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Abstract—A quarter of the world population will be using
smartphones to access the Internet in the near future. In this
context, understanding the Quality of Experience (QoE) of popu-
lar apps in such devices becomes paramount to cellular network
operators, who need to offer high quality levels to reduce the risks
of customers churning for quality dissatisfaction. In this paper
we address the problem of QoE provisioning in smartphones
from a double perspective, combining the results obtained from
subjective lab tests with end-device passive measurements and
QoE crowd-sourced feedback obtained in operational cellular net-
works. The study addresses the impact of both access bandwidth
and latency on the QoE of five different services and mobile apps:
YouTube, Facebook, Web browsing through Chrome, Google
Maps, and WhatsApp. We evaluate the influence of both constant
and dynamically changing network access conditions, tackling in
particular the case of fluctuating downlink bandwidth, which is
typical in cellular networks. As a main contribution, we show
that the results obtained in the lab are highly applicable in
the live scenario, as mappings track the QoE provided by users
in real networks. We additionally provide hints and bandwidth
thresholds for good QoE levels on such apps, as well as discussion
on end-device passive measurements and analysis. The results
presented in this paper provide a sound basis to better understand
the QoE requirements of popular mobile apps, as well as for
monitoring the underlying provisioning network. To the best
of our knowledge, this is the first paper providing such a
comprehensive analysis of QoE in mobile devices, combining
network measurements with users QoE feedback in lab tests and

operational networks.

Keywords—QoE; Smartphones; End-device Measurements;
Field Trial; Subjective Lab Tests; Mobile Apps; Crowdsourcing;
YoMoApp.

I. INTRODUCTION

Smartphones are becoming the most typical mobile device
to access Internet today. Recent projections [1] show that
by 2016, a quarter of the world population will be using
smartphones to access the most popular services such as
YouTube, Facebook, WhatsApp, etc. According to Cisco’s
global mobile data traffic forecast [2], smartphones will be
responsible for more than three-quarters of the mobile data
traffic generated by 2019. In the light of these trends, cellular
network operators are becoming more and more interested in
understanding how to dimension their access networks and
how to manage their customers’ traffic to capture as many
new customers as possible. In this scenario, the concept of

Quality of Experience (QoE) has the potential to become one
of the main guiding paradigms for managing quality in cellular
networks. Closely linked to the subjective perception of the
end-user, QoE enables a broader, more holistic understanding
of the factors that influence the performance of systems,
complementing traditional technology-centric concepts such as
Quality of Service (QoS).

The standard approach to assess the performance of net-
works and services from a QoE end-user perspective is to
conduct controlled lab experiments [3]–[5]. The key benefits
of such an approach rely on the full control the experimenter
has on the overall evaluation process. Indeed, content and
context are fully known and controlled, and users are directly
briefed and observed on the spot, providing as such tangible
and solid results. However, lab experiments miss out many
important QoE influence factors such as usage context, content
preferences by individual users, or device usability among
others, potentially introducing differences w.r.t. evaluations
conducted in the field [6]. Field trial experiments place the end-
user and the evaluated components (i.e. network, apps, etc.) as
closest as possible to their daily usage scenarios and running
environments, providing more representative evaluations. This
augmented degree of realism w.r.t. lab experiments yields in
principle more reliable results in terms of end-user experience,
to the cost of higher complexity in acquiring and processing
the results (e.g., traffic monitoring, QoE feedback, app-level
measurements, etc.).

In this paper we study the QoE of popular apps in
smartphones (YouTube, Facebook, Gmaps, Web Browsing and
WhatsApp) from two different yet complementary perspec-
tives: subjective tests performed in a controlled lab, and passive
end-device measurements with QoE user feedback in opera-
tional networks, through a field trial. Our study considers firstly
the impact of the most relevant QoS-based characteristics
of the access network: the downlink bandwidth. In addition,
we take two relevant network-related metrics into the study,
evaluating the network access latency, and the stability of
the cellular network. Given the natural mobility context in
which users operate smartphones in cellular networks, we
evaluate both constant and dynamically changing network
bandwidth conditions, tackling in particular the case of fluc-
tuating downlink bandwidth. This is highly important and a
major contribution, as the bandwidth of a cellular connection
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naturally fluctuates due to interference, handover, etc. We have
developed different tools to conduct the field trial, including
a passive monitoring tool to measure the traffic of the field
trial participants at their end devices, a QoE-feedback app
to gather user experience data (e.g., quality ratings), and a
YouTube passive monitoring tool to measure initial playback
delays, playback stallings, and video quality switches (induced
by the adaptive video streaming protocols used by YouTube).

Besides providing a solid ground-truth (based on the ex-
perience of real users) regarding the QoE-requirements of
popular apps such as YouTube and Facebook (e.g., a downlink
bandwidth of 4 Mbps/1 Mbps respectively is high enough
to reach near optimal results in terms of overall quality and
acceptability), our results suggest that lab study results are
highly applicable in the live setting, as the mappings obtained
between network QoS and user QoE are highly similar in
both scenarios. This a major contribution, as it permits to gain
high insight about QoE in mobile devices, even by running
experiments in the lab. In addition, our study shows the benefits
of monitoring the QoE directly from the end-users’ devices,
as it becomes also possible to include contextual information
(e.g., location, mobility, etc.) into the QoE analysis.

The remainder of the paper is organized as follows: Sec.
II presents an overview of the related work on QoE, focusing
on the specific case of mobile devices. Sec. III describes the
subjective tests’ setup and presents the obtained results. Sec. IV
describes the tools developed to measure QoE-related metrics
directly at the end-devices. Sec. V describes the approach
followed in the field trial and discusses the obtained results,
particularly in terms of similarity to those obtained in the lab.
Sec. VI discusses the obtained results and our main findings.
Sec. VII overviews several implications, limitations and topics
related to the passive monitoring of QoE at end-user devices,
including privacy, network neutrality, and incentives among
others. Finally, Sec. VIII concludes this work.

This work is an extended and more complete version of a
recently published paper [7], and it elaborates on our recent
studies on QoE for cellular networks [8], [9]. In particular,
we extend the subjective lab studies by adding new services
as well as evaluating the impact of other QoS-related metrics
such as latency at the access and network stability in terms
of bandwidth fluctuations. The paper additionally extends the
field trial results by adding an analysis on the impact of user
location/mobility on QoE for some of the evaluated services.
We also include details on the development of a novel end-
device application which passively monitors Key Performance
Indicators (KPIs) of YouTube such as stallings and quality
switches, and present application results in both the lab studies
and the field trial. Last but not least, we extend the discussion
and interpretation of results to provide more useful conclusions
to the reader.

II. RELATED WORK

The study of the QoE requirements for cloud-based appli-
cations as the ones we target in this paper has a long list of
fresh and recent references. A good survey of the QoE-based
performance of cellular networks when accessing different
cloud services is presented in [10]. The specific case of QoE in
YouTube deserves particular attention, due to the overwhelm-
ing popularity and omnipresence of the service. Studies have
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Figure 1. Layered QoE evaluation methodology for networking services.

both considered the “standard” HTTP video streaming flavour
of YouTube, as well as the more recent Dynamic Adaptive
Streaming (DASH) version. Previous papers [11], [12] have
shown that stalling (i.e., stops of the video playback) and
initial delays on the video playback are the most relevant
Key Performance Indicators (KPIs) for QoE in standard HTTP
video streaming. In the case of adaptive streaming, a new
KPI becomes relevant in terms of QoE: quality switches. In
particular, authors in [13] have shown that quality switches
have an important impact on QoE, as they increase or decrease
the video quality during the playback. A comprehensive survey
of the QoE of adaptive streaming can be found in [14].

