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Abstract In this paper we study the performance of an IPTV recording service which permits subscribers to
record their favorite TV shows over the Internet and download them for offline viewing. The request arrivals for file
downloads play an important role and the system reacts differently when the arrivals are time-dependent. We will
compare two analytical modeling approaches: a steady state Markov chain analysis with constant arrivals and a fluid
model to capture non-stationary flash crowd effects. Furthermore, our approach also takes a realistic distribution of
the offered files of an existing IPTV recording service into account, as well as a user model with impatience which
leads to aborted download attempts.
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. Internet users are no longer satisfied with services such as
1. Introduction ]
YouTube [1], where they can upload and share short video

Recently, a multitude of new services have emerged which
utilize the Internet as a delivery mechanism for multimedia
content. With the advent of broadband accesses and fiber-
to-the-home technology, a whole new array of services has
become available complementing the traditional Internet ap-
plications such as web browsing. Currently, the trend shows
a great demand for transferring large volume multimedia
content, such as VoIP (Voice-over-IP) or IPTV which is the

Internet-based delivery of television programs.

clips using Adobe Flash technology, but more commercial
and non-commercial services emerge that offer entire TV
shows for download (e.g. Apple’s iTunes Store [2]). New ser-
vices include Zattoo [3] and Joost [4] which use architectures
based on peer-to-peer (P2P) for multi-cast streaming of live
TV programs or Video-on-Demand (VOD). A large problem
that these services face is that due to license restrictions not
all TV programs are available in all countries. The distinc-

tion of which content can be accessed from which country is
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usually performed based on the user’s IP address.

Another mechanism for IPTV content delivery is the so-
called network based video recording, where the live TV pro-
gram is recorded at a server and users can download their
favorite shows and later view them offline on a PC. An exam-
ple for such a video recording service is OnlineTVRecorder
(OTR[5]) in Germany. The video file sizes offered there can
consist from several hundred megabytes up to 1 GB or more
depending on the length of the TV show, as well as on the
encoding format, e.g. high quality H.264, standard quality
DivX, or MPEG-4 for portable devices (iPod, PSP, etc.).
Thus, OTR can be regarded basically as an example for a
server-based content delivery system with large data files cor-
responding to long service times. In the case of OTR, the
content can be either downloaded directly from the OTR
server, from user-created mirror sites, or alternatively via
P2P file-sharing network (e.g. BitTorrent).

However, as the OTR server farms are often overloaded,
new requests are queued when the number of provided down-
load slots is full. The restriction to a maximum number
of simultaneous downloads guarantees a minimal download
bandwidth for each user. Additionally, the service offers pre-
mium users prioritized access to downloading. The download
duration itself depends on the total capacity of the server
and the number of users sharing this capacity. On the other
hand, users who might encounter slow downloads may abort
their downloading attempt if their patience is exceeded.

In this paper, we extend our previous work in [6] and ana-
lytically investigate the performance of such an OTR server
with different file size distributions and model the user be-
havior by using an impatience threshold. The paper is or-
ganized as follows. After describing the analytical models
for both constant and time-dependent arrivals, we provide
numerical results and compare their performance in terms
of download duration and success ratio. Especially, we deal
with the question of how to properly dimension the number
of simultaneous downloads at a server in order to optimize
the performance of the system and to maximize the user’s

satisfaction.
2. Analytical Modeling of OTR

Let us consider the following system. User requests arrive
at the server with an arrival rate A. While we will at first con-
sider a fixed arrival rate in order to evaluate a steady state
Markov model, we will also consider later a non-stationary
arrival rate A(t). This is a more realistic scenario when look-
ing at individual files, since the popularity of a TV show
highly depends on the date it was recorded. Once a show
becomes outdated, the interest for this file decreases. This

phenomenon is usually referred to as flash crowd arrivals [7].
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Fig. 1 Probability distribution of TV show durations

However, since a server may offer several different files, the
overall arrival rate registered at the server may remain nearly
constant. The superposition of time-dependent arrival pro-
cesses with different starting points can be modeled as sta-
tionary Poisson process for a sufficiently large number of of-
fered files per server.

