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Abstract

Temporal fluctuations which cannot be explained
as consequences of statistically independent random
events are found in a variety of physical and biologi-
cal phenomena. The fluctuations of these systems can
be characterized by a power spectrum density S(f)
decaying as f~° at low frequencies with an exponent
0.5 < b < 1.5. We present a new approach to describe
the individual biorhythm of humans using data from
a colleague who has kept daily records for four years
of his state of well-being applying a fifty-point mag-
nitude category rating scale. This time series {R(t;)}
was described as a point process by introducing dis-
criminating rating levels r and s for the occurrence
of R(t;) > r (‘ups’) and R(t;) < s (‘downs’).

For ¥ < 1 a new method to estimate the low
frequency part of S(f) was applied using counting
statistics without applying Fast Fourier Transform.
The method applied reliably discriminates these ty-
pes of fluctuations from a random point process with
b = 0.0. It is very tempting to speculate that the
neuronal/humoral mechanisms at various levels of the
nervous system underlying the perception of different
values of the subjective state of well-being are expres-
sions of a self-organized critical state. But the most
important result of the present study is the finding
of a scaling region 1d < At < 15d for the ‘ups’ and
‘downs’ where S(f) is decaying as f~* with b~ 0.7.
Therefore, based on one’s own monitored biorhythm
for a given time period it should be possible to pre-
dict future episodes with a certain probability by ap-
plying methods of nonlinear time series analysis or
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modified feed-forward neural networks learning with
the backpropagation algorithm.

1 Introduction

A variety of phenomena in nature exhibit tempo-
ral fluctuations in the absence of intentional stimu-
lation which cannot be explained as consequence of
statistically independent random events. It has been
shown that temporal fluctuations found in phenome-
na as different as membrane currents, earthquakes,
sunspot activity, light emitted from quasars, sand fal-
ling through an hour glass, traffic flow, heart beat
or breathing activity can be characterized by their
power spectrum density S(f) decaying as f~* at low
frequencies with 0.5 < b < 1.5. This behavior of the
temporal fluctuations of a system described by its

S(f) is called 1/ f-noise.

Recently, Bak, Tang and Wiesenfeld [4] suggested
that the large fluctuations in time characterized as
1/ f-fluctuations and the self-similarity in space might
both be manifestations of a self-organized critical
state. Self-organized criticality (SOC) describes the
tendency of some open dissipative many-body sy-
stems to drive themselves spontaneously to a criti-
cal state with no characteristic time or length sca-
les without any fine-tuning by external fields: hence
the criticality is self-organized. This is in contrast
to the criticality of equilibrium systems undergoing
phase transition only at a critical external field, such
as temperature, pressure, electrical or magnetic field.
The idea provides a unifying concept for large sca-
le behavior in systems with many degrees of freedom
operating persistently far from equilibrium at or near
a threshold of instability, so to speak at the ‘border
to chaos’ [2].

The SOC phenomenon is expected to be quite uni-



versal and we assume that it is the underlying prin-
ciple of some biological many-body systems. We pre-
sent a new approach to describe the individual bio-
rhythm of humans using data from a colleague who
has kept standardized daily records for four years of
his state of general well-being applying a fifty-point
magnitude category scale and analyze the temporal
fluctuations by estimating the power spectrum den-
sity in its low frequency range to characterize the
self-similar temporal rating sequences.

2 Methods

The subjective intensity of well-being was measured
with a linear category scaling procedure (category
partitioning, [10]) with five categories each subdivi-
ded in ten steps: 1 - 10: very strong ‘down’, 11 - 20:
strong ‘down’, 21 - 30: moderate ‘down’/moderate
‘up’, 31 - 40: strong ‘up’, 41 - 50: very strong ‘up’.
Thus, the subject could, after choosing a major ca-
tegory, fine-tune the rating of well-being by choosing
a number within that main category. In general, the
daily ratings were performed at 6.00 a.m. and sto-
red for subsequent analysis. Occasionally fluctuations
within a day of the subjective well-being were obser-
ved, but were not monitored and therefore neglected
in this analysis. The time series of the daily ratings
R(t;) (Fig.1) can be described as a point process by
introducing discriminating rating levels for the oc-
currence of R(t;) > r, e.g. for the occurrence of ‘ups’
(cf. Fig. 2) and R(t;) < s, e.g. for the occurrence of
‘downs’ (cf. Fig. 3).

