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P. TRAN-GIA and H.JANS: DELAY ANALYSIS

Delay Analysis of Clock-Driven Message Transfer
in Distributed Processing Systems

by Phuoc Tran-Gia* and Herbert Jans **

In modern computer and communication systems the system control is distributed among a

number of individual devices or processors operating in modes of function or load sharing.
Communication between distributed control units via an interconnection network is often or-
ganized in the form of message interchanging according to a message transfer mechanism.
" In this paper, a performance analysis is given for the commonly used clock-driven messaging
protocol, for which a two-level queueing system is developed and investigated. The analysis is
done using a two-dimensional imbedded Markov chain, for which the calculation is done in con-
junction with a dimension reducing choice of regeneration points.

Numerical results for dimensioning purposes are given for message delay characteristics under
different traffic conditions, clock intervals, and buffer sizes. The results can be used to optimize
the messaging delay for the class of clock-driven message transfer mechanisms. Finally, the dis-
tribution function of the queueing delay is derived for the first-in first-out message transfer

discipline.

Wartezeitanalyse von taktgesteuerten Kommunikationsmechanismen
in Systemen mit verteilter Steuerung

In modernen Rechner- und Kommunikationssystemen ist die Systemsteuerung oft auf eine
Anzahl von Steuerungseinheiten bzw. Prozessoren verteilt, die nach Funktions- und Lastteilungs--
prinzipien arbeiten. Die Kommunikation zwischen den verteilten Steuerungseinheiten erfolgt
héufig tiber ein Kommunikationssystem mittels eines Meldungsaustauschprotokolles.

In diesem Beitrag wird die Leistungsfdhigkeit des in Telekommunikationssystemen oft ver-
wendeten taktgesteuerten Meldungsaustauschverfahrens untersucht, wobei ein zweistufiges
Warteschlangenmodell entwickelt und analysiert wird. Die Analyse geht von einer eingebetteten
Markoff-Kette mit einer zweidimensionalen Zustandsbeschreibung aus, welche fiir die Berech-
nung jedoch durch geeignete Wahl der Regenerationszeitpunkte um eine Dimension reduziert
werden kann. :

Fiir Dimensionierungszwecke werden numerisch gewonnene Ergebnisse der Meldungswarte-
zeiten bei verschiedenen Verkehrsintensitdten, Taktdauern und Pufferspeicherkapazititen dis-
kutiert. Im letzten Kapitel des Beitrages wird die Wartezeitverteilungsfunktion der Meldungen
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fiir die Abfertigungsstrategie FIFO (first-in, first-out) abgeleitet.

1. Introduction

In distributed processing systems, especially in
communication applications, the traffic intensities
of real-time messages, which have to be handled
and interchanged by several processors, are very
high. These messages are generated by users or pe-
ripheral devices or they are caused for purposes of
interprocessor communications.

Fig. 1 illustrates a basic control structure of a
multi-processor system where communications are
performed by message interchanging via an inter-
connection network. Messages are preprocessed by
an access (I/0) controller (process level 1) and
stored in an intermediate message buffer as valid
messages in a logical sense for further processing in
the device control unit. Due to the function of the

* Dr.-Ing. P. Tran-Gia, Institut fiir Nachrichtenvermitt-
lung und Datenverarbeitung, Universitit, Seidenstrasse 36,
D-7000 Stuttgart 1.

** Dr.-Ing. H. Jans, Siemens AG, Offentliche Vermitt-
lungstechnik, Boschetsriederstrasse 133, D-8000 Miinchen
70.

considered device the messages will be transferred
to the device control unit (process level 2) according
to a messaging protocol. The transfer protocol in-

Users
Device R
trol unit !
comtret un P Process level 2
{Secandary [
system) =i
l T l T Message queve l T
Access P =
control unit = .
. et} Process Level 1
[Primary I
Ty
system) L/
l T l TMessage buffer l T
[ Interconnection network I

Fig. 1. Messaging in distributed processing environments.

fluences very strongly the message delay charac-
teristics and the throughput performance of the
entire system.
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The most commonly used messaging protocol is
the clock-driven scheme, whereby messages are
transmitted from process level 1 to process level 2
in a batch-wise manner at a scheduled time, ini-
tialized by a real-time clock. The messaging proto-
col includes all activities to transfer messages like
initialisation of the transfer task, transmission con-
trol, acknowledgement etc.