When a request arrives and there are free download slots,
the client may proceed with the download. We assume that
the server system has a total fixed capacity C which is shared
among all simultaneously downloading clients D(t) at time
t. The maximum number of users served in parallel is re-
stricted to n. Thus, the time-dependent download rate p(t)

for a file size f is

0= YO

and the maximum download rate is limited by the maximum
physical rate R of each client.

2.1 Measurements of Offered OTR Files

As we need the distribution of the file sizes to compute
the download rate p(t), we investigated the actual file sizes
of video files offered at OTR. The measurements which were
made in April 2007 consist of 11563 file samples from 19 dif-
ferent TV channels. According to the information provided
by OTR [8], standard video files are encoded at a resolution
of 512 x 384 pixels at a video bitrate of about 750 kbps and
an audio bitrate of 128 kbps. The measured data contains
only standard quality video files and consist of approximately
80% encoded in the DivX format and 20% in Windows Media
Video (WMYV) format.

Fig. 1 shows the probability distribution of the TV show
durations in minutes. The majority of the files (95%) are
discretized in units of 5min. We can distinguish 4 different
categories of TV shows. Most files are short features (e.g. an-
imation series) of about 30 min and shorter files may be for
instance news shows. Another peak can be found between
45-60 min which is the usual duration of TV dramas or other
periodical shows. Movies usually have the duration between

90-120 min and very few larger recordings of special events
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Fig. 3 Codec efficiency as ratio of file size and duration of the
TV show

exist, like the broadcasts of live sports events.

However, we are more interested in the file size distribution
in order to approximate the download time than the dura-
tion of the shows themselves. Fig. 2 shows that the actual
file size distribution has a mean of 368.31 MB and standard
deviation of 196.82 MB. It can be well fitted by a lognormal
or an Erlang-k distribution with k = 3.34 phases and an av-
erage volume of B =107.67 MB per phase, i.e., it is the sum
of |k| independent identically distributed random variables
each having an exponential distribution with mean B and an
exponential distribution with mean (k — |k]) B.

Fig. 3 shows the codec efficiency as ratio of the file size
over the duration of the TV show. The PDF has a distinct
peak at about 7.75 MB which corresponds to a total encod-
ing bitrate of about 1 Mbps. This matches the description
of the provider and is comparable to other standard quality
formats, such as VCD or SVCD. The measured values could
be well fitted with a log-logistic distribution superimposed
with a Dirac function at the peak value z,, to match the
measurements. The normalized height added by the Dirac
peak is approximately 0.17.

2.2 Discussion of Related Modeling Approaches

In general, with a slight abuse of the Kendall notation
for queuing systems, the model as described above can be
expressed as M(t)/GI/1™-PS with user impatience 6, an un-

limited waiting queue, and a server capacity which is shared

among n users at maximum. Thus, the service rate is influ-
enced by p and € and depends on the number of currently
served users.

Admission control to the system can be taken into account
by restricting the size of the waiting queue. However, in this
paper we use the number of download slots n to guarantee
the bandwidth per user and only investigate the impact of
the user’s impatience on the system’s performance. While
reneging is considered with an i.i.d. random variable 6, balk-
ing, i.e., taking back the download request if the waiting
queue is too long, is neglected in this paper. We focus on
the effect of wasted capacity due to users’ impatience re-
gardless of whether they are being served or not, and the
impact of variability of the file size distribution, which is
expressed by the service rate. Our findings show that the
ratio of successful downloads increases with the variability
of service time.

