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STRUCTURE AND
PERFORMANCE OF NEURAL
NETS IN BROADBAND SYSTEM
ADMISSION CONTROL

Phuoc Tran-Gia and Oliver Gropp

Institute of Computer Science
University of Wiirzburg

1 INTRODUCTION

This chapter!" is dedicated to the use of neural networks for the connection
admission control (CAC) in Asynchronous Transfer Mode (ATM) networks.
An overview of ATM is provided by Hiramatsu in a preceding chapter. The
major aim"is to present and to compare possible neural net structures which
can be applied to CAC and to show the performance of a basic neural net
under various stationary and non-stationary load conditions. In Section 2 basic
principles of the use of feed-forward neural networks with back-propagation
learning in connection admission control are discussed and different alternative
neural net structures are compared. A simple neural net is selected as an
example in Section 3 and Section 4 to show the acceptance control performance
and to discuss numerical aspects of the neural net under consideration.

2 NEURAL NETWORKS FOR CONNECTION ADMISSION
CONTROL

Depending on the information available to the CAC function and its location in
the communication network, different neural net structures can be developed.
In this section we will briefly present these alternatives and discuss in particular
the basic function and learning procedure of a back-propagation neural network
used as admission controller.

1This chapter is an extended and updated version of [1].
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2.1 Admission control in broadband networks

The connection admission control plays an important role during the resource
allocation procedure of an ATM network (cf. [2]). According to CCITT
[3, 4] the CAC function is defined as: “ ... the set of actions taken by the
network at the call set-up phase (or during the call re-negotiation phase) in
order to establish whether a (virtual channel or virtual path) connection can be
accepted or rejected.”

Given that the CAC function is able to estimate the quality of service (QOS)
before and after having accepted the requested connection, it can make the

acceptance decision, i.e. the request will be rejected if the required QOS
cannot be maintained.

In the following, we consider a number M of different connection types to be
scrved by the network.

We distinguish two cases:

w

i) CAC based on network state ; In this case, we assume that the entire infor-
mation about the number of all connections being multiplexed is available.

The system state seen by the network is denoted by X = {ny, ny, .., nal,
where n; is the number of active connections of type i being in the system.
The main CAC function can now be represented by a mapping of the
systemstate .\ to adecision vector Z defined by Z = {2}, zy, .., zpm}, where
z; = 1denotes the acceptance of a connection establishment request of type
iand z; = 0 its rejection. The CAC is thus reduced to the implementation

of amapping f : X — Z = f(X) according to the predefined quality of
service of the network.

The mapping f can further be simplified by using the state X* =
{n1,n2, .., ni+ 1, .., npy}, ie. the system state just after accepting the
connection request of type i. The decision vector is reduced to Z* = {zi}
and the CAC mapping to f* : X* — Z* = f*(X*).

if) CAC based on bit-rate process : In this case, only the superimposed bit-
rate process is available to the connection admission control function.
This is the case if an intermediate ATM switching node does not have
the whole system information, but only knows the bit-rate processes to be
transferred.

Neural Nets in Broadband System Admission Control 129

i al bi i ing the time interval
Denoting the observed total bit-rate fupctxon during t| !
(t,t+ At% by Y, the CAC function can again be represented by the mapping
g:Y—=Z=g)

2.2 Neural network as admission controller

As discussed in the previous subsection, the connection adn}issxon control
function can be interpreted as a mapping of the state vector X' into the accep-
tance decision vector Z. This functional mapping divides the M-dgmenannal
state space into two regions: the acceptance region qnd the rejection region.
In other words, the CAC problem can be formulated like a pattern recognmgn
problem: upon recognition of the load pattern .\, a yes/no dec§sxon h.as to be
made to accept/reject the connection request. This property in conjunction
with the use of a neural net for connection cpntrol purposes in ATM system;
is thus quite obvious. In this chapter we will use the class qf fee_d-forwar
neural nets with back-propagation learning algorithm as described in Chapter
1 to solve the CAC problem.

user CAC MUX network

—
AN

neural
network

traffic p
Figure 1  Neural net for admission control

The use of a neural network to control connectiovn acceptance is illustrated in
Fig. 1. This basic structure has been proposed in [5] and furtper dc\icllopcd1
in [6]. Traffic streams offered by different types of sources are mull_lp cxc‘:J
at the entry node of the high-speed communication nctwor}n In the propose !
neural net structure in [5] the bit-rate function is used as input to the neura