There has been a recent surge in the development of tools
and software libraries for measuring network performance on
mobile devices: some examples are Mobiperf [15], Mobilyzer
[16], and the Android version of Netalyzr [17]. When it comes
to our specific analysis of QoE in cellular networks and mobile
devices, most references are very new, showing that there is
still an important gap to fill. In [18], authors study the QoE
of YouTube in mobile devices through a field trial, exclusively
considering the non-adaptive version of the YouTube player.
Authors in [19] recently introduced Prometheus, an approach
to estimate QoE of mobile apps, using both passive in-network
measurements and in-device measurements, applying machine
learning techniques to obtain mappings between QoS and QoE.
In [20], authors introduce QoE Doctor, a tool to measure and
analyze mobile app QoE, based on active measurements at
the network and the application layers. Additional papers in a
similar direction tackle the problem of modeling QoE for Web
[21] in cellular networks, and video [22].

The main limitation of these approaches is the lack of
real user experience ground truth in their analyses. Most of
the papers study QoE-related metrics such as page-load times,
interface latency, or video stallings but without any reference
to real user experience, reflected for example in terms of Mean
Opinion Scores. Other limitation of some of the proposed
approaches is that they rely on active measurements only (e.g.,
[20]), which is less attractive when thinking on large scale user
traffic monitoring and analysis. Our approach considers both
real users QoE feedback and passive monitoring at end devices,
improving and extending the state of the art.

Finally, the problem of analyzing the impact of network
bandwidth fluctuations on QoE has received little attention in
the past, but we are giving strong steps in this direction, to
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Figure 2. Experimental setup used in the study. Devices are connected to
the Internet through independent, controlled WiFi connections.

make researchers and practitioners aware of the relevance of
this issue. In particular, we have presented in [23] a study
on the impact of network bandwidth fluctuations and network
outages on the QoE of web-based services, using subjective
lab studies and measurements in fixed-line networks.

III. MOBILE QOE IN THE LAB

Let us begin by reporting the results of the conducted
subjective lab tests. Lab tests are realized through the layered
evaluation methodology depicted in Fig. 1. The experience
of a user with any application is conditioned by multiple
features, including dimensions such as technical characteristics
of the application, user personality and expectations, user de-
mographics, device usability, and usage context among others.
Particularly when evaluating networking-based applications,
the influence of the network itself as well as its interplay with
the particular application have to be linked to the user’s opin-
ions, additionally identifying those perceivable performance
parameters that are most relevant to the user experience. This
mapping is realized by analyzing and correlating the three
layers depicted in Fig. 1: the network layer accounts for
the influence of the network QoS parameters (e.g., network
bandwidth, RTT, etc.); the application layer considers both
the technical characteristics (e.g., screen resolution, video bit-
rate, web-page complexity) and the perceivable performance
parameters of the application (e.g., page-load times, response
time, video stalling, etc.); finally, the user layer spans the
user subjective opinions on the evaluated application (e.g.,
MOS values, acceptability, etc.). The experimental evaluations
reported in this section are designed in such a way that all
the three aforementioned layers could be properly measured.
In particular, there is a strong emphasis on monitoring part of
these layers directly at the end-user device, enriching as such
the contextual-information gathering and the visibility on the
QoE monitoring problem, as we come as close as possible to
the user and applications running on his device.

The subjective study consists of 52 participants interacting
with the aforementioned services while experiencing different
downlink bandwidth and access delay profiles in the back-
ground data connection. Fig. 2 depicts a high-level diagram
of the experimental testbed employed in the subjective tests.
Android smartphone devices are used in the study (Samsung
Galaxy S4, OS Android 4.4 KitKat). Devices are connected
to the Internet through separate WiFi access networks. The
downlink traffic between the different evaluated services and
the devices is routed through a modified version of the very
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Figure 3. Overall quality and acceptability in YouTube standard (i.e., non-
DASH) and DASH. DASH is capable of handling lower DBW connections
with high QoE, trading image quality by lower download throughput.

well known NetEm network emulator [24] so as to control the
different access network profiles under evaluation. Next we
report firstly the results obtained in terms of constant downlink
bandwidth (section III-A), and then focus on the impact
of access latency (section III-B) and dynamically changing
downlink bandwidth, additionally including outages (section
III-C).

A. QoE for Constant Downlink Bandwidth

Different constant bandwidth profiles are instantiated at
the network emulators, changing downlink bandwidth loga-
rithmically, from 0.5 Mbps to 16 Mbps. These profiles are
selected from operational experience, particularly following
typical operational values reported in [10] for different access
network technologies (LTE, 3G/2G, etc.). Note that while we
do not emulate the particular characteristics of a cellular access
network, results obtained in the field (c.f. Sec. V) suggest that
our lab results are accurate in real cellular access networks.

Participants were instructed to perform independent tasks
for each of the three considered applications. For YouTube,
they were requested to watch two-minutes HD YouTube
videos, considering both the usage of the standard (i.e., non-
DASH) and the DASH versions of the YouTube player. Videos
correspond to 4K ultra-HD videos (i.e., 2160p), which are
down-scaled to HD resolution (i.e., 720p) due to the device’s
display capabilities (i.e., screen size and resolution). The
average video bit rate (vbr) of the corresponding HD videos
is in all cases around 1.6 Mbps. In the case of Facebook,
participants were instructed to access the application with a
specific user account, browse the timeline of this user, and
browse through specific photo albums created for this user.
Finally, Gmaps tasks consisted of exploring different city maps
using the Gmaps application, in satellite view, which consumes
more bandwidth.

Tests were performed in a dedicated lab for subjective
studies, compliant with the QoE subjective studies standards
[3]–[5]. Regarding participants’ demographics, 29 participants
were female and 23 male, the average age was 32 years old,
with 40 participants being less than 30 years old. Around half
of the participants were students and almost 43% were employ-
ees, and 70% of the participants have completed university or
baccalaureate studies.

Regarding QoE feedback, participants were instructed to
rate their overall experience according to a continuous ACR
Mean Opinion Score (MOS) scale [3], ranging from “bad”
(i.e., MOS = 1) to “excellent” (i.e., MOS = 5). MOS ratings

3



1932-4537 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2016.2537645, IEEE
Transactions on Network and Service Management

1 2 4
1

1.5

2

2.5

3

3.5

4

4.5

5

DBW (Mbps)

M
O

S

standard

DASH

1 2 4
1

1.5

2

2.5

3

3.5

4

4.5

5

DBW (Mbps)

M
O

S

standard

DASH

(a) Stalling. (b) Video Image Quality.

Figure 4. QoE for YouTube Mobile, considering playback stallings and video
image quality. Video image quality is perceived as almost excellent for the
lowest DBW condition, even if video resolution is lower.

were issued by participants through a custom questionnaire
application running on separate laptops, which pops up im-
mediately after a condition has been tested. Participants also
provided feedback on the acceptability of the application,
stating whether they would continue using the application
under the corresponding conditions or not. For the specific
case of YouTube, three additional questions were asked to
participants: (i) stalling annoyance (did you perceive stalling
as disturbing?); (ii) video image quality (rate the image quality
of the video); (iii) initial playback delay annoyance (did you
perceive the initial loading time of the video as disturbing?).
The reader shall note that the maximum MOS ratings declared
by the participants are never 5 but somewhere between 4.2 and
4.6. This is a well known phenomenon in QoE studies called
rating scale saturation, where users hardly employ the limit
values of the scale for their ratings [10].

1) QoE in YouTube Mobile: The Downlink BandWidth
(DBW) takes values 1 Mbps, 2 Mbps, and 4 Mbps in YouTube
tests. Fig. 3 reports the overall quality and acceptability results
obtained for the YouTube tests. Recall that in the YouTube
scenario, we compare the standard, non-adaptive version of
the YouTube player (videos are selected to play in HD quality)
against the DASH-capable one. In the DASH case, videos are
also requested in HD quality, but the server adapts the subse-
quent video quality resolutions to the bandwidth estimated by
the player.

