University of Wiirzburg
Institute of Computer Science
Research Report Series

Estimating Churn in Structured P2P Overlay
Networks

Andreas Binzenhofer! and Kenji Leibnitz?

Report No. 404 April 2007

1 University of Wiirzburg, Institute of Computer Science
Chair of Distributed Systems, Wiirzburg, Germany
Email: binzenhoefer@informatik.uni-wuerzburg.de

2 Osaka University, Graduate School of Information
Science and Technology, Suita, Osaka, Japan
Email: leibnitz@ist.osaka-u.ac.jp

Estimating Churn in Structured P2P Overlay
Networks

Andreas Binzenhofer
University of Wirzburg, Institute of Computer Science
Chair of Distributed Systems, Wirzburg, Germany
Email: binzenhoefer@informatik.uni-wuerzburg.de

Abstract— Structured peer-to-peer (P2P) networks have be-
come an important alternative to the classic client-server ar-
chitecture. Participating peers can join and leave the system at
arbitrary times, a process which is known as churn. Many recent
studies revealed that churn is one of the main problems faced by
any Distributed Hash Table (DHT). As a countermeasure most
DHT protocols have to invest a significant amount of overhead to
maintain both the structure of the overlay and the redundancy
of the stored data.

In order to automatically adapt this maintenance overhead
and other parameters of the DHT to the changes in the overlay,
an estimation of the current churn rate is required. In this paper
we discuss different possibilities of how to estimate the current
churn rate in the system. In particular, we show how to obtain
a robust estimate which is independent of the implementation
details of the DHT. We also investigate the trade-offs between
accuracy, overhead, and responsiveness to changes.

I. INTRODUCTION

With the recent development of new peer-to-peer (P2P)
architectures, P2P has evolved from simple file-sharing net-
works to efficient content distribution platforms. Eliminating
the potential dangers of overloaded servers in conventional
client server systems at flash crowd arrivals, P2P poses as
an efficient alternative for cooperatively storing and sharing
information in the network. This is accomplished by each peer
participating in a logical overlay structure and simultaneously
acting as client and as server. The peer is responsible for
maintaining its share of information and providing it to the
other peers requesting this data.

Additionally, P2P networks have no static network topology
and each participating peer may join or leave the overlay at any
time. This process is referred to as churn [1]. However, this
freedom of having a highly dynamic network structure comes
at a cost. The higher the rate is at which peers join or leave
the network, the more difficult it becomes for the network to
maintain its consistency. A too high churn rate can cause loss
of stored resources, routing failures, loss of the entire overlay
structure, or inconsistent views of the peers on the overlay
structure.

Thus, it is essential that the overlay network structure can
be maintained even in the presence of a high churn rate.
Especially, in structured P2P architectures, such as Chord [2],
where all peers are arranged in a ring structure, the integrity of
the neighborhood relationship among the peers must be kept at
all times. Therefore, these networks require more maintenance

Kenji Leibnitz
Osaka University, Graduate School of Information
Science and Technology, Suita, Osaka, Japan
Email: leibnitz@ist.osaka-u.ac.jp

traffic when the churn rate is high. However, usually P2P
networks operate without a centralized control unit and each
peer has only a limited view of the entire network, usually not
being aware of the current churn rate in the network. Thus, a
peer should be able to estimate the churn rate from the limited
information that is available to it and then autonomously react
to situations with high churn by increasing the maintenance
traffic.

In this paper, we propose an entirely distributed algorithm
for peers to estimate the churn rate by exchanging measure-
ment observations among neighbors. The overlay network
itself is used as a memory for the estimate while each online
peer contributes to updated measurements of the estimator. The
advantage of this method is that it operates passively, i.e., there
are no additional entities required to monitor online and offline
periods of the peers, and there is no further overhead necessary.
While we mainly consider Chord-based DHT networks in this
paper, our method is not restricted to any type of structured
P2P network since it operates independently of the underlying
DHT protocol. Wherever necessary, we will point out the
corresponding differences to other types of structured P2P
networks, e.g. Kademlia [3] or Pastry [4].

The paper is organized as follows. In Section II, we discuss
some existing models for estimating the churn rate in P2P
networks. This is followed by Section Il where we give
a detailed description of our proposed estimation scheme.
Section 1V will show that our proposed estimation scheme
is capable of retrieving accurate estimates and we will study
the impact of the parameters, e.g. the number of monitored
neighbors or the stabilization interval, on the performance of
our approach. Finally, we conclude the paper in Section V and
elaborate on possible extensions.

