddev 0.38 1.31 1.17 0.04

VLSI

woptsa 2 Opt 3 Opt linkern

Instance N q · 100 t · s−1 q · 100 t · s−1 q · 100 t · s−1 q · 100 t · s−1

fna52057 52057 8.58 1.73 10.06 0.61 7.02 0.89 0.50 69.51
bna56769 56769 8.06 1.91 10.44 0.68 7.01 0.96 0.46 78.28
dan59296 59296 8.94 2.00 10.13 0.70 7.69 1.00 0.50 81.86
sra104815 104814 9.80 3.65 10.89 1.47 8.26 2.49 0.48 207.25
ara238025 238025 9.51 9.25 10.66 3.72 7.85 6.00 0.48 531.19
lra498378 498378 11.06 21.74 9.95 9.13 7.09 18.67 0.56 1276.58
lrb744710 744710 9.11 32.48 10.48 15.38 7.77 60.05 0.51 2016.67

total 9.29 72.76 10.37 31.69 7.53 90.06 0.50 4261.34
stddev 0.97 0.34 0.49 0.03

Table 2: Comparison of tour qualities and computation times between woptsa, 2-Opt,
3-Opt and Lin-Kernighan heuristics as implemented by CONCORDE.

16

Instance
slower,
better

slower,
worse

faster,
worse

faster and better

pla85900 65 14 26 9 (2/3opt-JM, 2/2.5opt-B,
LK-ACR, LK-ABCC,

CLK-ACR)
C316k.0 42 6 32 7 (2/3opt-JM, 2/2.5opt-B)
E3M.0 21 9 30 2 (2opt-JM, 3opt-JM)

Table 3: Speed and quality compared to woptsa for three selected instances

Since the cyclic clusters made no significant impact on instances with more than
10 000 cities, we use only the version from Section 4.2.

Figure 8 shows the running time versus tour quality comparison for pla85900 from
the TSPLIB and two instances from the 8th DIMACS challenge: E3M.0, three million
uniformly distributed points and C316k.0, 316 000 clustered points. The exact details
of the compared heuristics can be taken from the DIMACS Homepage [5]. Note that
these are highly optimized heuristics that are either very fast or very good. The figures
are divided into four quadrants with woptsa being the intersecting point. The number
of heuristics in each quadrant is also shown. As can be seen, there are only a few
heuristics that beat woptsa both in time and quality.

Table 3 shows how many and which heuristics fared better or worse than woptsa.

5 Conclusion

In this work we presented an algorithm for the Traveling Salesman Problem, based
on Delaunay triangulation. An advantage of this algorithm is that there is only one
parameter to tune: the edge quality, or in other words, the decision which edges to
remove, to advance the given tour. Here, it is not obvious, why some instances are
very sensitive to the weighting factor p of the edge rank. Further research is necessary
in this area.

The heuristic also shows a good tradeoff between speed and length of the ob-
tained tour. There are only a few selected and highly optimized 2-Opt, 3-Opt and
Lin-Kernighan heuristics that do a better job overall.

The algorithm stabilizes with increasing node count. With fewer nodes, there can
be high variations in the achieved tour quality as already mentioned in Section 4.3
(see also Figure 7). This also explains the high overall standard deviation of tour
qualities within the TSPLIB, whereas the instances with 10 000 nodes or more only
show a standard deviation of 1.60.

Another notable observation is the correlation between the tour quality and graphs
with lots of regular shapes. The National TSPs are solved very well and—due to
their nature of being maps—their distribution of delaunay edge lengths varies highly.
Contrast that with the VLSI instances, which have lots of regular patterns and thus
many equally long delaunay edges grouped together. The same can be seen with

17

 1

 10

 1 10 100 1000 10000 100000

T
ou

r
qu

al
ity

 in
 p

er
ce

nt

Normalized CPU time in seconds

1426

9 65

(a) pla85900

 1

 10

 100

 1 10 100 1000 10000 100000

T
ou

r
qu

al
ity

 in
 p

er
ce

nt

Normalized CPU time in seconds

632

7 42

(b) C316k.0

 1

 10

 10 100 1000 10000 100000

T
ou

r
qu

al
ity

 in
 p

er
ce

nt

Normalized CPU time in seconds

930

2 21

(c) E3M.0

Figure 8: Runtime vs. quality comparison of several heuristics.

18

the TSPLIB instances. Those with regular patterns (rl11849, pla33810, pla85900) have
qualities above 7 % and the city map instances (usa13509, brd14051, d15112, d18512)
are below 6.5 % (see Table 1).

References

[1] G. Reinelt, The Traveling Salesman: Computational Solutions for TSP Applications.
Springer, 1994.

[2] G. Reinelt, “TSPLIB – a Traveling Salesman Problem library.” http://www.iwr.
uni-heidelberg.de/groups/comopt/software/TSPLIB95/, 1995.

[3] D. Applegate, R. Bixby, V. Chvátal, and W. Cook, “Concorde: A code for solving
Traveling Salesman Problems.” http://www.tsp.gatech.edu/concorde.html, 2004.

[4] D. Applegate, R. Bixby, V. Chvátal, W. Cook, and K. Helsgaun, “Optimal tour of
Sweden.” http://www.tsp.gatech.edu/sweden/, 2004.

[5] D. Johnson, “8th DIMACS implementation challenge: The Traveling Salesman
Problem.” http://www.research.att.com/~dsj/chtsp/, 2004.

19