Usually S(f) is obtained by Fast Fourier Transform
(FFT). To avoid the well-known problems in using
FFT for the obtained point process, we used a new
simple method based on counting statistics [20] to
analyze the low frequency part of S(f) of the recorded
ratings of human general well-being.

The series of recorded ratings after introducing a
discriminating rating level is considered to be a point
process described as

y(t) = 6t —ti) (1)
1=1

in which (¢ — t;) represents Dirac’s delta functi-
on, and ¢; is the time of occurrence of a particular
R(t;) > r or R(t;) < s within the train of n events.
In the absence of severe intentional stimulation y(t) is
assumed to be statistically stationary. Another stati-
stical variable derived from Eq. (1) is the actual num-
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Figure 1: Biological rhythm. Daily ratings of the sub-
jective well-being for four years using a linear cate-
gory scaling procedure.

ber of events N(At) occurring in a time interval At
ranging from ¢, to t,. Thus, N(At) can be expressed

as
tgu

N(At) = /Z&(i —t;) dt. (2)
oo

The variance of counts Var[N(At)] is the so-called
variance-time curve. Its second time derivative is re-
lated to the auto-covariance function of y, Cy(At) by

C,(Al) = %(Var[N(At)])" (3)

(8] and therefore the key to determine the low fre-
quency part of the spectrum Sy (f) is to experimental-
ly obtain Var[N(At)] [20]. If the variance-time curve
follows within certain limits a power law

Var[N(At)] « (At)'*? withb < 1, (4)

then it can be shown using the Wiener-Chinchin theo-
rem that the spectrum S, (f) scales as

Sy(f) o f7° (5)



within fmin < f < fmaz [13]

The variance-time curve is defined by the variance
of counts for time intervals of length At as

Var[N(At)] = (N?(At)) = (N(AL)2 (6)
with {...) denoting expectation values. For estimating
Var[N(At))], the entire observation time T is divided
into k counting windows of duration At with T = kAt
and the variance of counts is determined for this par-
ticular window At. This is repeated for different va-
lues of At. The results were plotted as Var[N(At)]

versus At on a log-log scale and fitted by linear re-
gression using the least square method.

3 Results

In Fig. 1 the whole data set is shown, i.e., the daily
ratings R(¢;) for four years. It is obvious from the
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Figure 2: Occurrence of ratings of the subjective well-
being with R(t;) > 40 of the entire data set shown in
Fig.1. The corresponding days are marked by Dirac’s
delta functions 6(t — t;).
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Figure 3: Occurrence of ratings of the subjective well-
being with R(¢;) < 10 of the entire data set shown in
Fig.1. The corresponding days are marked by Dirac’s
delta functions é(t — ¢;).

data, that the state of subjective well-being is not
constant but fluctuates in general from day to day.
By no means these fluctuations taken as a whole are
simple oscillations describable by a sine function as
it is assumed by performing the so-called biorhythm
analysis [1]. In a rough approximation the data look
as if the basic underlying mechanism responsible for
the subjective well-being is a two-state (‘up’-‘down’)
system with a certain endogenic dynamics.

By introducing discriminating rating levels for the
occurrence of R(¢;) > r to reveal the fluctuations in
the ‘ups’, the data shown in Fig. 1 were transformed
into a point process. To obtain Fig. 2 the discrimi-
nating rating level was set to r = 40, i.e. the point
process shows the fluctuations of the very strong ‘ups’
of the subjective well-being irrespective of their actu-
al rating. Similar point processes for other discrimi-
nating rating levels were obtained and analyzed. In
particular for determining the fluctuations in the oc-
currence of the very strong ‘downs’ s = 10 was chosen

(Fig. 3).
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Figure 4: The clustering functions g4o(t) and g10(t) of the data sets shown in Fig.2 and Fig.3 obtained from the
original data shown in Fig.1 by introducing discriminating levels r = 40 and s = 10.