I1. DiscUsSION OF DIFFERENT CHURN MODELS

In P2P networks the term churn is used to describe the
continuous process of new peers entering a P2P system and
already participating peers leaving it. These fluctuations in the
overlay can cause inconsistencies, lost messages, decreased
user-perceived quality, or increased overhead. In this context,
the impact of joining peers is usually less problematic, since
it mainly results in temporary failures like routing inconsis-
tencies or resources which might be temporarily located at a
wrong position in the overlay. The process of peers leaving the

system, however, can result in irreparable damage like loss of
the overlay structure or loss of data stored in the overlay. In
general, node departures can be divided into friendly leaves
and node failures. Friendly leaves enable a peer to notify
its overlay neighbors to restructure the topology accordingly.
Node failures, on the other hand, seriously damage the struc-
ture of the overlay by causing stale neighbor pointers or data
loss. In this paper we concentrate on node failures.

In literature, there are two predominant ways to model
churn. The first assumes churn per network by specifying a
global join and leave rate [1]. This is also very similar to
the half-life of a system as defined by Liben-Nowell et al.
[5]. Usually the global join process is modeled by a Poisson
process with rate \ in such a way that the time T7,;,, between
two join events is exponentially distributed. The problem with
this model is that the number of nodes joining the system
within a given time interval is independent of the current size
of the system. However, while a join rate of 50 peers per
second is quite significant for small networks, it might have
no noticeable influence in very large networks.

Another way to model churn is to specify a distribution
for the time a peer spends in the system (online time) or
outside the system (offline time). This way the churn rate can
be considered per node and thus generates a churn behavior,
which is comparable in networks of different size. As in [6] we
turn our main attention to scenarios where the join and failure
rate are both described per node. To be able to model the
offline time of a peer, we assume a global number of n peers,
each of which can either be online or offline. Joins are then
modeled by introducing a random variable Ty describing the
duration of the offline period of a peer. Accordingly, leaves are
modeled by a random variable 75, describing the online time
of a peer. Usually, Ty, and Ty are exponentially distributed
with mean E[T,n] and E[Tq, respectively. However, this
may not hold in realistic scenarios where distributions tend
to become more skewed [7]. Therefore, in Section Il we
design our estimator in such a way that it is independent of
the distribution of T4, and Tg.

The actual user behavior in a real system heavily depends on
the kind of service which is offered. For example, Gummadi et
al. [8] showed that P2P users behave essentially different from
web users. For a typical filesharing application, they found a
median session time of only 2.4 minutes and a 90th percentile
of 28.25 minutes for sessions during which a peer was actively
retrieving files. Their findings for large requests, however,
showed that less than 10 percent are completed in an hour, 50
percent take more than a day, and nearly 20 percent of users
are willing to wait a week for their downloads to complete.
Additionally, Bhagwan et al. [9] argue that availability is not
well-modeled by a single-parameter distribution, but instead
is at least a combination of two time-varying distributions.
This is supported by the observation that failure rates vary
significantly with both daily and weekly patterns and that the
failure rate in open systems is more than an order of magnitude
higher than in a corporate environment [10].

Finally, to be able to compare the performance of different

Ton Tox Ton Toff Ton
peer 1 e ==
" Toff Ton Toff Ton Toff
peer n —== e —
Fig. 1. Ton and Tos describe the online and offline times of the n peers.

selection strategies for overlay neighbors, Godfrey et al. [7]
present a definition of churn which reflects the global number
of changes within a time interval At:

1 |Us—1 © U
C=_—. .
At Z max{|U;_1]|, |U;|}

events 1

Thereby U; is the set of online nodes which are in use after
the ith change and & is the symmetric set difference. While
the definition is very useful in simulations which possess a
global view on the system, it cannot be used by an estimator
which can only rely on local information.