There are a number of studies [1]—[4] which in-
vestigate the performance of message sampling and
transfer schemes by means of basic queueing mod-
els with batch arrivals. Some of them [2]—[4] deal
with models having infinite waiting capacity. Finite
capacity aspects are discussed in [1], in conjunction
with several messaging schemes with batch arrivals
and overhead. Messages of an arriving batch are
considered to be lost when the batch is larger in size
than the actual number of free waiting places. In [5]
dimensioning aspects are considered for models
with clocked batch input where priorities for dif-
ferent classes of customers are taken into account. A
delay optimizing messaging scheme is presented
and investigated in [6], which is modelled by means
of a two-level queueing system with an arrival-
driven scheduling mechanism.

In order to investigate the messaging performance
of the system depicted in Fig. 1, we restrict the con-
sideration to the message traffic offered from the
interconnection network and the delay characteris-
tics of messages before being served by the device
control unit. A two-level queueing system is de-
veloped and analysed in this paper, where a clock-
driven messaging scheme is considered. The results
obtained can be used to optimize the message trans-
fer delays for a wide range of messaging mech-
anisms.

In principle an approximate analysis of this model
by decomposition is possible using two separate
one-level queues. This method implies an indepen-
dence assumption for the two queues; it is only
exact for infinite capacity queues, where no back-
ward blocking effect can occur. Due to the correla-
tion between the two queues, which is caused by the
clock-driven nature of the messaging scheme, the
accuracy of the decomposition approximation is ex-
pected to be reasonable for only a small range of
system parameters.

This paper presents an exact analysis method,
which requires a coupled two-level queueing system
to a two-dimensional process description. By ob-
serving the two-dimensional process at particular
points, the analysis can be simplified according to a
one-dimensional state description, for which com-
putational efforts can be remarkably reduced.

2. The Two-Level Queuneing Model

The queueing model considered in this paper has
the structure shown in Fig. 2. Message arrivals con-
stitute a Poisson process. The Poisson assumption is
based on the observation that the incoming message
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stream is the superposition of offered traffic from a
large number of different devices and processors
connected to the observed control unit. Taking into
account the different types of events and corre-
sponding tasks and programs they may activate, the
service time Ty of messages is assumed to be nega-
tive exponentially distributed.

Service

Primary delay Secondary delay

I } { time
! Twt ! w2 i TH—'1|
e 1] e B
Xy (¢} U Xyl¢1
it f
e——Clock period 7 ——»
i Time
—T Ts

Overhead phase  Active service phase

Fig. 2. The two-level queueing system.

Every message transfer activity which is con-
trolled by the processor is usually performed by the
same I/0 task and has approximately the same run
time during which the processor is not available for
message processing. Thus, the whole clock period T
consists of two parts: the overhead phase T; and the
active service phase 7Ty (c.f. Fig.2). It should be
noted here that only during the active service phase
the server is available for message processing but
not necessarily busy. In this paper the clock period
is chosen to be constant; this is often the case in sys-
tems where the I/0 phases are activated by a real-
time clock. Another reason for this choice of T can
be found in [1]. It is shown there that a well dimen-
sioned clocked scheme is relatively robust with
respect to the message traffic intensity. The primary
queue is considered to be infinite whereas the sec-
ondary queue (process level 2) is limited to the
finite capacity S. At a clock instant, when the actual
batch (i.e. the number of waiting messages in the
primary queue prior to the clock transfer instant) is
larger in size than the number of free waiting places
in the secondary queue (process level 2), all free
positions will be filled in a first-in first-out (FIFO)
order and the remaining messages must wait for
retrial until the next clock transfer instant.

Thus, each batch consists of two parts, the fresh
part and the reattempt part. All arrivals during the
clock period form the fresh part; the reattempt part
contains messages which have been rejected at the
previous clock instant.

The total sojourn time of a message in the system
is composed of three components:

e the primary delay Ty, i.e. the waiting time in
the primary queue (process level 1),

e the secondary delay Ty, i.e. the waiting time in
the secondary queue, including overhead periods
(process level 2),

e the service time Ty.
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3. State Analysis of the Two-Level
Queueing System

In this section performance measures of the above
described two-level queueing system are presented.
Subsection 3.1 discusses queue stability conditions
and subsections 3.2 and 3.3 deal with the Markov
chain state probabilities and the arbitrary-time state
probabilities, respectively. Subsequently, system
characteristics will be derived in subsection 3.4 and
some results will be presented in subsection 3.5.