Fig. 3(a) compares the overall QoE experienced by the
participants using both player versions. It is quite impressive to
appreciate how the DASH approach results in a nearly optimal
QoE for all the tested conditions (from 1 Mbps to 4 Mbps),
whereas the fixed HD quality approach results in poor QoE
for downlink bandwidth below 4 Mbps. As expected for the
standard player, heavy stalling occurs for the 1 Mbps condition,
taking into account that the average vbr is 1.6 Mbps. Indeed, as
we have shown in [25], the DBW should be in the order of 30%
higher than the average video bitrate to avoid stalling when
non-adaptive streaming is used. This dimensioning rule also
explains the results obtained for the 2 Mbps condition, as some
stalling still occurs. No stalling seems to occur for the DASH
version. The main difference is that DASH changes the video
quality without incurring in playback stalling, whereas the
fixed quality configuration definitely results in video stalling.

Fig. 3(b) reports the results in terms of acceptability of the
participants. This is one of the key features that an operator
has to consider, because low acceptance rate may sooner or
later turn into churn. As observed, acceptance rate is as low
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Figure 5. QoE in Gmaps. Overall quality and acceptability for different
DBW. A DBW of 2 Mbps is high enough to achieve good QoE and almost
full acceptability.

as 23% for the standard streaming at 1 Mbps, whereas it’s
close to 99% in the case of DASH.

To complement the picture for YouTube QoE in mobile
devices, Fig. 4 depicts the results obtained in terms of (a)
annoyance caused by stalling (stop of the video playback),
and (b) video image quality. In Fig. 4(a), a MOS = 5 means
not disturbing at all, whereas a MOS = 1 means unbearable
(very annoying). Stalling has a very strong impact on the user’s
level of annoyance, confirming what has been already seen in
previous studies for desktop and laptop like devices.

The most interesting result is presented in Fig. 4(b), which
reports the perceived image quality of the video. According
to previous studies [13], quality switches induced by DASH
have an important impact on QoE. However, in the case
of smartphones, where displays are smaller than laptops or
desktop devices, quality switches do not seem to have an
important impact on the perception of the user. While these
results are directly linked to the specific quality-switching
patterns induced by the tested DBW conditions, they represent
a main contribution to assess QoE for YouTube in smartphones
when using DASH. As a summary, using DASH highly reduces
the chances of playback stalling, at no apparent perceived
image quality cost.

2) QoE in Gmaps and Facebook Mobile: Gmaps is tested
with a fully logarithmic scale: 1 Mbps, 2 Mbps, 4 Mbps, 8
Mbps, and 16 Mbps. Fig. 5 reports the overall quality and
acceptability results obtained for the Gmaps tests. Fig. 5(a)
shows that a DBW of 4 Mbps results in near optimal QoE
(MOS ≈ 4.5), and from this value on, QoE saturation already
occurs. This means that no major QoE improvements are then
obtained for additional bandwidth provisioning. A DBW of 2
Mbps provides good quality results and almost full acceptance,
but a DBW of 1 Mbps rapidly brings Gmaps into bad user
experience.

Similarly, Facebook is tested with DBW = 0.5 Mbps,
1 Mbps, 2 Mbps, 4 Mbps and 8 Mbps. Fig. 6 reports the
results obtained in the Facebook tests for different DBW
configurations, considering both (a) the overall quality and
(b) the acceptance rate. A DBW of 500 kbps is not high
enough to reach full user satisfaction in Facebook mobile for
Android devices, as participants declared a fair quality with
an acceptance rate of about 80%. Still, a DBW of 1 Mbps
results in good overall quality, with almost full acceptance
of the participants. Excellent QoE results are attained for 8
Mbps, which shows that even if a 2 Mbps DBW allocation is
high enough to reach full acceptance (cf. Fig. 6), the overall
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Figure 6. QoE in Facebook. Overall quality and acceptability for different
DBW. A DBW of 1 Mbps is high enough to achieve good QoE and almost
full acceptability.
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Figure 7. QoE in Web browsing (news website). Overall quality and
acceptability for different downlink bandwidth configurations.
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Figure 8. QoE in WhatsApp. Overall quality and acceptability for different
downlink bandwidth configurations.

experience of the user can still marginally improve.

In both cases, the relation between QoE and DBW is
clearly logarithmic when not considering the most restrictive
DBW configuration in both apps (1 Mbps and 0.5 Mbps
respectively). Next we show that such logarithmic mappings
are also observed in the field trial.

3) QoE in Mobile Web Browsing and WhatsApp: Web
browsing is tested with DBW = 0.5 Mbps, 1 Mbps, 2 Mbps,
and 16 Mbps. Fig. 7 reports the overall quality and accept-
ability results obtained for the News website browsing tests.
Note first how the quality increases in a logarithmic fashion
with increasing values of the DBW. Good experience (MOS
≈ 4) is obtained for a DBW of 2 Mbps, and only slight QoE
differences are obtained when increasing the bandwidth to
up to 16 Mbps, going to MOS ≈ 4.15. Going in the DBW
decreasing direction, the slowest tested condition still results
in fair quality (MOS ≈ 3.5) and high acceptance rate, close to
90%.
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Figure 9. QoE in Facebook. Overall quality and acceptability for different
access RTT configurations.

For WhatsApp, we add an additional test at DBW =
4 Mbps, given the file sizes used and the occurrence of
saturation. Fig. 8 shows the QoE results for different DBW
values. Users tolerate WhatsApp downloads with a good
overall experience and high acceptability as long as the DBW
is above 2 Mbps, but user experience heavily degrades for
slower connections, resulting in very bad quality for a DBW of
500 kbps. In this case, a DBW threshold of 2 Mbps permits to
approximately discriminate between good and bad experience.
Given the file size used in the tests (5 MB), there is a clear
saturation effect after 4 Mbps, as QoE does not increase for
higher DBW values. Finally, even if the obtained results are
partially biased by both the specific file size used in the tests
and the participants task briefing, obtained results are similar
to those we obtained in [26] for the specific case of Dropbox
file sharing, suggesting that the main take aways are potentially
more generic than expected when considering file downloads,
either in mobile devices or in fixed ones.

B. QoE for Access RTT

Constant access RTT profiles are tested for two out of
the five studied services: Web browsing and Facebook. Our
decision to only focus on these two services is based on the
findings of previous work [27] stating that network delay is
one of the most impacting network features on such type
of interactive services. In addition, we were bounded to the
maximum number of tests that could be run with participants
without causing a degradation on the quality of the results
due to fatigue. In both cases, access RTT is increased from
an optimal condition (RTT = 10 ms) to a very slow access
network scenario, considering a maximum access RTT of 300
ms. RTT profiles are selected from operational experience. In
particular, RTT in operational LTE and HSPA networks is close
to 50 ms [28], whereas 500 ms are common values observed
on EDGE scenarios.

1) QoE in Facebook Mobile: Fig. 9 shows that the QoE
degrades when the access RTT increases far beyond 150 ms,
but the impact is not as significant as one might expect a-
priori for a browsing-like application, and acceptance seems
not to be impacted at all. Indeed, overall quality remains almost
optimal for an access RTT of 150 ms, suggesting that the new
evaluations of ultra-low latency cellular networks are not really
necessary for applications such as Facebook Mobile. The main
reason for such a result is that the degree of interactivity of the
Facebook application is not as high as for other applications
such as video-conferencing or gaming, suggesting that all
in all, the operator should focus the dimensioning on the
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Figure 10. QoE in Web browsing (news website). Overall quality and
acceptability for different access RTT configurations.

downlink bandwidth rather than the access RTT for this type of
application. Still, Facebook is not the most network resources
demanding application, so the dimensioning should probable
not be done based on its specific latency requirements, as we
see next.

