University of Wiirzburg
Institute of Computer Science
Research Report Series

Using Simulation and Genetic Algorithms
to Improve Cluster Tool Performance

Mathias A. Dimmler

Report No. 227 July 1999

University of Wiirzburg
Department of Computer Science
Am Hubland, D-97074 Wiirzburg, Germany
duemmler@informatik.uni-wuerzburg.de

Published in: 1999 Winter Simulation Conference, Phoenix, AZ, USA, December 5-8

Using Simulation and Genetic Algorithms to Improve Cluster Tool
Performance

Mathias A. Diimmler
University of Wiirzburg
Department of Computer Science
Am Hubland, D-97074 Wiirzburg, Germany
duemmler@informatik.uni-wuerzburg.de

Abstract

In this paper, we present an approach to generate optimal processing sequences
of lots at cluster tools. We consider the problem of sequencing n lots, where each
lot can be processed by any of m available cluster tools. The proposed method
combines simulation and a genetic algorithm to generate lot processing sequences.
We show that our approach leads to a significant reduction of cycle times at cluster
tools.

1 Introduction

Cluster tools have gained importance in the fabrication of semiconductor chips during
the last decade. Especially in upcoming 300 mm fabs, they will be an integral part of
the production process. In a cluster tool, several processing steps required to produce
a semiconductor chip are integrated into a single piece of equipment. In this way, the
probability of contamination of the wafers, the space required for equipment, and waiting
and transport times are reduced.

Performance analysis of these tools is not straightforward and cannot be accom-
plished using simple analytic approaches like spreadsheets. Instead, a performance anal-
ysis tool that predicts cycle times of wafers in a cluster tool adequately has to take into
account the effects of different wafer recipes, cluster tool control and architecture, wafer
waiting times, and sequencing. Hence, cluster tools make for an excellent area for the
application of simulation.

There is already a number of publications available that deal with the simulation
and analysis of cluster tools. In [1], potential throughput advantages of cluster tools and
the problem of shifting bottlenecks are discussed. [2] and [3] present simulation models
of cluster tools that were developed using general purpose simulation languages. In [4]
and [5], a general purpose simulation language has been used to build simulation models
of different types of cluster tools. [6] addresses the problem of detecting and avoiding
deadlocks when simulating cluster tools.

In [7] and [8], an analytical approach for computing the time required to process a
lot of wafers is presented. However, their analytic method is restricted to very simple
models of cluster tools. For example, process times are supposed to be identical in all
chambers. In reality, however, process times vary significantly among different process
chambers. Even for a single chamber process times can vary for different sequences.
[9] use a similar approach to compute the steady state throughput of a single-wafer

cluster tool. They compare the throughput for a single-blade and a dual-blade robot.
In [10] and [11], the throughput time of a cluster tool is derived from four parameters,
namely the fixed throughput time, the lot size, the incremental throughput time and a
correction term. [12] use timed Petri nets to model cluster tools. They also present a
control method that increases the performance of a cluster tool.

Since several simulation tools for cluster tools are available, it is possible to assess the
performance of individual cluster tools. However, these simulation tools can not be used
for the performance analysis and control of a set of cluster tools in the context of a wafer
fab. In this paper, we address a problem that arises in manufacturing practice, namely
the sequencing of lots that wait for processing at a set of cluster tools. The sequence
generated should minimize a certain cost function, e.g. it should lead to minimal cycle
times for all lots. This task can, in general, not be solved without the support of a
manufacturing execution system. However, the available systems usually do not take
into account the special properties of cluster tools. For example, the cycle times of lots
in a cluster tool running in parallel mode depend strongly on the types of lots that are
processed in parallel. Therefore, a sequencing algorithm has to take into account the
effect of lot combinations. To solve this problem, we propose an approach that combines
simulation and genetic algorithms to generate sequences of lots at a set of cluster tools
that lead to optimal or close—to—optimal cycle times.

This paper is structured as follows. In Section 2, the simulation program that we
developed in order to model and simulate cluster tools is presented. In Section 3, we
describe the cluster tool model that is used for our studies. Section 4 contains a simple
approach to identify advantageous combinations of lot sequences. In Section 5, we
present a genetic algorithm that generates processing sequences of lots that are optimal
or close-to—optimal. Finally, in Section 6 we discuss our results and indicate possible
extensions of our approach.

2 Simulation Engine

In order to perform the simulation studies described in the previous section, we developed
a simulation engine for cluster tools in C+4. The simulation model can consist of
arbitrary many cluster tools, each of which can have an arbitrary number of process
chambers, load locks and handlers. The most important parameters that can be specified
in the simulation model are listed in Table 1.