For all discriminating rating levels r or s the resul-
ting point processes exhibited a certain clustering of
events individually described as é(t — t;) (cf. Figs. 2
and 3). In order to characterize the clustering more
precisely we used a clustering function g(t) which was
defined for earthquakes [23] as follows:

g,-,,(t) = (n(t»ti —tn, (7)

where (n(t)):, is the number of events in the in-
terval (t;,t; + t] averaged over all ¢; in the tempo-
ral sequence S, = {R(t;) € S | R(t;) > r} or
S, = {R(t;) € S| R(t;) < s} and S = {R(t;)} descri-
bing the total temporal sequence (cf. Fig. 1). 7 is the
average density of events, i.e. the number of events
within S, or S, divided by the total observation time.
The clustering function g, ,(¢) should measure the ex-
pected different clustering for the ‘ups’ and ‘downs’
inherent in the data set shown in Fig. 1. Examples
for g, () are given in Fig. 4 as g4o(t) and g10(t). In
general, for all discriminating levels r and s analy-
zed, gr,(t) is positive and non-decreasing, contrary
to a homogeneous Poisson point process for which
g(t) = 0 for all t. Moreover, g,(t) > g-(t) for t <30
days.

After introducing a certain r or s, for the resul-

ting point process S, or S, the low frequency part
of the corresponding spectrum S(f) was determined
by using counting statistics as described in Methods.
Fig. 5 shows the result of the point processes shown
in Figs. 2 and 3, i.e. the Var[N(At)] for S4 and
S1o are plotted on a log-log scale versus the counting
windows At. From the straight lines fitted to the da-
ta points it is demonstrated that the variance-time
curves follow the power laws

Var[N(At)] « (At)'*%7 for Syo (8)

and
Var[N(At)] « (At)'+%%%for Syo 9)
within the first scaling region 1d < At < 15d and
thus the low frequency part of the spectrum scales as
S(f) o f7°7 for Sao (10)

and
S(f) o f7°52 for Sio. (11)

For At > 15d a second scaling region was observed
showing an almost random behavior: b = 0.00 for S4o;
b =0.08 for Sy .

Similar results, i.e. similar scaling behavior for the
variance-time curve and for the spectrum were obtai-
ned for other discriminating levels r and s.
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Figure 5: The variance-time curve Var[N(At)] for the very strong ‘ups’ (R(t;) > 40; cf. Fig. 2) and very strong
‘downs’ (R(t;) < 10; cf. Fig.3) plotted on a log-log scale versus the counting window At. The variance-time curves
scale as (At)!*® for 1d < At < 15d with indicated values of b and the corresponding correlation coefficients 7.
For the second scaling region, i.e. for At > 15d the exponent b = 0.00 indicates random fluctuations of the

ratings.

4 Discussion

Recently, also due to the introduction of the concept
of self-organized criticality by Bak, Tang and Wiesen-
feld [4], attention has been drawn to the characteriza-
tion of temporal fluctuations in a number of physical
and biological systems. In the following the discussi-
on will be focused on the fluctuations of endogenous
biological rhythms.

The human heart rate, even in the healthy re-
sting subject, displays a considerable amount of
fluctuations, which have been characterized as 1/f-
fluctuations [16], [24], [28], [12], [5]. Furthermore, it
was demonstrated that the heart rate variability of
healthy men shows periods of 1/ f-fluctuations with
interpolated periods of white noise within 24 hours

[20], [19].

In animal experiments it has been demonstrated

that the fluctuations in respiratory intervals also ex-
hibited 1/ f-fluctuations, but these characteristic ty-
pes of fluctuation disappeared into white noise fluc-
tuations when the end-tidal pco, was raised to 50 or
60 mmHg [11].