Basically, there are several approaches on how to analyt-
ically evaluate such a system depending on the number of
available download slots n. If n < | %], the user’s access
bandwidth limits the download rate. This effectively results
in a M(t)/GI/n-FCFS system with independent service rates,
since 6 is an i.i.d. r.v. and p is constant. An analytical evalu-
ation is provided in [9]. For n > | £, the download rate and
therefore the service rates depend on the current state of the
system. On the other hand, if the downlink of a user is not
the limiting factor, i.e., a user can always utilize the offered
bandwidth of the server (C' < R), the system approaches a
real processor sharing system with increasing n, which is in-
vestigated in [10], [11]. In the past, a lot of research has been
dedicated to the analysis of queuing models with impatience.
Barrer [12] was among the first to analyze an M/M/1 system
with deterministic impatience thresholds. In the following,
more sophisticated FCFS models with Markovian arrival and
service processes were investigated in [13]0 [15].

In this paper only very simple models are considered which
are easily analytically tractable. As we will see later, the
general service time has a great impact on the performance,
however, it is well known that for such systems only approx-
imative evaluations can be performed for metrics of inter-
est [13]. As we consider time-dependent flash crowds arrivals
a transient analysis as described later in Section 2.4 is re-
quired.

2.3 Steady State Analysis with Markov Model

We now consider a steady state analysis for evaluating the
performance of the server system with aborted downloads
due to impatience. Maximally n users are served at a time
and they share the server’s total capacity C' with the proces-
sor sharing (PS) discipline. We assume homogeneous users

with equal access bandwidths R and generally independent
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patience time 6. In our model, 6 is the time threshold after
which a user aborts his download attempt if the download
time, i.e., the sum of the waiting and the service time, takes
longer than that. However, this GI assumption is not an ac-
curate model for the actual user’s behavior. In reality, a user
will have a state-dependent patience, since he is more willing
to wait if the file is nearly completed. However, in order to
make the model analytically tractable, we consider an expo-
nentially distributed #. Some research exists on impatience
in queuing systems, e.g.[16]. The model will be denoted
M/M/1™-PS with a slight abuse of the Kendall notation for
queuing systems. Thus, we have a homogeneous Poisson ar-
rival process, exponential service time, a single server unit
which services up to n clients and operates with the proces-
sor sharing regime. The queue length for waiting users is
assumed to be infinite.

The infinite state space for the M/M/1"-PS model is
shown in Fig. 4. Each state is identified by the number of
clients currently in the system. The model itself is a simple
birth-death process where only transitions between neighbor-
ing states are possible. The service rates p; are dependent

on state ¢ = 1,2,... and are expressed as follows.

¢ min{i,n} . C
i == - R 2

=g + fs — { min{i,n} } )
2.4 Time-Dynamic Fluid Model

The Markov model described in the previous section only

allows to investigate the steady state behavior. In order to
also consider the flash crowd arrivals mentioned above, we
use a fluid analysis technique. The state space of transitions
is shown in Fig. 5 and the differential equation system is

given in (6).

. 0 ifD<n
W= (3)
A—Dp—vW otherwise
. A—Dy ifD<n
D= (4)
0 otherwise
A=Dpu+vWw (5)
F=D(-pnu (6)

Arrivals enter the waiting population W with rate A or di-
rectly the downloading population D, if the number of slots
If the slots are full (Fig. 5(b)),

waiting users simply proceed to the downloading state with

n is not full, see Fig. 5(a).
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(a) D<n (b) D=n
A kp kp
e G G €l
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(c) State D split up into Dyg, ..., D} with k — oo

Fig. 5 Fluid model state transitions

rate fi = p D, which does not depend on W. After enter-
ing state D, the client remains in this state until he either
fully downloads the file and enters the finished state F' or he
aborts the download when the download duration exceeds
his patience threshold 6. The latter is expressed by entering
abort state A. In both cases the transitions are performed
at rate p multiplied with a probability p (when the down-
The probability

p can be interpreted in the following way. An abort occurs

load fails) or 1 — p in the case of success.