130 CHAPTER 7

net. As a quality of service indicator, e.g., the cell blocking probability at
the multiplexer can be used. During the learning phase of the neural net, the
input/output patterns are as follows. Inputs are formed by the bit-rate pattern
including the bit-rate process generated by the actual connection request. The
resulting QOS will be observed and compared to the target QOS. If the target
QOS is still held, the output of the current input/output pairis Z = 1, i.e.
the connection can be accepted, the bit-rate pattem is a “good” pattern. If
the resulting quality of service is lower than the target one the output is then
Z =0, i.c. the connection should not be accepted in the current load situation,
the bit-rate pattern is a “bad” pattern. After learning input/output pairs have
been presented, the neural net can be used in a recall mode to perform the
CAC function. One of the disadvantages of this mechanism is the difficulty to
generate a significant number of good- and bad-patterns for the neural net to
leam. The CAC performance of the neural net is thus strongly dependent on
the statistical significancy of load patterns during the learning phase. Therefore
we decided to design a modified learning process for the neural net.

In the current study we devote our attention to the neural net structure depicted
inFig. 2. The neural net is designed to perform the mapping depicted in Section
2.1 case i). We consider a number M of different classes of conneetions, each
with different known bit-rate characteristic. The pairs of input/output patterns
for the neural net to be learned is computed as indicated in Fig. 2. Starting
with a state vector X' = {ny,ny,..,np} as the input part of a pattern the
multiplexed bit-rate function is determined. Having this bit-rate function as
traffic stream, the cell blocking probability can be estimated giving the actual
quality of service. Upon a comparison of this measure with the target QOS,
the acceptance decision Z can be made. This can be interpreted as the decision
to be made to accept/reject a connection request of type i if actual system
state is {ny,ny,..,n; — 1,..,npr}. The working mode of the neural net during
the recall phase is as shown in Fig. 2, where the net will answer with an
accept/reject decision Z* for a connection request of type i when the input
vector X = {ny,na,..,n; +1,..,nar} is presented.

Thus, after the learning phase, the neural net performs the CAC by separat-
ing the M-dimensional input state space in two regions corresponding to a
(M — 1)-dimensional decision surface. The decision surface, which separates
the “accept” region from the “reject” region in the state space, can be thought
of as stored in the weight vectors of the neural net.
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cell stream blocking
simulation . behaviour |
~\ acceptance
noo decision
np, —= LI
backpropagation
ny T | learning

a) Learning phase

ny —=
call
request np+1 —=
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accepl/reject
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b) Recall phase

Figure2 Working modes of a neural net based admission controller

2.3 Alternative neural net structures for admission control

In the previous subsection we introduced the two cases: i) CAC .bascd.on
network state, where information about the number of all connccuql being
multiplexed is available, i.e. the detail stmf: vector X of the system is klno\wl
by the connection admission control function and 1.1) CA_C based on blt-ra;u
process, i.e. only the superimposed bit-rate process is ayaxlable or measurable
to the connection admission control function. Accordmg‘to t!lesc two cases
different neural net structures can be developed, as shown in Fig. 2 and 3.

i) CAC based on network state

A simple backpropagation neural net with only one output neuron is
depicted in Fig. 2 b). The same functionality can be obtained using the
neural net structure shown in Fig. 3 a).

ii) CAC based on bit-rate process
Fig. 3 b) depicts a feedforward neural net for the mapping gf a_bit«rate pat-
tern to an accept/reject decision. This reflects a communication network
architecture with less signaling efforts involved, where only the super-
imposed bit-rate process is available or measurable to the connection
admission control function.
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Figure3 Alternative neural net structures for admission control

3 EXAMPLE OF A NEURAL NETWORK FOR ADMISSION
CONTROL

In Ehis scctiop we illustrate the performance of the neural net depicted in Fig. 2
b) in connection admission control.