For each of the components of a cluster tool, down times can be specified. However,
for this study, down times were not incorporated in the model.

The simulation engine computes a number of output statistics after a simulation run,
such as cycle times of wafers and utilization of the components of a cluster tool. For the
studies described in this paper, the total completion time for a given sequence of lots is
of special interest.

The modular concept of the simulation tool allows to exchange different parts of the
model and test their impact on performance. For example, the module responsible for
the control of the handler can currently be chosen from a set of four modules: a FIFO

Table 1: Model Parameters

Cluster tools:

- Number of process chambers
- Number of load locks
- Number of handlers

Handlers: - Move time (with or without
wafer) for every origin/
destination pair

Load locks: - Pump/vent time

Sequences: - Number of process steps

Process steps:

- Process chambers qualified for
a step
- Process time in these chambers

Lots:

- Number of wafers per lot

Walfers:

- Process sequence

based control, a Least Slack based control, a Critical Ratio based control and a module
that uses backtracking to find optimal wafer moves.

3 Cluster Tool Model

The cluster tool model under investigation in this paper is depicted in Figure 1.

It

consists of two main modules to which the individual processing chambers are attached.
Transportation of wafers in the upper module is done by the transfer robot, in the lower
module the wafers are transported by the buffer robot. There are two load locks that
allow to load lots into the cluster tool independently and process them in parallel.

Chamber

Chamber 3

O

Chamber 4

Load Lock 1

Figure 1: C

Load Lock 2

luster Tool Model

The model parameters are as follows. For both robots, we assume that it takes 20
seconds to move a wafer from any position (chamber or load lock) to another. Without

transporting a wafer, it takes the robots one second to move from one position to another.
Pump and vent times for the load locks are zero, since they were not regarded in our
study.

We have conducted simulation studies for this model for as many as 30 different
process sequences. In this paper, we restrict the number of process sequences to four.
The processing times in seconds at each chamber are listed in Table 2. A cell is empty if
a wafer of the corresponding sequence does not visit the corresponding chamber. Note
that in all process sequences, process time in chamber A is zero, since it is only used as
a transfer to the upper main module.

Table 2: Processing Times in Chambers
| Chamber [E[F | C [D [A[1 [2 [4 |B |

Seq.1 80 |[60[40]0 [70]40 30
Seq. 2 | 60 0 |70 30
Seq.3 || 80 | 60|40 |0 90 30
Seq. 4 0 80 | 30

4 Lot Combinations

As the first step of our study, we tried to identify combinations of two lots that lead to
low lot cycle times when processed in parallel. Therefore, we performed the following
simulation experiment, using the cluster tool model presented in the previous section.
Starting with an initially empty cluster tool, we simultaneously put a lot of process
sequence i € {1,...,4} in load lock 1 and a lot of process sequence j € {1,...,4} in load
lock 2. For all of the 16 possible combination of sequences, we measured the cycle time
for both lots. For every combination 4, j, we computed the ratios T; ;/T;, where T; ; is
the cycle time of a lot of sequence ¢ when processed together with a lot of sequence j. T;
is the cycle time of a lot of sequence ¢ when processed exclusively. The resulting ratios
are displayed in Table 3.

Table 3: Cycle Time Ratios for Combinations

‘Sequencesszl‘jz2‘j:3‘j:4‘

1=1 1.86 | 1.85 | 1.85 | 1.35
1 =2 1.66 | 1.78 | 1.29 | 1.34
1=3 1.50 | 1.38 | 1.88 | 1.39
1=4 1.25 | 1.53 | 1.76 | 1.72

Obviously, there are combinations that lead to more favorable cycle times for both
lots than other combinations. For example, combining sequence 2 and 3 leads to an
increase in cycle time of 29% for sequence 2 and of 38% for sequence 3. Hence, this is
a more favorable combination than, e.g., sequence 1 and 3, which leads to an increase

in cycle time of 85% for sequence 1 and of 50% for sequence 3. Combining process
sequences 2 and 3 leads to shorter cycle times since sequence 2 does not make use of
chamber 2, which is the bottleneck chamber of sequence 3 and vice versa. On the other
hand, when combining sequences 1 and 3, wafers of sequence 1 visit chamber 2, the
bottleneck resource for sequence 3, causing higher waiting times for both sequences.
Table 3 can be used as a guideline for operators to choose combinations of process
sequences that lead to short cycle times. However, when a large number of lots has to
be sequenced on several cluster tools, this task can no longer be performed manually.