The following symbols will be used in the anal-
ysis:

A parameter of Poisson process of message
arrivals, :

U service rate (¢ = 1/E [Ty]),

o= A/u offered traffic intensity,

S capacity of the secondary queue,

N=S§+1 secondary system size (process level 2),

Twi random variable (r.v.) for the primary
delay (pretransfer delay),
Twa r.v. for the message waiting time in the
: secondary queue,
o - r.v. for the message total delay,
T r.v. for the sojourn time (flow time)

of messages.
Furthermore, the following notations will be used

ay (1) = Pr {k messages arrive in a time interval
of length ¢}

=gk, A1), (1a)

dy, () = Pr {k service completions during a time
interval of length 1, server busy}

=g (ki) (1b)

where g (k, 1) is the Poisson distribution given by
w* _
g (k, u)=Te oo k=0,1,...,uz0. (l¢)
!

3.1. Queue stability conditions

In accordance with the considered transfer over-
head T, and the finite capacity S of the secondary
queue, the system is only stable under certain con-
ditions which will be derived below. For given val-
ues of the overhead period Ty, the primary queue
capacity S, and the offered traffic intensity o we will
calculate a lower and an upper limit for the clock
period T, for which the system is stable, i.e. the
steady state conditions of the whole queueing sys-
tem exist. The lower limit T, is found using the
fact that, on average, the active service interval Tg
in which the server is available must be long enough
to serve all arriving messages:

AT<uTs=pu(T—Tp)

or Tmin=T0/(I“Q)- (23)

On the other hand, if the clock period T becomes
too long, the mean batch sizes to be transferred are
also very large while the finite queue is likely to be
filled completely at each transfer instant and tends

P. TRAN-GIA and H.JANS: DELAY ANALYSIS

287

to be empty before the next transfer period. Thus,
the upper limit T}, can be defined as

AT<N
or Tax =N/A. (2b)
The whole queueing system is stable for
Toin < T < Thpax- (2¢)

The queue stability condition (2c¢) is illustrated in
Fig. 3. For T;=0.5 and S =10 the system is stable
in the hatched area. The dashed lines show the
upper clock period limit for other values of S.

o

30

N
=1
:

Clock period, 7 —>

0 T T T T T 4 T T T
0.2 0.4 0.5 08 10
Message traffic intensity, ¢ —=

Fig. 3. Queue stability conditions.

3.2. Markov chain state probabilities

Define X, (¢t,n) and X;(z,n) to be the random vari-
ables for the number of messages in the primary
and the secondary system at time ¢ after the n-th
clock transfer period (0 <t < T), respectively, and
the system state probability

P(,j,t,n)=Pr{X,(t,n) =i, X, (t,n) =j}. (3)

Assume further a stable system under steady-state
conditions, i.e.

p(,j,y=P(,j,t,n+1)y=P(,jt n), 4)
i=0,1,..., j=0,1,...,N, 0<1t<T,

taking into account the periodical behaviour of the
state process.

The two-dimensional quasi-stationary state pro-
cess is illustrated in Fig. 4. It can be clearly seen that
it is here convenient to choose the time epochs just
after the clock transfer instants (¢t =07, T, 2T, ...)
as regeneration points of the imbedded Markov
chain, at which the two queues can be considered as
connected and a one-dimensional state description
is possible. Thus, the Markov chain state proba-
bilities
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p(i,j,07), i=0,1,..
can be simply denoted by
p(i,j, 0N =n(k) with k=i+]. (5)

In order to calculate the transition probabilities of
the Markov chain, we observe two consecutive trans-
fer epochs n and n + 1. The main steps of the tran-
sition probability calculation are:

1) Calculate P (i,, T~, n) out of P (i, j, 0%, n)

o j=0,1,..,N

N i
P(i,j, T~ n)=2, 2, P(x,»0%n) a;_(T)
y=j x=0
d,_i(T3), >0
'y j( s) J (6a)
N i
P@,0,T7m)=3, 3\ P(x,y,0%n)-

y=0x=0

) (I,»__\,(T) Z dz (TS)

=y

ii) Calculate P (i,/, 0", n+ 1) outof P(i,j, T™, n)

J
PO,,0hn+1)=> PG~y T ,n),
' y=0 j=0,1,...,N—1,
‘ N (6b)
P(i, N0 n+1)=> P(N+i—y,y, T ,n),
r=0 i=0,1,....