3.1 Traffic assumptions and configuration parameters

‘The parameters of the ATM multiplexcr and the connection types are as follows.
Thc output of the multiplexer has a capacity of 600 Mbps, the buffer space
is 0.5 Mb large. To model approximately the VBR (variable bit-rate) sources
we consider sources with first-order Markovian bit-rate processes, where the
two basic types are used as shown in Fig. 4: a) on/off-sources and b) binomial
sources \yﬂh two parameters: mcean bit-rate m and peak bit-rate h. The time
axis is dxscren_zcd by At = 100msec. The bit-rate R will be expressed in
number pf basic units AB = 1 Mbps. In each At we assume each source to
have an independent bit-rate following the distribution:

a) on/off-sources:
pon = P{R= g5} = 3;
popp:P{R:O}:l—'—;:«;

b) binomial sources:
A

pi= P{R=i} = (3F)(R)(1-2)35~, i=0,1,...,h.

We consider three connection types:

Type 1: on-off, m = 10 Mbps, h = 40 Mbps, cr = 1.73.
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Bitrate Bitrate
Time Time
a) On/off bitrate b) Binomial bitrate

Figure 4 Basic traffic source models

Type 2: binomial, m = 5 Mbps, h =40 Mbps, cg = 0.42.
Type 3: binomial, m = 5 Mbps, h = 80 Mbps, cr = 0.19.

where cg denotes the coefficient of variation of the bit-rate &.

On connection traffic level, the arrival process of connection requests is as-
sumed to be Poisson with a mean intcrarrival time chosen according to the
simulated load scenario. To obtain patterns for the neural net learning process,
the cell stream traffic is simulated. During the simulation time the amount
of lost cells is estimated by a fluid flow model (cf. Fig. 5). The connection
duration is assumed to be exponentially distributed with mean 20 scc. This
mean value is intentionally chosen to be short to enable simulation runs without
loosing the qualitative significancy of the results obtained.

We simulate the traffic on burst level and the cell loss depending only on the
actual sum of the bit-rates of the sources of active connections, the capacity
of the output line and the buffer space of the multiplexer. Fig. 5 shows how
the buffer occupancy b) depends on the bit-rate a). Cells are only stored in
the buffer if the bit-rate exceeds 600 Mbps. The lost period is shaded dark in
Fig. 5b).

3.2 Alternative CAC methods for performance comparison

Since an agreement on CAC mechanisms for ATM system is not yet available,
we will select a few methods proposed in the literature (cf. [7, 8, 9,10,11,12])to
compare with the neural net CAC approach. The parameters taken into account
for CAC purpose are the numbers of active sources with given connection types,
and for each connection the mean bit-rate m and the peak bit-rate k. The aim
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Total bitrale Bulfer occupancy
N 10ss
oulput line
caoacily ::g:::hy ks R
Time
a) Total bitrate b) Buffer occupancy

Figure 5 Estimation of cell blocking probability

cl)g_(};e CAC is to keep the QOS, i.e. the cell loss rate below a given value, say

Peak reservation method (PR)

The most simple and robust method to limit the cell loss probability is to
reserve the peak bit-rate for each accepted connection. New connections arc
only admitted if the sum of the peak bit-rates of the active connections and
the new connection is smaller than the capacity of the output lihe. Thus no
loss will ever appear. This method reduces ATM rather to STM (Synchronous
Transfer Mode). Obviously, for more bursty bit-rate traffic the output channel
is used in an inefficient way and the multiplexer utilization may be intolerably
low. This peak bit-rate reservation method is considered here only as a lower
boun_d for admission control methods aiming to high multiplexer utilization.
In lh1.s section the improvement of utilization achieved by more sophisticated
algorithms in comparison to this simple method will be shown.

Equivalent bandwidth method (EB)

The gxpre§sion "pquivalent bandwidth” is introduced in [2]. Each source of
type i has'lls equivalent bandwidth k;, which depends on its mean bit-rate m;,
its peak bit-rate h; and the capacity of the multiplexer output line:

ki = Cym; + Cz——m"(h‘; i) (1)

The constants C, and C> depend on the buffer space of the multiplexer and the
maximum cell loss rate and have to be determined empirically. If a connection
request of type ¢ arrives the following inequality is checked:

K+k<c 2
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where K denotes the sum of the equivalent bandwidths of the actual active
connections. If it holds, the new connection is accepted, otherwise rejected.