5 Lot Sequencing

The next step is to automate the sequencing of lots at cluster tools. It can be shown
that for n lots and m cluster tools, there are (n +m — 1)!/(m — 1)! ways to distribute
the lots over the cluster tools. It is obvious that even for small values of n and m it
is not feasible to test all possible sequences. For example, for n = 8 lots and m = 2
cluster tools, 362,880 simulations would have to be run to do an exhaustive search over
all possible sequences.

To solve this problem, we implemented a heuristic method based on a genetic algo-
rithm (GA) to generate the lot sequences. For an introduction to genetic algorithms,
the reader is referred to [13] and [14]. For the implementation of the genetic algorithm
we used the programming library ”GAlib” [15]. Since GAlib is written in C++, it could
be easily integrated into our existing simulation tool.

The basic idea behind a genetic algorithm is to imitate an evolutionary process:
The best individuals or genomes of a generation survive and reproduce to pass on their
genetic material to the next generation. Roughly spoken, the GA needs three pieces of
input data: A data structure to represent the genomes, operators on this data structure
that allow the genetic algorithm to create new solutions and an objective function to
evaluate the fitness of a genome.

In our case, the genomes of the GA are represented as follows. If n lots, numbered
1,...,n, have to be scheduled on m cluster tools, numbered 1,...,m, a genome consists
of a list of integer numbers [, € {1,...,n}, k =1,...,n and an array of integer numbers
ar € {1,...,m}, k=1,...,n,. The list [, represents the processing sequence of the lots
and the array entries ay denote the cluster tool on which lot & is scheduled for processing.
We use the default operators on lists and arrays that are implemented and documented
in the GAlib library to generate new genomes. As the objective function, we use the
time required for processing all lots according to the sequence that the genetic algorithm
suggests. This time is derived using the simulation model of the cluster tools. The GA
uses this objective function to evaluate a genome and to decide whether it is "fit” enough
to survive and reproduce.

Three problem instances have been used to test the genetic algorithm. In the first
problem, four lots, one of each process sequence, have to be sequenced for processing at
a single cluster tool. The optimal sequence can be found in this case by simulating all
4! = 24 lot sequences. This sequence has a makespan of 10031 seconds. The GA was
run five times for this problem. The parameters of the GA can be found in Table 4.

Table 4: Parameters for Problem 1
Population size 5

Number of generations 5

Probability of crossover | 0.6
Probability of mutation | 0.1
Number of replacements | 2

The results of the GA are displayed in Table 5. For each of the five test runs, the best
lot sequence that the GA found is displayed. In the following columns, the makespan
for the best sequence, the number of sequences tested to generate the sequence and the
total run time of the algorithm are given. The runs were performed on a Pentium II 266
processor.

Table 5: Results for Problem 1

Best Sequen- | Run

Lot Make- ces Time

Run | Sequence | span | tested | (sec.)
1 4123 10036 13 9
2 1432 10052 9 6
3 3241 10031 14 9
4 2341 10142 10 6
5! 2341 10142 14 10

The GA found the optimal sequence in one of the five runs, the results for the other
runs differed not more than one percent from the shortest makespan. However, instead
of testing all 24 sequences, the GA needed to test only 14 sequences to find its best
solution.

In the second problem, two lots of each process sequence are sequenced for processing
on one cluster tool. The parameters of the GA are given in Table 6.

Table 6: Parameters for Problem 2 and 3
Population size 20
Number of generations 10
Probability of crossover | 0.6
Probability of mutation | 0.1

Number of replacements | 8

Five test runs have been performed. The results are displayed in Table 7. For each
run, the makespan of the best sequence that the GA found is displayed. To the author’s
knowledge, no algorithm is available that finds the optimal sequence of lots for this
problem in adequate time. Therefore we compare the makespan of the best sequence to
the average makespan of 20 randomly generated sequences. The reduction in makespan

is given in the third column. Finally, the number of sequences generated to find the
optimum and the run time of the GA are displayed.

Table 7: Results for Problem 2

Best Sequen- | Run

Make- % ces Time

Run | span | Improved | tested | (sec.)
1 19562 12.5 114 160
2 19840 11.3 113 157
3 19601 12.3 117 161
4 20067 10.3 105 149
) 19691 11.9 115 163

In all five runs, the GA produced a sequence that leads to more than ten percent
reduction in makespan compared to the randomly generated sequences.

Finally, in the third problem three lots of each process sequence are sequenced for
processing on two cluster tools. The parameters used in this case are the same as in
Table 6. The results of five test runs are displayed in Table 8. Again, the improvement
in makespan for the best sequence is compared to the average makespan of 20 randomly
generated sequences. The random sequences were generated by evenly distributing the
lots over the cluster tools.