Taking egs. (6a) and (6b) together, the transition
probabilities, which give a relationship between
state probabilities of two consecutive regeneration
points of the Markov chain, are calculated. Using
egs. (4), (5) and after simple algebraic manipula-
tions, the system of difference equations, which
implicitly contains the transition probabilities, is
derived: '

N—1 4]
(k)= Zon(f) [ak(T)Z d; (Ts) +
I= j=i
min (i, k)
+ 2, din (Ts) ap—; (T) } +
J=1 (7)
N+k 7o)
+ 2,1 (0) |agen-i (T) D, dy(Ts) +
i=N Jj=N
min (N+k—i, N)
+ Zl dy_; (T3) ak+N—i—j(T)}
=
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b
with > ()=0 for b<a.
Jj=a

Using eq. (7) the state probabilities of the im-
bedded Markov chain can be obtained by means of
the numerical method of Gauss-Seidel iteration
with overrelaxation, whereby a proper adaptive
truncation of the state space has been used.

3.3. Arbitrary-time state probabilities

In order-to calculate the mean waiting time in the
primary queue E[Tw,] and in the secondary queue
E[Tw>], it is convenient to use Little’s law [9], for

which it is necessary to know the mean queue -

lengths at an arbitrary time instant, i.e. the system
state probabilities seen by an outside observer. The
arbitrary-time state probabilities can .be, e.g., cal-
culated by using results of semi-Markov processes
[6]. In this subsection, a more simpler approach will
be presented, which bases on the fact of constant
intervals between successive regeneration points of
the imbedded Markov chain.

We consider the two-dimensional state space
characterized by the two r.v. X (¢, n) and X, (1, n),
0 <1< T. Between two transfer instants, X, (¢, n)
follows a pure birth process and X,(7,n) a pure
death process (with exception of the overhead
period). Under stationary conditions, taking into ac-
count the periodical property of the state process,
we only have to observe the system during one clock
period.

Assuming a stable system under steady state con-
ditions, i.e.

Xie,m=X;(t,n+1D)=x;(t), O0<r<T, i=1,2,

and denoting (8)

ke, )=Prix;(=k}, k=0,1,..., 0<t<T,
®

palle,ty=Prix,()=k}, k=0,1,...,N, 0<t<T,

we obtain from the Markov chain state probabilities
the arbitrary-time state probabilities of the primary
and the secondary system (secondary queue and
server):

i) Primary system
N
pi(0,0%) =2, m (i),
i=0

p1(k,0%) = m (k+N),

(104a)
k=1,2,...

and, due to the evolution of the pure birth process
between two transfer epochs

k
ok, 1y =2 pi (G, 0%) ar—; (1).
i=0

(10b)

i1) Secondary system

pak, 0N =n(k), k=0,1,....,N—1
&s) ~(11a)
P2 (N,0%) =3 m (i)

i=N

P
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and, due to the evolution of the pure death process
during an active service period (Ty <t < T)

O<f§T0
palle, ) =pa(k, 0%, k=0,1,...,N
To<t<T
p2(0,0) = va(l 0+)Zd (t— Ty,
e (11b)
pr (k)= sz (i, 0%) di—y (t = To),
i=k k=1,2,...,N.

3.4. System characteristics

Using the results of the state analysis described
above, system characteristics can be obtained. From
egs. (10a,b) and (l1la,b) the mean number of
messages in the primary system E[X)] and in the
secondary system E [X,] can be derived:

1 T w
E[Xxl—"—-]—, k pi(k, ) dt =
b (12)
<= AT T
=Z/CPI(/€50+)+'—2—'=E[x,(O+)]+)—7—,
1 T N
E[X_]=7§zkp7(/\ T)dt——-
0 k=1
T N
=7,0‘Z ipy(i,0%) + (13)

i=1

_] N i 7]
““T‘Z G0N Xk 2 d(T).
= k=1 j=i=k+1
Using Little’s law, the mean waiting time in the
primary queue E [Tw;] and the mean waiting time

in the secondary queue E [Tw,] can be given as

20

Mean delay —=
=

/
ElTyi)