2) QoE in Mobile Web Browsing: As reported in Fig.
10, the impact of access RTT is more marked in the case
of Web browsing. QoE rapidly degrades when the access
RTT increases above optimal values, and a MOS close to
3.6 (fair quality) is obtained for an access RTT = 100 ms.
Still, acceptance rate is only slightly affected by the increasing
RTT, suggesting that even if users can rapidly notice a non-
responsive access network when browsing standard web pages
in a smartphone, they still agree on using the application.
A very interesting observation is that bigger access RTTs do
not necessarily result in a highly increased QoE degradation,
which is probably linked to the local caching and rendering
techniques used by web browsers in mobile devices.

C. QoE under Bandwidth Fluctuations

As we have recently shown in [23] and as we see next, the
experience of a user for certain applications is very sensitive
to bandwidth fluctuations. Throughput fluctuations due to
bandwidth variation are very common in cellular networks,
but unfortunately, its QoE-effect is not captured in today’s
network measurements, as only average throughput values are
typically considered. To better understand the QoE of mobile
services under bandwidth fluctuations, we tested two types of
bandwidth fluctuation patterns: periodic increase/decrease of
downlink bandwidth, and downlink bandwidth outages, where
bandwidth suddenly drops to zero, mimicking a disconnection
scenario.

In particular, we tested the following downlink bandwidth
profiles in YouTube, Web browsing, and Gmaps: periodical
increase from 1 Mbps to 3 Mbps in YouTube (we refer to
this profile as “1/3”), 3 times per minute for 5 second periods
(Average Downlink Bandwidth, ADW = 1.5 Mbps); periodical
drops from 4 Mbps to 0 Mbps (we refer to this profile as
“4/0”), twice per miunte for 10 second periods in YouTube
DASH only (ADW = 2.7 Mbps), and twice per minute for 15
second periods in Web browsing (ADW = 2 Mbps); finally,
a 7/1 profile (ADW = 4 Mbps), a 16/0 profile (ADW = 8
Mbps) and a 4/0 profile (ADW = 2 Mbps) in Gmaps, shifting
bandwidth twice per minute for 15 second periods.

1) QoE in YouTube Mobile: Fig. 11 presents the results
obtained in terms of (a) overall quality, (b) acceptance, and
annoyance caused by (c) initial delays and (d) stalling. The

4/0 profile is only tested with the DASH flavor of YouTube,
as the non-adaptive version provides too low quality results in
the case of 10 second outages. The short-duration bandwidth
increases do not have any significant impact on the QoE
of both YouTube versions. Indeed, such a spiky bandwidth
increase does not compensate for the low average downlink
bandwidth, which causes the expected stalling impact for the
non-adaptive application. The DASH version keeps offering
optimal results, but interestingly enough, the acceptance rate
slightly drops as compared to the 1 Mbps condition (cf.
Fig. 3), which is probably caused by the additional quality
changes triggered by fluctuations. When it comes to bandwidth
outages (10 seconds-long), the reader can appreciate that even
YouTube DASH can suffer from important QoE degradations
when throughput drops to zero for short periods. The YouTube
DASH version is not predictive, and quality switches respond
to current bandwidth estimations. Given the image quality
results reported in Fig. 4(b), a good way to avoid QoE
degradations in the case of outages would be to preemptively
caching as many low-quality video chunks as possible when
the bandwidth is above certain predefined threshold.

2) QoE in Gmaps Mobile and Web Browsing: Fig. 12
reports the overall quality and acceptance results obtained
for the Web browsing and Gmaps tests. Figs. 12(a) and
12(b) show the impact of a 4/0 profile on Web browsing
QoE. The interesting part comes when comparing the constant
2 Mbps bandwidth condition (cf. Fig. 7) with the outage
bandwidth profile. While both conditions correspond to an
average downlink bandwidth of 2 Mbps, the fluctuation profile
4/0 results in a much degraded experience, with a MOS score
dropping to 3, and an acceptance rate dropping to 88%.

Figs. 12(c) and 12(d) report the Gmaps results. Note first
how both the 16/0 and the 4/0 outage profiles cause a
very strong QoE degradation, with quality dropping to MOS
≈ 2.6 and acceptance rate to about 65%. When comparing
to the constant bandwidth scenario, Gmaps QoE is actually
near optimality and full acceptance for a downlink bandwidth
higher than 2 Mbps (cf. Fig. 5), evidencing the important
impact of the outages. Interestingly, results for both outage
profiles are almost identical, even if the peak bandwidth values
are very different, i.e., 16 Mbps and 4 Mbps respectively. This
suggests that higher peak downlink bandwidth values do not
compensate for the impact of outages.

The impact of outages on Gmaps is much stronger than
in the case of the Web browsing, which is directly tied to
the degree of interactivity of the application, which is much
higher in Gmaps. Finally, the impact of the 7/1 profile is
much less important as compared to the outages, but quality
degradation is also very noticeable. An important take away
from this evaluation is that the average downlink bandwidth is
not as informative as one might expect when considering QoE
in mobile devices, as results can greatly change, depending on
the specific bandwidth profile.

IV. END-DEVICE MONITORING TOOLS

To monitor the traffic of the field-trial participants and
to log their QoE feedbacks, we developed three specific
Android-based applications. The first one is YoMoApp [9],
an application which passively monitors QoE-relevant KPIs of
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Figure 11. QoE in YouTube under bandwidth fluctuations. Overall quality, acceptability, and annoyance caused by initial delays and stalling for 1/3 (average
downlink bandwidth = 1.5 Mbps) and 4/0 (average downlink bandwidth = 2.7 Mbps) downlink bandwidth profiles.
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Figure 12. QoE in Gmaps and Web browsing under bandwidth fluctuations. Overall quality and acceptability for different downlink bandwidth fluctuation
profiles. Bandwidth outages have a very marked impact on the QoE of these services, and higher downlink bandwidth values do not compensate for such drops.

YouTube adaptive video streaming on end-user smartphones.
The second tool consists of a passive, flow-level traffic monitor,
capable of sniffing all the incoming and outgoing traffic,
additionally labeling the corresponding flows according to the
application generating the traffic. The final tool consists of a
web-based app which permits users to provide feedback on
their experienced quality. We describe these tools next.

A. The YoMoApp Tool

The goal of the tool is to monitor application layer KPIs
of YouTube that have a high correlation with the actual QoE
of mobile app users. As we said before, the main influence
parameters of the YouTube QoE are stallings and video quality.
To obtain these parameters, we monitor the buffer filling levels
and the resolution of the YouTube videos.

YoMoApp works as follows. The original YouTube app
is fully replicated in functionality and design, see Fig. 13.
To this end, existing libraries from YouTube are used that
are available for YouTube developers. An Android web view
browser element is embedded for the YouTube video play-
back, such that HTML5 video playback is possible, including
adaptive streaming according to the MPEG DASH approach
of YouTube. Additional functions are added, which ultimately
perform the monitoring of the application parameters in the
newly created app. The monitoring is done at runtime via
JavaScript, which queries the embedded HTML5 〈video〉 ob-
ject. In Fig. 13, the utilized parameters are listed. Note that
the obtained parameters can be displayed in YoMoApp for

Name Description

buffered List of time ranges of the media

content that have been buffered

height/
width

Height and width of the video’s
display area in CSS pixels

played Object indicating all the ranges of
the video that have been played

currentTime Current video playtime

youtubeId Object indicating YouTube identi-
fier of the video content

totalVideo-
Frames

Total number of frames that would
have been displayed if no frames

are dropped

dropped-

Video-
Frames

Total number of frames dropped

predecode or dropped because the
frame missed its display deadline

corrupted-
Video-

Frames

Â Total number of corrupted
frames that have been detected

Timestamp Timestamp of the data query

Name A pre-defined device name

Session
timestamp

A session timestamp to identify the
YouTube session.