when the patience of the downloading user is exceeded ei-
ther during downloading or waiting. The patience in this
model is characterized by the exponential random variable
6 with rate v = 1/E[f] and the downloading time is expo-
nentially distributed as well with rate ¢ = C(t)/E[fs]. The
variable C(t) denotes the time-dependent capacity per user,
ie, C(t) = C/D(t) and E[fs] is the mean file size. Thus,
the probability that the patience is exceeded at time ¢ can
be expressed as

p(t) = 1/—1{/—1/) - D(t)%([?s]E-E-fsC]'EW]' @

Note that in the case of a single downloading state D,
exponential file sizes f; and thus exponentially distributed
rates p are assumed. If we consider Erlang-k distributed file
sizes as obtained in our measurements, the state D must be
expanded to several intermediate states Dy, D1, ..., Dy. For

k — oo this approaches deterministic values, see Fig. 5(c).
3. Numerical Results

We now provide some numerical results obtained by the
analytical models and simulations. A good match for both
the steady state analysis with the Markov model and the
time-dynamic evaluation with fluid model can be found in
Fig. 6 and Fig. 7. Fig. 6 shows the cumulative distribution
function (CDF) of the steady state population sizes for dif-
ferent values of n. From this we can derive the download

time of a user and the success ratio to obtain a file.
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Next, we consider the flash crowd scenario with the fluid

model. We assume an exponentially decreasing arrival rate

with 8 = 1 and a = 1073, Thus, the total number of arriving

users in the system is limited to

(ks

lim A(t)dt = = = 1000.
t— oo

a

Fig. 7 shows the time-dynamic evolution of the population
size in the flash crowd scenario. We compare the popula-
tion sizes from several simulation runs with the numerical
solution of the differential equation system (6) which is ob-
tained by the ODE solver of Matlab using the Runge-Kutta
method [17].

In the following we look at the simulated behavior of the
system when there are constant and flash crowd arrivals. In
order to compare systems with both types of arrivals, we
matched the arrival rate for the constant case to get the
same number of arrivals as in the case of flash crowds, where
the arrival rate A(t) exponentially decreases as A = —a and
A(0) = B. Here, we used the parameters 3 =1, a = 107", as
well as the server capacity C' = 100 Mbps, user bandwidth
R = 2 Mbps and patience threshold # = 200 min, and the file
size distribution was taken from measurement values. The
number of total download slots n = |C/R| represents the
optimally dimensioned case as will be shown later.

Fig. 8 and Fig. 9 depict the two measures of interest to
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0.5
0.45F
0.4r
0.35¢

o
w

0.25¢

success ratio

o
)

0.151
0.1r
0.05¢

o . . .
10° 10 10° 10°
maximum number of parallel downloads n

Fig. 10 Success ratio for different file size distributions

us, the download time and success ratio. We take a look at
the temporal evolution using a moving average with a win-
dow size of 100. Both figures show that there is a significant
difference when constant or time-dependent arrivals are con-
sidered. With constant arrival rate, after an initial transient
phase, both the download duration and the success ratio be-
come rather constant, whereas with flash crowds, there is
a higher variation of both values as the arrivals rapidly de-
crease over time from which later arrivals benefit. The figures
show that it is very important to consider if the arrivals are
time-dependent or not, as they yield quite different results.

The next investigation aims at the optimal dimensioning
of the number of download slots n for different file size distri-
butions. We focus on the flash crowd scenario with the same
While Fig. 10

shows the success ratio when the file size is distributed ei-

parameters as above except for o = 1073,
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ther deterministic, exponential, Erlang, or lognormal, Fig. 11
depicts the average goodput in kbps depending on the max-
imum number n of simultaneously served users.

Both figures illustrate the influence of the skewness on the
system behavior. It is remarkable that for deterministic and
Erlang-distributed file sizes a maximum success ratio exists,
whereas for exponential and lognormal the success ratio re-
mains nearly constant when n > |C/R|. However, this is
caused by the fact that with a higher skewness, smaller files
are downloaded more often. In all four cases the goodput
is highest at n = |C/R], as can be seen from Fig. 11. The
goodput is defined as the ratio of the file size and the down-
load time for successful downloads. For larger n the system
capacity is wasted due to longer download times caused by
the processor sharing discipline and the aborts due to the
user’s impatience.