Weighted Variance method ( wv)

The original method proposed in [13] has to be modified in the context of this
study due to simulation reasons. The original method only works sufficiently
well if the peak bit-rates of the subscribers is less than one percent of the output
line capacity (cf. [11]). The modified algorithm works as follows, where m;
represents the mean bit-rate of connection j, h; its peak bit-rate and c the
capacity of the output line. Connection k is the new connection to be admitted,
connections 1 to k — 1 are already admitted. If

dohi<e (3)

holds, connection k is accepted. If this incquality does not hold, the following
one is employed:

k

k
. P : : . <
@ jZlmﬂ(hJ mJ)‘*';mJ + x?;lgzkh’ se )

If this inequality holds, connection k is accepted, otherwise it is rejected.

The term m; (h; —m;) is an estimate of the variance of the bit-rate of connection
j. Thus the constant « determines the influence of the variances of the source
s on the CAC process. The term « has to be found in advance by simulation.

Neural network CAC (NN)

We use a three layered feed-forward neural net to evaluate the CAC function.
The neural net structure is the one depicted in Fig. 2b).

The input consists of the vector X* of the numbers of active sources of each
class where the component of the class of the arriving request is incremented
by one. The result of the feed-forward computations at the output unit is a real
number between 0 and 1. If the output value is less than a threshold (say 0.5)
the new connection is accepted, otherwise rejected. The decision of the neural
net depends on its internal set of weight matrices which have to be determined
in advance during the learning phase as discussed in the previous section.
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3.3 Neural net convergence and numerical issues

As mentioned before, the neural net needs a learning process to fix its weight
vectors. This process uses a set of patterns to be learned. Each pattern consists
of an input vector X* and the corresponding output value Z*, which have to
be chosen that the network has the capability to work as a mapping function
f* fo_r CAC (cf. section 2.1). We obtain this pattern using a simulation of the
multiplexer state process, i.e. we fix the number of active connection of each
traffic class at certain values and determine the corresponding loss rate at the
multiplexer buffer. If this loss rate is less than a predefined value (in this study
10-°) this set of connection can be accepted, otherwise it should be rejected.
We perform this simulation for the vectors

600M bps
mean bit — rate of type j

X} = {itk,izk, ., iak} with 0<i; <

< (5)
and step size k. Thus we get an equally spaced M dimensional grid whose
nodes are named with A(ccept) or R(eject). This grid can be separated by an
A -1 dimensional decision surface in an “accept” and a “reject” region. As an
exam[_)]e Fig. 6 shows this grid for A = 2, where n; and n, denote the numbers
ofl'acnve connections of class 1 and 2. In this case the decision surface is just
a line.

R R R

R R R R
8 ] R A
A R R R
81 A R R R
A R R R
Y g{a R A
A R R
21A R R
A R A
R1{A R R
A R
A R
° 2

Figure 6 Learning patterns of neural net

To compl;te the pattern each X} gets a Z¥ = 0.2 if the node name is “A” and a
2} = 0.8 if the node name is “R.” The values 0.2 and 0.8 instead of 0 and 1 are
uscd to obtain a more appropriate learning algorithm.
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In the literature a number of different algorithms to adapt the weights of the
neural net can be found. In this chapter we use the BFGS algorithm of [14],
well known from the theory of unconstrained optimization, aiming for a better
convergence speed and a better numerical stability (cf. [15]). First we have to
transform the learning process into a function minimization problem. Given
the set of learning patterns we define an error function

N
E(W) = 55 Y (3 - F(X8 W)Y ©)
i=1

The term W denotes the vector of weights and F(.X7, W) the output of the
neural net upon X} presented to the input layer. Using the BFGS algorithm
E(W) is minimized in the weight space:

1. Initialize W with random values ranging from —0.5 to 0.5.

2. Calculate the search direction in the weight space and perform a line search
in this direction to get the next W with a smaller E(W).

3. Check the stop condition (E(W) small enough or local minimum of E(1¥)
is reachied). If the condition is not true continue with step 2.

If the final E(W) is small enough, the learning process is terminated. For the
recall phase the internal weights of the neural network are now fixed to their
final values. The neural network is thought of to has learned the functional
mapping f*(X*) = Z* correctly only for the training patterns. Then it is able
to perform this mapping also for all other input patterns with the help of the
learned decision surface. This property is often referred to as “learning by
examples.”

3.4 Performance results and discussion

The load control performance of the neural net will be discussed in this sub-
section, taking into account stationary and non-stationary load conditions.