Figure 13. Screenshot of the app and selected parameters from the HTML5
〈video〉 object, Media Source Extensions, and device, which can be tracked
by the app.

validation, but are usually hidden. We are preparing a publicly
available version of YoMoApp, which shall be soon available
to download from the Android Google Play apps store.

To show the applicability of YoMoApp in the practice, we
employed YoMoApp in the previously presented subjective lab
study, tracking the performance of YouTube in the DASH ver-
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Figure 14. Monitoring of stallings and their impact on QoE with YoMoApp.
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Figure 15. Monitoring of video quality switches and the resulting image
QoE with YoMoApp.

sion. Fig. 14(a) shows the distribution of the total stalling time
for each of the bandwidth-related tested conditions. Almost no
stalling occurs for the constant bandwidth conditions. Stalling
occurs in about 14% of the variable DBW = 1/3 conditions,
ranging up to a total stalling time of 34 s. The outage scenario
(DBW = 4/0) is the one more impacted by stalling, as more
than 75% of the tests result in video stalling. The average total
stalling time in this condition is 25 s, with a maximum of up
to 41 s. Fig. 14(b) shows the corresponding MOS values in
terms of stalling annoyance (same results presented in previous
Sec., but condensed in one single Fig. for better interpretation),
which are very in-line with the stalling distribution as tracked
by YoMoApp.

Fig. 15(a) shows the percentage of time on each quality
level per condition, i.e., the percentage of time which each
video resolution was played out during the streaming. The
three constant bandwidth conditions at 1 Mbps, 2 Mbps and 4
Mbps result in a straightforward mapping to video resolution,
resulting in a major share of 360p, 480p and 720p resolution
respectively. The outage condition has similar quality shares to
the 4 Mbps one, which is not surprising considering that it is a
4/0 Mbps on/off pattern. The variable 1/3 condition contains a
large percentage of the lowest resolution, which indicates that
the YouTube adaptation is very conservative when the network
conditions fluctuate considerably. Finally, Fig. 15(b) shows the
resulting image quality MOS values as rated by participants,
confirming once again that resolution adaptation does not have
a relevant impact on the subjectively perceived image quality
in smartphones, given the small screen size.

B. Passive Traffic Monitoring and QoE Feedback

The passive traffic monitoring tool consists of a simple
Android-based passive monitoring tool which captures several
metrics for all the traffic flows generated by the device. We
decided to develop our own tool and not to use those available

Table I. METRICS RECORDED FOR EACH DATA FLOW, USING THE

ANDROID-BASED PASSIVE MONITORING TOOL. ALL METRICS ARE

EXTRACTED FROM THE ANDROID DEVELOPERS’ API.

Metric ID Metric Name Units Example

1 device id (IMEI) – 352668049725157

2 flow start time s 1430825689

3 flow direction (up/down) – downlink

4 flow duration s 10,24

5 flow size KB 4041,00

6 avg. flow throughput kbps 3157,03

7 app (Android API package) – com.android.browser

8 signal strength dBm -71

9 operator (MCC.MNC) – 295.4

10 cell id – 16815

11 cell location (lat-lon) deg (o) {40,198-12,347}
12 RAT – LTE

in the literature (e.g., [15]–[17]), as these either rely on
active measurements only or are too specific for their original
purpose.

Table I reports the different metrics passively monitored for
each traffic flow by our tool. Flows in this context correspond
to the standard 5-tuple flow definition, and are associated to the
specific app generating them, using the Android developers’
APIs. The first metric is a simple device identifier known
as IMEI (International Mobile Station Equipment Identity),
which is a unique number identifying a 3GPP device. Metrics
with ID from 2 to 6 correspond to traffic flow measurements,
including the flow start time, the flow direction (uplink or
downlink), the flow duration, the size of the flow, and most
importantly, the average flow transfer throughput, which is
simply computed as the ratio between the flow size and the
flow duration. Metric ID 7 indicates the app which gener-
ated the corresponding flow, using as naming scheme the
Android API notation. For example, YouTube video flows
are associated to the app name system.android.media
(com.google.android.youtube is associated to the
rest of the YouTube player content, such as thumbnails
of videos), Google maps flows are associated to the
app name com.google.android.apps.maps, Google
Chrome web browsing flows are associated to name
com.android.chrome and so on. Table II provides a list
of Android API apps’ names for popular mobile apps. Metric
ID 8 provides the strength of the signal at the smartphone when
the corresponding traffic flow starts. Metrics with ID from 9
to 11 correspond to the operator providing the Internet access
and the cell to which the smartphone is attached to at the
time of the flow start, particularly including the geographical
location of the cell (i.e., longitude and latitude). Finally, metric
ID 12 indicate the Radio Access Technology (RAT) used by
the smartphone (e.g., LTE, 3G, 2G, EDGE, etc.) when the flow
starts.

All these metrics are logged locally at the smartphone, and
are periodically sent to a centralized server for post-processing
and analysis.

QoE feedbacks are provided by the participants through a
web-based app, which is manually run by the user immediately
after completing a specific task, such as watching a short
YouTube video, exploring a city map using Gmaps, or using
Facebook to browse photo albums. This app keeps a local
database to store QoE feedbacks even when the device has
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Table II. POPULAR APP NAMES, ACCORDING TO THE ANDROID API
NAMING SCHEME.

App Android API-based Name

YouTube
system.android.media

com.google.android.youtube

Web Browsing (Chrome) com.android.chrome

Web Browsing (Firefox) org.mozilla.firefox

Web Browsing (Android) com.android.browser

WhatsApp com.whatsapp

Gmaps com.google.android.apps.maps

Instagram com.instagram.android

Facebook
com.facebook.katana

com.facebook.orca

Dropbox com.dropbox.android

lost connectivity. For the sake of the analysis presented in
this paper, a QoE feedback entry consists of the following
4 fields: {timestamp; app; location; MOS}. Given
that the QoE feedback tool and the traffic monitoring tool use
both the same time reference (i.e., from the local smartphone),
a MOS score given by the participant to certain application
would always have a timestamp bigger than the timestamps
indicating the start of the flows associated to the rated app.

In order to correlate the traffic measurements and the MOS
scores provided by the field trial participants, we group flows
into sessions. A session corresponds to a group of flows
generated by the same app which are continuous in time, based
on a pre-defined maximum inter-flows timeout. Evidently, the
inter-flows time for a specific session is partially determined by
the type of application being accessed by the user, as well as by
its usage behavior; for example, the inter-flows time for a web
browsing session is generally larger than the inter-flows time
for a google maps session. To become independent of such
issues, we follow a simple and pragmatic approach to identify
relevant sessions. By relevant we refer to sessions which have
an associated QoE feedback/MOS rating. The procedure is as
follows: given a MOS rating at time tMOS for app appMOS, we
define a session as all the flows associated to app appMOS and
started within the time window [tMOS−Thsession; tMOS]. The
threshold Thsession defines the maximum session duration,
and it is set to 4 minutes, which is the average time requested
to participants to take to perform a specific task.

The final step is to define a proper session-based KPI which
could be used to correlate sessions and MOS scores. Recall that
the results presented for the lab study considered the downlink
bandwidth as the independent network feature being tested in
terms of QoE. Hence, we would define a KPI that tries to
capture this downlink bandwidth for the rated session. The best
approximation one could get for the downlink bandwidth when
using passive throughput measurements is the Maximum Flow
Throughput (MFT) achieved within the session. The through-
put of a flow is limited by multiple components, including
the application itself, the server providing the flows, the TCP
congestion and flow control, and the available bandwidth of
the connection. Throughput limitations by the application itself
or by the server are less relevant to us, because they are not
linked to performance of the cellular network. The impact of
the TCP protocol, and specially the slow start phase, can be
limited by filtering out small flows from the analysis (we shall
come back to this issue later on). Therefore, when targeting the
performance of the cellular connection, the MFT achieved for a

specific session would be the closest indication to the downlink
bandwidth. In the analysis of the field-trial measurements, we
analyze the results obtained by correlating the MOS scores and
the corresponding session MFT values for three of the tested
apps (YouTube, Facebook and Gmaps).