Finally, the download time reflects also the behavior seen
for the success ratio, see Fig. 12. Since mostly the download
of large files are aborted when the downlink bottleneck is
exceeded and the lognormal distribution has a larger weight

on small values, it achieves the shortest download time.
4. Conclusion and Outlook

In this paper we modeled and investigated the perfor-
mance of an online TV recording service for distributing
large-volume video files. The user behavior was characterized

with an impatience threshold after which the client aborts

the download. We derived stationary and a transient fluid
flow model for analysis and compared their performance in
terms of the mean download duration and success ratio.

In the future, we wish to perform a more detailed compar-
ison with content distribution methods using peer-to-peer
networks [18]. By utilizing the benefits of distributed serving
nodes as in P2P with optimal strategies for caching contents,
our goal is to design better content delivery networks with a

higher reliability and scalability.
Acknowledgment

The authors would like to thank Marie-Ange Remiche
for her contributions to the modeling approaches and Yuki
Koizumi and Akira Mutazono for their help in preparing this
manuscript.

References

[1] http://www.youtube.com/.

[2] http://www.apple.com/itunes/.

[3] http://www.zattoo.com/.

[4] http://www.joost.com/.

[5] http://www.onlinetvrecorder.com/.

[6] T. Hoflfeld, K. Leibnitz, and M.-A. Remiche, “Modeling of
an online TV recording service,” ACM SIGMETRICS Per-
formance Evaluation Review, Special Issue on the MAMA
2007 Workshop, vol. 35, pp. 15-17, Sept. 2007.

[7] T.Hoffeld, K. Leibnitz, R. Pries, K. Tutschku, P. Tran-Gia,
and K. Pawlikowski, “Information diffusion in eDonkey-like
P2P networks,” in Proc. ATNAC 200/, (Bondi Beach, Aus-
tralia), 2004.

[8] http://wiki.onlinetvrecorder.com/index.php/Sender.

[9] N. Gans, G. Koole, and A. Mandelbaum, “Commissioned
paper: Telephone call centers: Tutorial, review, and re-
search prospects,” Manufacturing € Service Operations
Management, vol. 5, no. 2, pp. 79-141, 2003.

[10] E. Coffman, A. Puhalskii, M. Reiman, and P. Wright,
“Processor-shared buffers with reneging,” Perform. Ewval.,
vol. 19, no. 1, pp. 25-46, 1994.

[11] H. C. Gromoll, P. Robert, B. Zwart, and R. Bakker, “The
impact of reneging in processor sharing queues,” in Proc.
of SIGMETRICS ’06/Performance 06, (New York, NY,
USA), pp. 87-96, ACM Press, 2006.

[12] D.Y. Barrer, “Queueing with impatient customers and or-
dered service,” Oper. Res., no. 5, 1957.

[13] B. Gnedenko and D. Kénig, Handbuch der Bedienungsthe-
orie II. Berlin: Akademie-Verlag, 1984.

[14] F. Baccelli and G. Hebuterne, “On queues with impatient
customers,” Tech. Rep. 94, INRIA - Centre de Rocquen-
court, 1981.

[15] A. Brandt and M. Brandt, “On the M(n)/M(n)/s queue
with impatient calls,” Perform. Ewval., vol. 35, no. 1-2, 1999.

[16] S.-C. Yang and G. de Veciana, “Bandwidth sharing: The
role of user impatience,” in Proc. IEEE GLOBECOM, (San
Antonio, TX), pp. 2258-2262, Dec. 2001.

[17] J. R. Dormand and P. J. Prince, “A family of embed-
ded Runge-Kutta formulae,” J. Comp. Appl. Math., vol. 6,
pp. 19-26, 1980.

[18] K. Leibnitz, T. Hoffeld, N. Wakamiya, and M. Murata,
“Peer-to-peer vs. client/server: Reliability and efficiency of
a content distribution service,” in 20th International Tele-
traffic Congress (ITC-20), (Ottawa, Canada), June 2007.