— 7]
\ 7 ElRl

1 2 5 10 0
Clock peried, 7 —=

Fig. 5. Delays versus clock period; S =10, 0= 0.7, Ty=0.5.
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E [Twi] = E[X})/4, (14)
E [Tw2] = E[X2]/4 —1/u. (15)

The mean sojourn time of messages in the system is
E[T¢] = (E[X\] + E[X2])/4 (16)

and the mean total delay of messages in the system
is given by

E[Tp] =E[Twil+ E[Tw2l = E[T§] = /. (17)

3.5, Results and discussions

In this section numerical results are presented for
the delay characteristics of messages in the system.
All values are normalised with respect to E[Ty]
=1/u. Fig. 5 depicts the different mean values of
delays as a function of the clock period 7. By the
chosen parameters (p = 0.7, S =10, Ty = 0.5) the sys-
tem is stable for 1.666 < T'< 15.714 (c.f. eq. (2)). It
is clearly shown that a minimum of the total delay
for messages exists as expected. Fig. 6 gives the
mean total delay of messages for different message
traffic intensities. The cross-over effect of the curves
indicates an optimum choice of clock period as will
be discussed in Fig. 7 in more detail.

In Fig. 7 the total delay is plotted as a function of
clock period T. An optimum choice for 7' can be de-
fined for a given level of offered traffic intensity.
The sensitivity of these optimum values has to be
taken into account for dimensioning purposes. The
best choice T = 3 for ¢ = 0.6 would lead for example
to an instable system for o > 0.833 during an over-
load situation. The mean total delay is shown in
Fig. 8 as a function of the secondary queue capac-
ity. For a fixed value of the clock period 7, the
mean total delay of messages cannot be further re-
duced by increasing the secondary queue length S
beyond a typical minimum value.

20

o

=

Mean total delay, E[7j] —

5 y
=

7=5
e
72
0
0 0.2 0 0.6 0.8 10

Message traffic intensity, ¢ —=

Fig. 6. Total delay versus offered traffic; S=10, Tp=0.5.
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The delay characteristics discussed here can be
used for dimensioning purposes where the clock
period T and the capacity S of the secondary queue
have to be chosen for a given traffic range.
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Fig. 7. Total delay versus clock period; S =10, Ty = 0.5.
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4. Delay Analysis

Due to the clock-driven transfer discipline be-
tween the access control unit and the device control
unit, the delay characteristics are expected to be
strongly influenced by the 1/0 access delay. Hence,
in this section, attention will be devoted to the pre-
transfer delay. The distribution function of the pre-
transfer delay will be derived in the following,
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whereby the FIFO (first-in first-out) transfer dis-
cipline is considered.
4.1. Pretransfer delay distribution function
In order to determine the distribution function
Fw) (1) =Pr{Tw, =t} (18)

of the pretransfer delay Ty, the fate of a test mes-
sage (t.m.) is observed. As illustrated in Fig. 9 the
pretransfer delay consists of two components:

g delay from test message arrival epoch until the
next clock instant,

i-T anumber of i, i=0,1,2,..., clock periods un-
til the test message is transferred.
Arrival
lof test message

| x Clock instants

Low
I'1=i y=7-1 y=2 v=1 v=0
dtg
13 !‘ ir
t Ty
Pretransfer detay l
(primary queueing delay)

Transfer

Fig. 9. The pretransfer delay. of test message

Based on the stationary state distribution of the im-
bedded Markov chain and according to the FIFO
transfer discipline the pretransfer delay depends
only on the service process of those messages in the
system in front of the t.m. For the derivation below
we observe a t.m. which

e arrives fg before the transfer instant and takes the
k-th position in the fresh batch (batch of new
messages arriving during the clock interval),

e be in the n-th position in the entire system after
the next transfer instant.