V. FROM THE LAB TO THE FIELD

In this section we overview the details of the conducted
field trial and analyze the obtained results, particularly com-
paring them with the observations and conclusions drawn from
the subjective lab study. The main question we try to answer is
to which extent, subjective lab studies conducted under WiFi
networks are applicable to operational cellular networks. For
the sake of brevity, we focus on only three out of the five
applications tested in the lab, as drawn conclusions remain
unchanged. Also, given the complexity of the problem, the
study considers only the impact of the downlink bandwidth
for the field trial scenario. We plan to extend the analysis to
the monitoring of bandwidth fluctuations and access latency in
the future.

A. Field Trial Overview

The field trial consisted of 30 participants using their
own smartphones and cellular ISPs to access the same apps
tested in the lab as part of their normal daily Internet activity.
Participants were requested to perform the same kind of tasks
to those performed by the lab study participants, to improve
comparison of results. QoE feedback was provided for each
session through a customized QoE crowd-sourcing app (details
next), for a total span of 2 weeks. In this paper we only focus
on the overall experience declared by participants, but the
QoE feedback provided actually includes the same questions
as those evaluated in the lab study. In addition, all the traffic
flows generated by the participants were passively monitored
with the tools described in previous section, including the
monitoring of YouTube performance at the application layer.
Besides QoE feedback, participants indicated their location
at the moment of performing the corresponding task (e.g.,
at home, in the underground - metro, walking, etc.). Field
trial participants were compensated with vouchers for their
participation, which proved to be sufficient for achieving
correct involvement in the study.

Fig. 16 depicts the distribution of ratings issued by par-
ticipants in terms of (a) number of ratings per app, (b) per
location, and (c-d) MOS values distributions for both apps
and locations. In total, almost 700 ratings were issued by the
participants during the span of the field trial for YouTube,
Facebook and Gmaps. As a-priori expected, the biggest share
of ratings were done for YouTube, which is currently the
most popular app in the Internet. The preferred location was
home, which is coherent with the results that we have obtained
in previous similar field trials [6]. Interestingly, the second
most preferred location to access the requested apps was the
underground, evidencing that mobile traffic and smartphone
usage in such mobility scenario is highly frequent, at least
within the users’ community represented by the field trial
participants.

Fig. 16(c) and Fig. 16(d) report the MOS scores distribu-
tions. Surprisingly, the MOS distributions are rather similar,
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Figure 16. Distribution of QoE feedbacks in the field. The biggest share of ratings were done for YouTube. The preferred location was home, followed by the
underground, evidencing the usability scenarios mostly preferred by mobile users. MOS distributions are rather similar wrt tested apps and selected locations,
suggesting that network performance was rather stable during the span of the study.

both when considering the tested apps (cf. Fig. 16(c)) and the
selected locations (cf. Fig. 16(d)). This suggests that network
performance was rather stable during the span of the study,
and uniform for both fixed mobility profiles (e.g., home) and
highly dynamic mobility profiles (i.e., metro). Indeed, tests
were performed in the city of Vienna, where all ISPs have very
good network coverage, even in the underground, justifying as
such the observed results.

B. QoE in the Field

Fig. 17 depicts the results obtained from the field trial
measurements, reporting the MOS scores as a function of
the MFT per session for (a) YouTube, (b) Gmaps, and (c)
Facebook. To improve visualization of results, MOS scores
are plotted with a very small random perturbation (basically
to avoid overlapping as much as possible).

Fig. 17(a) presents the results obtained in the case of
YouTube. Squares correspond to individual sessions rated by
participants. Red lines correspond to log fitting curves, with the
only purpose of showing such a logarithmic relation between
MOS and MFT, in a purely visual basis. High MFT values
result in good QoE; indeed, MOS > 4 for almost all sessions
with MFT > 5 Mbps, which is highly similar to the results
observed in the lab study (cf. Fig. 3), where QoE is optimal
for a DBW > 4 Mbps. In addition, most of the sessions
having very poor QoE (i.e., MOS = 1) have a very low MFT.
However, as expected, the picture becomes very fuzzy in the
most relevant MFT gap, between 1 Mbps and 4 Mbps, having
MOS scores between 2 and 5, i.e., from sessions with poor
QoE to excellent QoE. This is coherent with the fact that the
QoE of YouTube is strictly linked to the stallings observed in
the video playback, and this can happen for both high video
bitrate and low video bitrate videos. In addition, as we have
shown in Fig. 3, using fixed video image quality or adaptive
quality completely changes the obtained results, this adding
more noise to the overall mapping. As a consequence, even if
we can estimate good and bad QoE video sessions for very
high and very low MFT values, we need application-layer
measurements (i.e., stallings, video bitrate, etc.) to estimate the
QoE of YouTube, specially for 1 Mbps < MFT < 4 Mbps.

Fig. 17(b) presents the results obtained in the case of
Gmaps. In the case of Gmaps, sessions are composed of
both big and small flows, linked to the different components
of the app. As we said before, to improve the correlation
to network performance, we filter out small flows from the
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Figure 18. MOS vs signal strength in YouTube. The signal strength metric
corresponds to the average single strength when considering all the flows of
a single session. There is no apparent correlation between the MOS declared
by participants and the measured average signal strength.

computation of the MFT values. In particular, squares in Fig.
17(b) correspond to individual sessions rated by participants,
with flows smaller than 500 KB kept aside for the computation
of the corresponding MFT. The threshold of 500 KB comes
directly from the practice, as we noticed that this represents a
good tradeoff between accuracy and coverage of the complete
set of Gmaps flows. As before, red curves show the visual log
fitting of the MOS vs MFT curve, but in this case, we also add
the log fitting curve obtained from the lab study results (cf. Fig.
5(a)). Besides some small number of outliers which received
MOS scores of 3 (i.e., fair quality), results clearly show that
good QoE can be expected for a MFT > 2 Mbps, exactly as
suggested by the lab study results in Fig. 5(a). In addition,
also similarly to the lab indications, QoE rapidly degrades for
MFT ≤ 1 Mbps. Therefore, we can say that for the case of
Gmaps, the mappings between MOS and MFT observed in the
field trial are pretty much aligned to the MOS vs DBW curves
obtained in the lab study, suggesting that conclusions drawn
from such studies have a direct and accurate applicability in
the practice.

Fig. 17(c) presents the results obtained in the case of
Facebook. Facebook flows are rather smaller than in the case of
Gmaps, therefore we also consider a similar filtering approach,
but considering a less restrictive threshold. In Fig. 17(c),
squares correspond to sessions with flows smaller than 100 KB
filtered out of the computation of the MFT values, whereas
circles consider a threshold of 500 KB. As in the case of
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(b) Gmaps QoE vs. MFT.
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Figure 17. QoE for YouTube, Gmaps and Facebook in the field. Squares and circles correspond to individual sessions reported/rated by participants. Red/black
lines correspond to log fitting curves. Filtering out small flows improves the correlations between flow throughput measurements and QoE, specially by avoiding
protocol impact on the achieved downlink speed.
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Figure 19. Using YoMoApp to monitor YouTube in smartphones. Results correspond to the monitoring of one single participant. Quality is good (i.e., MOS ≥
4) for about 70% of the video sessions, with an initial playback delay below 2 seconds, a total stalling fraction below 4%, and with almost no quality switches
for these sessions.