I1l1. ESTIMATING THE CHURN RATE

In this section we describe our system model in greater
detail and discuss the possibilities of how an individual peer
can estimate the churn in the system. In general, a good
estimator for the churn in the system must in some way capture
the fluctuations in the overlay structure and then deduce an
estimate for the churn rate from these observations. Thereby,
we must take into account that an individual peer does not have
any global knowledge about the state of the system but has
to rely on a very limited view of the network. In structured
P2P networks, each peer has periodic contact to a specific
number of overlay neighbors, which are stored in a list. Those
overlay neighbors are called successors in Chord, k-bucket
entries in Kademlia, or leafs in Pastry. The basic principle
of the estimator, which will be described in the following, is
to monitor the changes in this neighbor list and use them to
derive the current churn rate. The more observations a peer is
able to collect, the more accurate its estimate is going to be.
However, if it maintains too many entries in its observation
history the estimate will respond very slowly to changes in
the churn rate.

A. Obtaining Observations

As stated in Section 11, the main focus of this paper is on
churn per node. That is, we model the behavior of a peer
using two random variables 7o, and Ty which describe the
duration of an online session and an offline session as shown
in Figure 1.

It is reasonable to model the leave rate per node, since a
peer can easily observe other online peers and their online
session times. A join rate per node, however, depends on the
fact that offline peers will rejoin the overlay network at a later
point in time. While this is a very reasonable assumption for
closed groups like company networks or distributed telephone
directories (Skype), other applications like content distribution

Fig. 2.
neighbors

Peer p rejoins the network and sends its offline duration to its ¢

(BitTorrent) might have no recurring customers. For the latter
case, Ghinita et al. [11] present an estimator for the global
join rate A which is based on the average age of peers in
the neighbor list. The main problem with such estimators is
that they require an additional estimate of the current system
size [12]. Furthermore, the accuracy of the estimates heavily
depends on properly functioning neighbor update mechanisms.

In our model, we assume that each online peer p stores
pointers to ¢ well defined overlay neighbors (or contacts)
which are specified by the individual DHT protocols. To deal
with stale entries and to maintain the structure of the overlay,
peer p periodically contacts a special subset of its neighbors
every tqqp Seconds and runs an appropriate stabilization algo-
rithm. This corresponds, e.g., to bucket refreshes in Kademlia
or the stabilization with the direct successor in Chord. At
each of these stabilization instants the peer synchronizes its
neighbor list with those of its contacts. The main idea of our
estimator is to monitor the changes in the neighbor list and
thereby collect different realizations of the random variables
Ton and To. That is, a peer observes the online and offline
session times of its overlay neighbors. Thereby, obs(i) is the
value of the ith observation made by the peer and time(i) is
the time at which the observation was made. The observation
history is stored in a list which contains up to k,,.. entries.
Furthermore, a peer stores the time stamps ¢4, and ¢£; which
correspond to the time peer p itself joined or departed from the
overlay, respectively. In the following we give a more detailed
description of how a peer makes these observations and how
it deduces estimates for both the join and the leave rate.

As discussed in Section 1l the join rate is the less important
one of the two components of churn. The shorter a peer stays
offline on average (i.e. the smaller E[Ti]) the higher is the
join rate. To obtain realizations of T, a peer stores the time
tof When it last went offline. The next time it goes online it
calculates the duration of its offline session as now — to and
sends this value to its ¢ overlay neighbors. Figure 2 visualizes
this concept. Note that the information can be piggybacked on
other protocol messaged to avoid unnecessary overhead. For
example, each time a peer joins the overlay network it has to
contact its overlay neighbors to introduce itself to the network.
In Chord, a joining peer contacts its successors and possibly
its fingers, in Pastry its leaf set or neighborhood set, and in
Kademlia it refreshes its closest bucket. These messages can
be used to disseminate the observed offline time to the overlay
neighbors.

1. periodic stabilize 2. detect offline peer
. “
&
S

Fig. 3. Peer p only monitors its direct neighbor s but distributes its
observations

Since failed nodes can no longer inform their overlay
neighbors about their online duration, we are not in the
position to directly obtain realizations of T, That is why
we are looking for another passive way to collect realizations
which is still independent of the applied DHT protocol. In
a DHT system, a peer p periodically contacts at least one
neighbor s to stabilize the overlay structure (cf. Step 1 in
Figure 3). In Chord this would be the direct successor in a
clockwise direction, in Kademlia the closest peer according
to the XOR-metric. If, during one of its stabilization calls,
p notices that s has become offline (cf. Step 2 in Figure 3),
it calculates the duration of the online session of peer s as
now —t5,, where t3, is the time when peer s went online. Peer
p then distributes this observation to all its overlay neighbors
as shown in Step 3 in Figure 3. If the DHT applies some kind
of peer down alert mechanism [1], [10], the information could
also be piggybacked on the corresponding notify messages.