The probability density b (k, tg) that the t.m. ar-
rives tp before the next transfer epoch and takes
position & in the fresh batch is

bk, tg)=ar(T—13) 4, k=1,2,.... (19)

The probability density (n, fg) that the observed
t.m. takes the n-th position in the whole system just
after the next transfer instant is given by

r(n,18) =2 b (k, 15) 4 (07) (20)
where k=
Gn-t (0Y) =Pr{n —k messages are in the whole
system at the next transfer instant},
N N
2 m (N2 d(Ty), - n=k

j=0 r=
Guor (@)= 770 @)

Z n (./) dj(l)n+k(TS)> n> k

j=n—k
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and ﬁ’: i
, lazi (T) = azi (T = 0] gui (0),
d; (Ts), j=0,1,...,N—-1, n=1k=1 i=0
@ =1 25b)
d-(l) To) = d (T ) '=N, 27 (i+1)N n (
1T =) AT, (22 > S [ask (T) - sk (T = 1] ui (0
. n=N+1k=1]
0, otherwise. W= N N
) . . i1 ) ;
By summing over all positions of n eq. (20) results %Id'g“m)-f‘/ (TS)E‘, dj (Is), i>0

to the probability density r (zg) = 4, as expected, ac-
cording to the Poisson arrival process.

If the t.m. takes a position i, i=1,..., N, it will
be delayed only for ¢ =t with the probability den-
sity

N

w (0, tg) = >, r (1, tg).

n=1

(23a)

Because of the finiteness of the secondary queue,
the maximum number of services during a clock
period is limited by N. To be delayed i clock
periods the t.m. must take a position between
n=N+1and n= (i + 1) N. Therefore we obtain

i+ N n—-N
witg)= 2, r(n 1) 2 dizpn(Ts)-
" n=N+1 m=1

N (23b)
2 dN(Ty), i=1,2,...
j=m :

where d" (Tg) is the r-fold convolution of d{" (T%)
with itself, and can be thought of as the probability
for 7 services during r transfer periods, based on the
fact that all waiting places in the secondary queue
are occupied after each transfer epoch. It should be
noted that

i=0,

1
(0 =1
" (Ts) lO, otherwise.

After integration of egs. (23 a, b) from 0 to tg we ar-
rive at the probability
4]
Pr{iT< Ty, =iT+tg}={w(,u)du, (24a)
0

and using the definition of a distribution function
Fw1 (1 T+ fg) = PI'{TW] =iT+ IB} =
=Pr {1' T< Tw1 =iT+ [B} +
+ Pl‘{Tw[ =7 T}

(24b)

By solving recursively eq. (23b) we obtain the pre-
transfer delay distribution function of messages
i-1

Fyi( =2 10k, T)+1(i,tg), i=

k=0

0,1,... (25a)

where
i=[t/T]": largest integer less than /T,
b
g=t—iT, 2, ()=0 for b<a

a

and the function 7 (i, 1) is defined by

!
1G, 0= w(,u)du=
0

with
[ee]
azx () =2 a; ().
i=k

4.2. Numerical results

The complementary pretransfer delay distribution
function calculated by means of eqgs. (25a, b) is il-
lustrated in Fig. 10. For the given set of parameters
(0=0.5, S=10, Ty = 0.5) the influence of the clock
period length on the distribution function charac-
teristic can clearly be seen. The two building parts
of the pretransfer delay can be recognized in the
diagram, in which an optimal choice of the inter-
transfer intervals with respect to the coefficient of
variation can be estimated.

1

=]

7=3 10 15

=
=

¢ =05978 05626 0.5647

0.004

Complementary pretransfer delay distribution, Fylt) —=

0.0004
0 1 20 30

Normalized time ¢ —
Fig. 10. Complementary pretransfer delay distribution
function (FIFO transfer discipline, c: coefficient of varia-
tion of the pretransfer delay); S=10, 0=0.5, T;=0.5,
=1

5. Conclusion

In this paper, a two-level queueing system has
been developed and investigated, which models a
clock-driven messaging scheme between the device
control unit and the communication control unit of
distributed controlled devices in real-time process-
ing systems. The analysis is done using a time effec-
tive computing technique, which involves a one-
dimensional description and computation of the
two-dimensional Markov chain of the state process.
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From the steady state distribution, system charac-
teristics like message delays and mean system oc-
cupancies are derived and discussed. Finally, the
distribution function of message delay according to
the FIFO transfer discipline is investigated.

The model can be applied to performance in-
vestigations of a wide range of distributed comput-
ing systems, in which high rate of real-time mes-
sages have to be interchanged between decentral-
ized controlled processors and the critical device
response time has to be optimized. Numerical re-
sults are provided for dimensioning purposes,
whereby critical aspects for the system performance
like queue stability conditions and delay charac-
teristics of messages, especially in high load situa-
tions, are taken into account.
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