Gmaps, we include both the visual log fitting curves and
the log curve obtained from the lab study results. Mappings
follow the lab study results when considering flows > 500
KB, resulting in good QoE for MFT ≥ 1 Mbps. A MFT ≤
0.5 Mbps results in poor QoE (i.e., MOS = 1 or 2), similar
to the observations in the lab, cf. 6. Thus, similar to what
we observed in the Gmaps app, mappings between MOS and
MFT in the field trial are aligned to the MOS vs DBW curves
obtained in the lab study.

As a summary, the MFT observed in a session seems to be
a good QoE indicator in the field, specially when considering
apps generating big traffic flows. Apps such as Gmaps and
Facebook can be reliably monitored in the field using passive
flow measurements as the ones conducted by our tool, but
considering only big flow instances (flow size > 500 KB).
The case of YouTube is a challenging one: high and low
MFT values relate well to good and bad QoE, but mappings
are very poor for more commonly observed throughputs.
Thus, it’s necessary to additionally perform measurements at
the application layer (e.g., stallings, page-load-times, etc.) to
capture QoE indications, using YoMoApp.

Fig. 19 shows the results obtained by using YoMoApp for
one selected participant. A complete analysis of the field test
results with YoMoApp is still ongoing, but nevertheless, we
present example results to better motivate the usefulness of

YoMoApp. The Fig. shows the distribution of the total stalling
time as a fraction of the video length, the distribution of the
initial delay, the distribution of the tracked quality switches,
and the distribution of overall quality MOS values. Quality
is good (i.e., MOS ≥ 4) for about 70% of the video sessions,
with a total stalling time fraction below 4%, an initial playback
delay below 2 seconds, and with almost no quality switches
for these sessions. For the remaining 30% of the sessions rate
as average or worse, there is a marked increase in the total
stalling time fraction and initial delay, with about 10% of the
sessions with 4 or more seconds of initial delay and a stalling
time fraction above 30%.

C. Impact of Context on QoE - the Case of Mobility

To conclude with the analysis of the field trial results,
we present an evaluation on the impact of context on QoE,
considering the specific case of mobility. The overall results
presented in Fig. 16(d) do not reveal a major impact of the
location (and potentially the associated degree of mobility) on
the reported QoE for the considered applications. However, by
taking a closer look into the results of each application, and by
doing some raw hypothesis on the relation between location
and degree of mobility, we can obtain some interesting results.
Our hypothesis is as follow: we assume that participants at in-
door locations are in a static situation when conducting the
tests, walking while conducting the tests at the street, and
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(a) YouTube QoE vs. Mobility.
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(b) Facebook QoE vs. Mobility.
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(c) Gmaps QoE vs. Mobility.

Figure 20. Potential impact of mobility on overall QoE. Mobility patterns are constructed based on location as declared by participants when performing the
evaluation tasks. Static refers to locations “home” and “office”, slow-motion refers to location “street”, whereas high-motion refers to locations “car”, “metro”
and “train”.

moving while taking the tests at a train, underground or even
car. We verified the accuracy of such an hypothesis by directly
asking to some of the participants of the field trial, but we
are not 100% sure that it applies to all performed tests, and
additional filtering based on passively tracked location would
be required to get better results. In any case, the initial results
provided next are in line with our expectations and provide a
first look into the problem.

Fig. 20 depicts the distribution of overall QoE values
reported by participants for the three analyzed applications,
grouped by degree of mobility. We consider three different
mobility patterns: static refers to locations “home” and “of-
fice”, slow-motion refers to location “street”, whereas high-
motion refers to locations “car”, “metro” and “train”. As before
(cf. Fig. 16(d)), there is no apparent impact of mobility on
the QoE results for (a) YouTube and (b) Facebook; this is
most probably linked to the potentially good networking QoS
offered by cellular networks in Vienna, but also to the degree of
interactivity of these two applications. For example, recalling
the impact of bandwidth fluctuations on YouTube QoE reported
in Fig. 11, even short network outages might remain unnoticed
when watching YouTube videos, thanks to the pre-buffering
done by the app. However, results are much more interesting
when considering a highly interactive application such as
Gmaps in Fig. 20(c). In this case, there is a clear difference
on the QoE distributions when considering static and a high-
motion mobility patterns, with a much worse quality when
moving faster. Indeed, note that the ratio of fair and bad QoE
values goes from 0% for a static context to more than 50%
when moving on a car, train or underground. These results
are further confirmed by the results obtained in the lab when
considering bandwidth fluctuations (cf. Fig. 12), which show
how sensitive might be Gmaps when network conditions do
not remain stable. A further and deeper analysis on the impacts
of contextual information, particularly including mobility, are
part of our ongoing work.

VI. FINDINGS AND DISCUSSION

In this section we provide some additional discussion on
the obtained results. Firstly, considering both the lab and the
field results, we can claim that conclusions drawn from both
approaches are highly similar and coherent between them,
suggesting that subjective lab studies results are applicable

to operational cellular networks. In our particular scenario,
the usage of WiFi technology in the lab study setup did not
have an appreciable impact on the quality of the results when
considering real cellular networks.

More in general, obtained results suggest that a downlink
bandwidth of 4 Mbps is high enough to reach near optimal re-
sults in terms of overall quality and acceptability for YouTube
when accessed in smartphones. This threshold drops to 2 Mbps
and 1 Mbps for Gmaps and Facebook apps respectively. As
a consequence, cellular network operators should target such
downlink bandwidth thresholds as their short term goal for
dimensioning their access networks. Given these relatively low
requirements, resources could be re-allocated or scheduled to
manage the network more easily and with a more efficient cost-
benefit trade-off, avoiding over-provisioning while keeping
high QoE. The implications for the end-user are straightfor-
ward: you do not need a super high speed cellular contract
with your operator if your target is on the studied applications.
So in particular, an expensive LTE contract is not necessary to
have a near optimal experience today.

Our results show that dynamic applications such as
YouTube DASH are much better suited to smartphone
scenarios, providing the same level of experience as the
non-adaptive version of the YouTube application in terms of
image quality, but with much lower QoS-based requirements
in terms of downlink bandwidth. This is a major finding, as
DASH has been shown to degrade the video image quality
and the associated user experience when considering standard,
laptop or PC devices. The main difference with smartphones
is their inherent small size displays, which to some extent
filter out the impact of quality switches. A direct implication
of this finding is that cellular network operators willing
to monitor the QoE of its YouTube customers must know
which type of technology is used by the YouTube app in
the smartphone to understand its QoE. Even more, as also
reflected by the results obtained in the field, the only reliable
way to monitor QoE in the case of YouTube is to measure
application layer features such as stallings and quality levels.
We believe that the YoMoApp tool will play a key role in the
short-term future to address this issue.

A particular question that arises in this study is whether
other KPIs related to the end-device measurements could also
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be used to estimate the QoE of a session. The signal strength
is a-priori a relevant metric related to the health of the con-
nection, thus it could in principle a good KPI to our purpose.
However, we could not find any relevant correlation between
the strength of the signal and the MOS scores provided by
the participants. As an example, Fig. 18 reports the results
obtained for the case of YouTube. The signal strength metric
corresponds to the average single strength among all the flows
of a single session. There is no apparent correlation between
MOS scores and the measured average signal strength.

Let us now focus on some additional relevant aspects
worth to comment on. In particular, we further elaborate on
four specific topics of the study: (i) access network latency;
(ii) downlink bandwidth fluctuations; (iii) downlink bandwidth
outages and (iv) contextual information tracking.

A. Do we Need Super Responsive Networks Today?

Finding: even if we have only tested the impact of the access
latency on Facebook and Web browsing, we have seen that
the access RTT should be kept below 100 ms to achieve good
user-perceived quality and high acceptability.

Implications: this means that super low latency access net-
works such as LTE are not needed today for the tested mobile
applications. Still, we expect that more interactive applications
such as Gmaps would require lower access RTTs, and thus
believe that highly responsive networks would soon become
highly relevant in terms of QoE-provisioning for mobile de-
vices.