An obvious problem of this approach is that peer p does
not always naturally know ¢, the time when peer s went
online. This is for example true if p went online after s or
if s became the successor of p due to churn in the network.
For this reason each peer s memorizes the time t5, when it
went online and sends this information to its new predecessor
whenever it stabilizes with a new peer. To cope with the
problem of asynchronous clocks it sends its current online time
now —t5,. This way the error is in the order of magnitude of a
network transmission and thus negligible in comparison to the
online time of a peer. The advantage of this method to collect
realizations of Tp, is that it only requires regular contact to
one single neighbor.

When a peer joins the network, it first needs to obtain some
observations before it can make a meaningful estimate of the
churn rate. The problem is that the lifetime of the peer is in
the same order of magnitude as the lifetime of its overlay
neighbors. Thus, it is unlikely, that the peer is able to make
enough observations during its lifetime. Therefore, we use the
overlay network as a memory of already obtained observations
to maintain them beyond the lifetime of the peer. If a new peer
joins the overlay it downloads the current list of observations
from its direct successor. This way the observations persist in
the overlay and a new peer can already start with a useful
estimate which reflects the current churn rate in the network.

Another way to maintain the persistence of the observations
is to invest more overhead by periodically contacting a number
of peers instead of just one. Mahajan et al. [13] present an

peer
leaving

peer

periodic contact leaving

..........................

&L &L

Fig. 4. Peer p periodically monitors the changes in its overlay neighborhood

algorithm which relies on the fact that a peer continuously
observes ¢ overlay neighbors as shown in Figure 4. Such a peer
should on average observe one failure every At = % - ETon).
Thus, if a peer observes k failures in At the mean online time
of a peer can be estimated as:
BTy = c ~kAt _c (time(k:)k— time(1))

where time() is the time of the 4th observed node failure. In
addition to the periodic contact to ¢ neighbors, the algorithm
also has to struggle with the problem of obtaining enough
observations during the lifetime of the peer. A possible solu-
tion to the problem is to piggyback the current estimate on
protocol messages and to set the own estimate to the median
of the estimates received from other nodes in the overlay [10].

B. Derivation of the Churn Rate

In this section we discuss the possibilities of a peer to
deduce the current churn rate from the observations it has
made. We will use the following notation: For a random
variable X, we denote z(¢) as the probability density function,
X(t) as the cumulative density function, and E[X] as the
mean. Estimated values will be marked using a hat as in E[X],
which describes an estimate for the mean of X.

Once a peer has obtained a list of observations obs(i),i =
1,...,k of the random variables Ty, and T, it needs a
mechanism to derive an estimate of the current churn rate
based on its a priori knowledge. If it cannot make any
reasonable assumptions about the distribution of the random
variable, it has to rely on robust estimates like the empirical
mean and the empirical standard deviation.

k
BlTw] = -3 obs(i) @
i=1
1 & ~ 2
5(Ton) = | =7 2 (0bs(0) — ElTo))

To evaluate the accuracy of the estimate we can construct
the 100(1 — «) percent confidence interval for the estimated
mean of Tj, as

w(k, o) = E[Ton] + te11-g - 3(5%) 3)
I(k, o) = E[Ton] — ty-1,1-5 - 8(5%1) @

Estimated E[T},,] [s]

400 1(100,0.05)

2000 3000 4000

Sorted Estimates

0 1000 5000

Fig. 5. Sorted estimates for £ = 100 and o = 0.05

where lk—11-g is the 1 — 5 critical point of the ¢ dis-
tribution with k& — 1 degrees of freedom. Depending on the
intended purpose of the estimator, it might be crucial that the
estimator does not over- or underestimate the actual value too
often. In such a case, the upper and the lower bound of the
confidence interval can themselves be used as estimates. To
clarify this concept, we simulated an overlay network with a
mean onling time of E[Ty,] = 600s. Figure 5 plots the sorted
estimates F[T,n] of 5000 peers and the corresponding 95
percent confidence intervals based on k& = 100 observations.
While the regular estimates lie symmetrically around the
actual value, the upper bound w(k, «) tends to overestimate
and the lower bound (%, «) tends to underestimate. Thereby
the confidence level can be used to adjust the frequency at
which the upper bound underestimates and the lower bound
overestimates, respectively.