The fluctuating insulin requirements of an unstable
diabetic over an eight-year period have been subjec-
ted to spectral analysis and it was demonstrated that
the low frequency part of the spectrum did exhibit
1/ f characteristics [6].

Recently, the spectral analysis of the discharge of
neurones located in the mesencephalic reticular for-
mation during paradoxical sleep of the cat has revea-
led that in this state of the animal 1/ f-fluctuations
of the neuronal discharge do exist. However, the low
frequency spectral profile became flat, i.e. white noi-
se was found during slow-wave sleep [27], [9]. So far,
also the thalamic neuronal discharge exhibited 1/f-
fluctuations in the absence of intentional stimulation,



but we have not seen the transition into white noise
fluctuations [15], [21]. Earlier, even for the discharges
in primary afferent auditory fibres 1/f characeristics
have been reported [26].

It is tempting to speculate that the basic mecha-
nisms underlying the neuronal and humoral activity
in the central nervous system responsible for the sub-
jective state of well-being in the absence of intentional
stimulation are expressions of a self-organized criti-
cal state, as introduced by Bak, Tang and Wiesen-
feld [4] for physical systems. Self-organized criticality
(SOC) describes the tendency of dissipative systems
with many degrees of freedom to drive themselves to
a critical state with a wide range of length and time
scales without any fine-tuning of external fields. The
idea complements the concept of chaos, wherein sim-
ple systems with a small number of degrees of freedom
can display quite complex behavior [7].

Currently, it is hard to give a rigorous definition for
SOC, however, usually one gives this name to tho-
se systems which do not need fine-tuning of external
fields to give power-law characteristics for the para-
meters describing the system. The canonical example
of SOC is the cellular automaton model called ‘sand-
pile model’ introduced by Bak, Tang and Wiesenfeld
[4]. The critical state is characterized by ‘avalanches’
(activity) with power-law spatial and temporal dis-
tribution functions limited only by the size of the
system.

We assume that the subjective well-being dynamics
can be described as a self-organized critical process
and characterize the temporal fluctuations by its low
frequency part of the power spectrum. The method
applied reliably discriminates f~° fluctuations with
b = 0.76 for S40 and b = 0.62 for S;p in our case
in the first scaling region (cf. Fig. 5) from a random
point process, which would result in b = 0.0 as found
in the second scaling region At > 15d.

If the neuronal/humoral system responsible for the
subjective well-being is indeed operating at a self-
organized critical state, an external perturbation can
create either a small effect or a large one. There is
in principle no limit on how long the effect may last.
The degree of unpredictability is actually less severe
than for chaotic systems; SOC systems are operating
at the ‘border of chaos’ [2]. In SOC systems due to
an external perturbation the maximum predictability
decays as a power law, t~¢, where a is some constant
[3]. Fluctuations due to external stimulation are much
stronger in SOC systems than those being realized in
an equilibrium system and can not be prevented. In

case of the described biorhythm this would mean that
a transition from the ‘up’ state to the ‘down’ state
due to a severe external perturbation is inevitable for
the individual.

As a very rough approximation the biorhythm dis-
played in Fig. 1 may be described by a two-state,
i.e., an ‘up’-‘down’ system with an intrinsic dynamics.
Currently, with the limited amount of data it is im-
possible to decide, whether the neuronal/humoral sy-
stem responsible for the biorhythm is a representation
of a general process which has been studied under the
name stochastic resonance [22], [17] or is the realiza-
tion of an alternating fractal renewal process [18].

The results of the present study with an extended
data set confirm those of the pilot study with on-
ly two years of monitoring R(t;) [14]. The most im-
portant result is the finding of a first scaling region
1d < At < 15d for various discriminating levels r and
s describing the ‘ups’ and ‘downs’ when S(f) is de-
caying as f~° with b ~ 0.7. Therefore, based on one’s
own monitored biorhythm for a given time period it
should be possible to predict future episodes with a
certain probability by applying methods of nonline-
ar time series analysis [25] or modified feed-forward
neural networks learning with the backpropagation
algorithm.
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