B. Fast and Responsive, or Stable?

Finding: we have shown that downlink bandwidth fluctuations
can have an important impact on the experience of the end user,
particularly when using mobile devices.

Implications: this finding has two major implications for the
cellular network operator: (i) firstly, it evidences that faster
and more responsive cellular networks should not be the only
guidelines to follow when designing and dimensioning their
networks, but that stability in terms of bandwidth, an even if we
did not evaluate it, also in terms of latency, should be a major
concern; (ii) secondly, when it comes to monitor and measure
throughput in todays’ cellular networks, operators should re-
alize that traditional KPIs (Key Performance Indicators) based
on average throughput are not as informative as have been
assumed so far, and should evolve their monitoring systems to
capture such fluctuations.

C. Keep Connected

Finding: we have found that even short-duration bandwidth
outages (i.e., drops to 0 Mbps for some milliseconds) have a
major negative impact on the experience of the end user.

Implications: these results suggest that besides targeting more
stable cellular networks, a major effort would have to be
carried in the near future in terms of multi network technology
convergence. Indeed, the usage of multiple types of access
technologies either in parallel or to perform fast handovers
would become an integral part of the future 5G network, and
our results suggest that such transitions should be done without
impacting the connectivity of the device, not even for a few
seconds.

D. Context Matters

Finding: last but not least, even if only preliminary, we have
found that mobility plays a key role in the quality experienced
by users, at least in the tested cellular networks, and for highly
interactive applications such as Gmaps.

Implications: it is generally agreed among the QoE research
community that context is critical when assessing the quality
of an applications from the eyes of the end user, and our
preliminary findings suggest to cellular ISPs that they have
to consider means to catch as much contextual information
as possible to take better conclusions, and therefore more
informed decisions, about the QoE of their customers.

VII. IMPLICATIONS AND PERSPECTIVES

The last part of the paper is devoted to present and discuss
different implications and topics related to the usage of passive
monitoring and QoE-feedback tools at the end-device as the
ones we have used in this study. In particular, we address four
main topics: crowdsourcing for QoE analysis, incentives to
achieve large participation of end-users, privacy issues related
to measurements at end-devices, and additional perspectives
from end-device measurements.

A. QoE Crowdsourcing Approach

In the conducted field trial, participants rated the quality of
their sessions through our tools as part of their participation to
the study. However, a quite novel and interesting perspective
for QoE-based network performance analysis at the large scale
is to employ similar QoE-feedback tools to obtain the feedback
of those customers who are willing to do so. Services such
as Skype are already taking advantage of its large population
of users for doing such an outsourcing of its QoE-based
performance monitoring, resulting in a very rich and powerful
input to enhance its service and improve the engagement
of the users. In a nutshell, every time a user completes
a Skype call, the application automatically presents a short
questionnaire asking for the experienced quality. We envision
a similar approach for the benefit of cellular ISP, where its
customers could potentially receive an automatic pop-up like
questionnaire after completion of randomly selected sessions.

B. Incentives

Previous discussion brings to the light a highly relevant
topic linked to the large scale usage of end-device monitoring
system: the incentives a customer receives to install such tools
on his phone. End-device measurement tools only become
relevant to an operator when these are used at the large-scale,
so as to provide meaningful and representative information.
Free tools available at the Google Play store such as Onavo1

and RadioOpt2 are smartly designed such that the customer
is attracted to install and maintain the app running on its
phone, based on side applications provided by the tools, such
as widgets measuring the data consumption, or proxies offering
data compression to reduce the usage of the contracted data
volume. Google is for sure the leader in terms of incentives,
as all of its apps are highly valuable to the end user (gmail,

1http://www.onavo.com/
2https://www.radioopt.com/
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Figure 21. End-device location monitoring and privacy issues. End-user
activity and private location can be guessed by simply measuring the location
of the cell where smartphone are attached to. In this example scenario,
participants’ home is located at region A, working office is located at region
B, and high activity occurs at region C, linked to daily train traveling.

gmaps, gdocs, etc.), and as a side effect, the company has a
full visibility of its worldwide overlay.

C. Privacy Issues

Conducting measurements at end devices can have a detri-
mental and undesirable effect on the privacy of the monitored
customers, as metrics available through the Android API are
good enough to sniff on the customers habits. Unfortunately,
most of the apps we install today in our smartphones have
access to lots of information related to our private life. As an
example, Fig. 21 shows a simple map in which all the session
QoE ratings provided by one of the participants of the field trial
are geo-located using metric ID 11 (cf. Table I). Three regions
concentrate the majority of the ratings of this participant, and
these correspond to (A) his home, (B) his working office and
(C) his daily train traveling activity. So even if the participant
does not provide for example his home address, this can be
easily retrieved from such simple measurements.

D. Network Neutrality

The last topic we address is the case of network neutrality
and the identification of traffic differentiation through end-
device measurements. End-device throughput measurements
can be used to identify potential traffic differentiation policies
done by an ISP, based on types of traffic. This is highly
relevant, as many cellular operators are today tempted to
mistreat some classes of traffic to discourage its usage or for
other internal interests such as traffic engineering. As an exam-
ple of identification of such a potential traffic differentiation,
Fig. 22 depicts the distribution of the downlink average flow
throughput (metric ID 6, cf. Table I) for two participants of
the field trial having a contract with two different ISPs. ISP 1
seems to treat differently the traffic corresponding to YouTube
videos, as the flow throughput in the download is abruptly
shaped down to 4 Mbps (see the slope in the CDF) whereas no
shaping is observed for other traffic apps such as Gmaps. While
we are not sure about the root causes of such a differentiation,
a similar approach could be applied to understand and to assess
the application of such policies by cellular operators.

VIII. CONCLUDING REMARKS

Smartphones are becoming the Internet-access devices by
default, and we claim that network operators must understand
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Figure 22. Network neutrality and identification of traffic differentiation.
End-device throughput measurements can be used to identify potential traffic
differentiation policies done by an ISP, based on types of traffic.

how to manage and dimension their networks to correctly
provision popular services accessed in smartphones, avoiding
wasting additional unnecessary resources while keeping end
users happy, and most importantly, reducing the chances of
churning due to quality dissatisfaction. We believe that QoE
has the potential to become the next guiding paradigm for
managing quality provisioning and applications’ design in
cellular networks and mobile devices, and conducted an study
shedding light in this direction.

We have presented an overview on the QoE of different
services and applications with different network-level QoS
requirements for the specific case of smartphone devices,
including both lab study results as well as measurements
in the field. By considering both constant and dynamically
changing network QoS conditions in our study, we have
shown that downlink bandwidth fluctuations play a key role
in determining the QoE of the evaluated services, specially
for those highly interactive. We have also shown that dynamic
applications such as YouTube DASH are much better suited to
smartphone scenarios, providing the same level of experience
to the non-adaptive version of the YouTube application, but
with much lower QoS-based requirements in terms of downlink
bandwidth. We additionally claim that the involvement of end
users in the assessment process of the QoE in mobile devices
is essential to obtain reliable QoE ground truths.

We have shown that the results obtained in the lab are
highly applicable in the live scenario, as mappings track the
QoE provided by users in real networks. Our results are highly
relevant to future 5G design and LTE evolution in better
understanding the mapping between network performance and
customer experience. In addition, they provide hints and many
insights about how and to which extent, end device measure-
ments and QoE-based monitoring at end devices can be applied
in the practice, complementing lab studies.

We are aware that our results only tackle one side of the
problem: the experience of the customers. We agree with other
researchers in that a more holistic perspective incorporating
QoE, energy-consumption, data (re)transmission, and radio
resource impact (among others) should be considered. This
paper provides some initial components of such a holistic
analysis. Finally, we are currently working on a deeper analysis
regarding the impact of user location and mobility on field
results. We also plan to better study the correlation between
lab and field results.
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