The neural net operates in the recall mode. Results are obtained by means of
simulations with different mixtures of the three connection types described in
Section 3.1. For the “Equivalent Bandwidth” and the “Weighted Variance”
methods the parameters C and C; or respectively, a, had to be determined to
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guarantee a cell loss rate smaller than the threshold 10~°. Table 1 shows the
multiplexer utilization for the CAC methods considered. The column ‘Mix’
indicates the mixture of the connection types used. Without any admission

[Mix [ PR EB | WV | NN
12 [202% |419% | 474% | 415 %
13 [179% | 454 % | 436 % | 48.0%
273 [ 103% | 69.1% | 67.0% | 66.1 %
17273 | 158 % | 495 % | 506 % | 554 %

Table 1 Multiplexer utilization

control the utilization of the multiplexer would be about 91 %, without main-
taining the desired QOS. As expected, PR is the most restrictive method and
has a bad performance, whereas the other methods perform almost on the same
level. Only in the case with all the three connection types involved a slight
advantage of the NN control can be observed. The reason for this fact is the
difference in rejection behavior of the EB and WV method on the one hand
and NN on the other hand as shown in Table 2. As shown in Tablg 2 the two

[(Type| PR_| EB | WV | NN |
T [782% [51.2% [509% | 550 %

2 |784% [36.0% | 330% | 220%
3 947 % | 42.5% | 382 % | 21.6 %

Table 2 Call request rejection rates

methods EB and WV have almost the same connection blocking probabilities.
The conclusion of the comparison of their performance with the NN solution is
that the NN method rejection decision depends mainly on the mean bit-rate of
the connection type while the decision of EB and WV depend on mean bit-ratc
and variance.

Fig. 7 shows the decision surface of the considered connection admission
control methods, which separates the accept and reject regions. The accept
region lies on the left hand side of the decision surface. The two methods EB
and WV have almost the same decision line, which again indicates the similarity
of their performances. The NN decision surface is extremely different. It can
be observed that the NN algorithm accepts much more sources with small mean
bit-rate (type 2) and less sources with high bit-rate (type 1) than the EB and
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Figure7 Decision surface for CAC

WV methods. From communication network point of view, this results in the
same multiplexer utilization (Table 1, row ‘1/2’), whereas from user viewpoint
the differences for the user groups using connection type 1 or 2 are significant.

To show the,overload control performance of the CAC methods under consid-
eration, it is necessary to study the CAC response on a non-stationary overload
pattern. In the diagrams to follow we use as overload pattern a rectangular
overload pulse as illustrated in Fig. 8 and observe the time-dependent CAC
reaction in terms of cell and connection blocking probabilities. Clearly, a better
CAC mechanism should react to the overload phase with smaller connection
blocking probability while keeping the cell loss rate on the same level as under
normal load conditions.

Results of the non-stationary load cases are shown in Fig. 8 and Fig. 9. It should
be noted that the coefficients of variation of the source bit-rate processes of the
three.connection types are 1.73, 0.42 and 0.19 respectively.

Fig. 8 shows a comparison of the non-stationary connection blocking proba-
bilities of connection type 3 of the four CAC control methods. In this case it
can be seen that the overload performance of the neural net solution is the most
efficient.

In Fig. 9 the overload control performance of the neural net is shown where the
three connection types are taken as input. As mentioned above, the connection
blocking probability is more sensitive to the mean bit-rate than to the variation
of the bit-rate process.
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4 CONCLUSIONS

In this chapter different aspects concerning possible use of neural nets to per-
form connection admission control (CAC) in broadband integrated services
networks have been discussed. The formulation of CAC problem as func-
tional mapping and in consequence, the use of learning algorithms to represent
the required mapping were shown and architecture alternatives for the CAC
neural nets using the class of feed-forward structures in conjunction with back-
propagation learning are depicted. In order to discuss performance aspects a
basic net example has been investigated. The neural net performance has been
compared with other connection admission control mechanisms like the peak
bit-rate, the equivalent bandwidth and the weighted variance method. Nu-
merical results for stationary and non-stationary pulse-form overload patterns
have been obtained to illustrate the capability of neural nets used as connection
admission controller in ATM environments.

In most of load scenarios under consideration the CAC performance of the
investigated neural net structure is comparable with and in some cases better
than the CAC methods mentioned above, even by using a very smalland simple
neural net.

To improve the performance of CAC by neural nets, other neural net structures
or other input representations can be developed. One promising candidate is
a combined solution of an adaptive neural net with learning patterns, which
contain more information about the past of the observable load situation.
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