Table &: Results for Problem 3

Best Sequen- | Run

Make- % ces Time

Run | span | Improved | tested | (sec.)
1 14418 10.8 111 213
2 14182 13.0 100 197
3 13979 13.7 89 165
4 14059 14.9 111 213
) 13860 14.9 118 228

It can be noted in general, that the GA generated sequences that lead to an optimal
or near—to—optimal makespan. It is expected that applying the presented approach on
the manufacturing floor will lead to a significant reduction of cycle times.

The run time of the GA is small enough to make it useful in the actual dispatching
of cluster tools. Sequences can be re-optimized in only a few minutes if the set of lots
waiting for processing changes. Another advantage of the genetic algorithm is that it is
an anytime algorithm. This means, that if a result is needed before the genetic algorithm
has terminated, the computation can be stopped and the genetic algorithm will respond
with the best current solution.

6 Conclusion

In this paper we presented an approach that uses a simulation model of a set of cluster
tools and a genetic algorithm (GA) to find optimal processing sequences of lots at these
cluster tools. Several sample applications showed that the proposed method can be used
to produce optimal or close-to—optimal sequences in short time. When applied on the
production floor, this algorithm can lead to a significant reduction in cycle times.

Several improvements to the approach are possible. For example, a GA-within-GA
might lead to better performance. In a first step, this algorithm distributes the lots over
the cluster tools and then, as a second step, tries to find optimal sequences for each
individual cluster tool.

ACKNOWLEDGEMENTS

The author would like to thank Matthias Schmid, Markus Bohr and Andreas Reifert for
their programming efforts.

References

[1] R. W. Atherton, F. T. Turner, L. F. Atherton, and M. A. Pool, “Performance
analysis of multi-process semiconductor manufacturing equipment,” in Proceedings
of IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 131-136,
1990.

[2] N. G. Pierce and M. J. Drevna, “Development of generic simulation models to evalu-
ate wafer fabrication cluster tools,” in Proceedings of Winter Simulation Conference,
pp. 874-878, 1992.

[3] T. H. LeBaron and M. Pool, “The simulation of cluster tools: A new semiconductor
manufacturing technology,” in Proceedings of the Winter Simulation Conference,
pp- 907-912; 1994.

[4] J. L. Mauer and R. E. Schelasin, “The simulation of integrated tool performance
in semiconductor manufacturing,” in Proceedings of Winter Simulation Conference,
pp. 814-818, 1993.

[5] J. Mauer and R. Schelasin, “Using simulation to analyze integrated tool performance
in semiconductor manufacturing,” Microelectronic Engineering, vol. 25, no. 2/4,
pp- 139-146, 1994.

[6] L. W. Schruben, “Deadlock detection and avoidance in cluster tools,” in Proceedings

of the 1999 International Conference on Semiconductor Manufacturing Operational
Modeling and Simulation, pp. 31-35, 1999.

[7] T. L. Perkinson, P. K. McLarty, and R. S. Gyurcsik, “Single-wafer cluster tool
performance: An analysis of throughput,” IEEE Transactions on Semiconductor
Manufacturing, vol. 7, pp. 369-373, Aug. 1994.

8]

T. L. Perkinson and R. S. Gyurcsik, “Single-wafer cluster tool performance: An
analysis of the effects of redundant chambers and revisitation sequences on through-
put,” IEEE Transactions on Semiconductor Manufacturing, vol. 9, pp. 384-400,
Aug. 1996.

S. Venkatesh, R. Davenport, P. Foxhoven, and J. Nulman, “A steady-state through-
put analysis of cluster tools: Dual-blade versus single-blade robots,” IEEE Trans-
actions on Semiconductor Manufacturing, vol. 10, pp. 418-424, Nov. 1997.

S. C. Wood, S. Tripathi, and F. Moghadam, “A generic model for cluster tool
throughput time and capacity,” in Proceedings of IEEE/SEMI Advanced Semicon-
ductor Manufacturing Conference, pp. 194-199, 1994.

S. C. Wood, “Simple performance models for integrated processing tools,” IEEE
Transactions on Semiconductor Manufacturing, vol. 9, pp. 320-328, Aug. 1996.

Y.-H. Shin and T.-E. Lee, “Performance modeling of cluster tools using timed petri
nets,” in Proceedings of the 1999 International Conference on Semiconductor Man-
ufacturing Operational Modeling and Simulation, pp. 36-41, 1999.

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, 1989.

“Encore (The EvolutioNary =~ COmputation = REpository = network).”
ftp://ftp.krl.caltech.edu/pub/EC/Welcome.html, 1997.

M. Wall, “GAlib. A C++ library of genetic algorithm components.” http://lancet.
mit.edu/ga/, 1995.