In general, the larger we set &, i.e. the more observations
a peer maintains in its history, the more accurate the estimate
is going to be. However, if & is chosen too large, it will take
longer for the estimator to react to changes in the current
churn rate. In this context, the limits of the confidence interval
can be used to autonomously derive an optimal value of k. If
the calculated confidence interval is larger than a predefined
threshold, a peer can increase & accordingly.

While the mean gives a first idea about the churn in the
system, the main purpose is to use the estimate to self-tune
the parameters of the DHT or to calculate the probability
of certain events. This usually requires knowledge of the
entire distribution or at least of some important quantiles. For
example, to calculate the probability that an overlay neighbor
will no longer be reachable at the next stabilization instant, we
need to know the probability that this contact will stay online
for less than ¢4, seconds. An unbiased point estimator for
this probability is given by Equation 5.

~

f)\: P (Ton < tstab)
1 .)
= o {Ton: Ton <torar fori=1,2,.k}[(5

The 100(1 — «) confidence interval for p can be calculated

0.07}
u(1000, 0.05)

0.061

0.05F

o
o
=

Estimated value of p

0.03 1(1000, 0.05)
0.02
0'010 200 400 600 800 1000
Sorted Estimates
Fig. 6. Sorted estimates for £ = 1000 and o = 95

using the following bounds:

_ 50— b

u(k7a) e p+ 217% . 2% (6)
_ 50— b

U(k.0) =~ 2y - LD ™

where Z1-g is the 1 — & critical point for a standard normal
random variable. In case over- or underestimating has serious
consequences for the applied application, the limits of the
confidence interval can again be used as estimates themselves.

We simulated an overlay network with t.,;, = 30s where
the online time of a peer was exponentially distributed with
mean E[Tyn] = 600s. Under these conditions, the probability
p that a specific peer goes offline before the next stabilization
instant is 4.88 percent. Figure 6 shows the sorted estimates of
p and the corresponding upper and lower bounds from 1000
peers. As hefore, the upper bound u(k,«) tends to overes-
timate and the lower bound I(k, «) tends to underestimate.
Note, that due to the denominator in Equation 5 the estimate
is discretized into steps of %

In some cases an application requires knowledge of the
entire distribution function of the online time of the peers.
If the type of distribution is known a priori, the peer can use
the corresponding Maximum Likelihood Estimator (MLE) to
estimate the corresponding parameters of the distribution. In
the most often assumed case of an exponential distribution,
the MLE is known to be the sample mean. For other typical
distributions like the log-normal distribution Log-N(y, o) the
MLE becomes more complicated, but can usually still be
calculated using the information collected by the peer.

1k
= 7 Z In (obs(i)) (8)
272
a_\ —_ Z’L 1 (h’l (OII;S()) M) (9)

However, there is always the danger of assuming an incor-
rect distribution which would lead to correspondingly distorted
results. A possibility to reduce this risk is to perform a

TOI’\
peer p

. Ton 1 Ton
neighbor 1 s

i Ton 1 Ton 1 Ton
neighbor 2 o o

3 Ton 1 Ton
neighbor ¢ i

Fig. 7. Observations made by peer p during its lifetime

hypothesis test [14] to verify that the type of distribution
is actually the assumed one and only use an MLE if the
test delivers a positive result. In general, however, the ac-
tual type of distribution is not known or a superposition of
multiple distributions. In this case, a peer has to rely on
an estimate of the quantiles [15] of the online distribution.
Let T T2, .., Tk be the k observations in the history of
a peer and let o(nl),To(ﬁ), ...,To(,ﬂ“) be the ordered statistic, in
such a way that T < 1 < ... < T, These sorted
values of Ty, can than be taken as the 05 Lo A=05
quantiles of the distribution of the online time. Quantiles for
probabilities between %2 and £=05 can be computed using
linear interpolation, while the minimum or maximum values
of Ton are assigned to quantiles for probabilities outside that
range.

The accuracy of the estimates heavily depends on k. The
more observations a peer maintains in its history, the more
accurate the estimate is going to be. However, if the overlay
network is not used as a memory for already made obser-
vations, a joining peer has to rely on its own observations.
Therefore, it can either observe one specific peer and send
the result to its ¢ overlay neighbors or directly observe ¢
peers itself. Figure 7 shows the online period of a peer p and
the ¢ overlay neighbors it observes during its lifetime. In the
figure we assume a perfect stabilization algorithm. That is, an
overlay neighbor which went offline is immediately replaced
by another overlay peer.

To analyze the expected size of the history of a peer, we
regard the random variable X which describes the number of
observations a peer makes during its lifetime. This number
corresponds to the number of leave events in Figure 7. It can
be computed as

P(X =i)= /Oooton(t) “P(X =i[Ton=1t)dt (10)

where ton(t) is the probability density function of Tg,. In
the case of exponentially distributed online times, this can be
written as

P(X =i)= /OOo pert DT

' e—c)\t dt
7.

(11

since the number of departures in a fixed interval of length ¢ is
Poisson distributed with ¢ - A. The equation can be simplified

— Simulation

“““ Analysis

0 20 40 60 80 100
Number of observations &

Expected number of observations for ¢ = 40

to
iy\i+l oo
P(X=i)="° S /ﬂ th e (DAt gy
z.i 0 (12)
o C
ECES I
To compare this theoretical approximation to practical val-
ues, we simulated an overlay network with 7y, = 300s,

tstap = 308, and ¢ = 40. The maximum size of the history
was set to k.. = 100. Figure 8 shows the probability density
function of X for both the analysis and the simulation. It can
be seen that the analysis matches the simulation very well
except for the two peaks at the left and the right of the figure.
The peak at 100 clearly results from the maximum size of the
history. That is, all probabilities for P(X > 100) are added to
P(X =100). The peak at 0 arises from the fact that while the
analysis immediately takes offline peers into account, the first
stabilization instant in the simulation occurs 30 seconds after
the peer joined the network. Thus, all peers which stay online
for less than 30 seconds, can never make an observation.

In either case the results show that a peer does not make
enough observations during its lifetime in order to derive
a meaningful estimate. Also note that the figure already
represents the best case since it illustrates the size of the
history at the end of the online session of the peer. In order to
achieve a higher accuracy, a good estimator should therefore
utilize the overlay network as a memory for already made
observations.

While so far we studied the accuracy of an estimator, it
is also interesting to analyze how fast an estimator reacts to
changes in the global churn rate. The more observations a peer
makes per time unit, the faster it can react to such changes.
This can be measured by looking at 77'¢2v¢, the time between
two observed leave events, or 77", the time between two
observed join events. In general, the collection of observations
shows a self-organizing behavior. The more churn there is in
the system, the more observations will be collected per time
unit. If a peer shares its observations with ¢ overlay neighbors,
the next observation is made as soon as one of these ¢ + 1

peers goes offline. Thus, the distribution of 7¢%v¢ can be
calculated as the minimum of ¢+ 1 forward recurrence times of
Ton- Due to the memoryless property, the forward recurrence
time of an exponentially distributed online time Ty, is also
exponentially distributed with the same parameters. In this
case the distribution of T!¢ev¢ can be calculated as shown
below.

P (T <t) =1 P (Ton >)" =1 — e (TN (13)

04

If the distribution is not known, we can still easily compute
the mean of 777" and T'¢2v¢. Each node which joins the
network calculates its own offline time and additionally sends
this observation to its ¢ contacts.

c+1

The calculation is slightly more complicated for T!¢eve
since the time when a peer actually observes that another
peer is offline differs from the actual time the node left the
overlay. Assuming that overlay neighbors are updated every
tsiap SECONS, the average error is

E [ijn] —

obs

(14)

Ls
€on = ‘;fb. (15)
Thus, the mean of T¢v¢ can be calculated as
E[Ton] + €on
E leave| _) 16
[obs] C+1 ()

Obviously, the more overlay neighbors a peer maintains, the
more observations it receives per time unit. However, more
neighbors also correspond to more overhead in terms of
bandwidth. This trade-off will be discussed in greater detail
in Section IV. Also note that E[T7.."] and E[T¢2"] can be
measured by an online peer and could therefore be used as
estimates for E[Tys] and E[Ton|, respectively.

The above considerations can be used to approximate the
expected time it takes the estimator to respond to a global
change of the churn rate. When the mean online time of the
peers changes from E,q[Ton] t0 Epew[Ton], We approximate
the expected response time E[R] by the time needed to collect
kmaz NEW Observations.

BIR) = ButalTon] + 2222 - (Bpea{Ton] +)
Figure 9 compares the analytical response time to that
obtained from a simulation run. In the simulation we set
kmaz = 100, ¢ = 10, tsqp = 30s and changed E[To
from 10min to 5min to 15min and back to 10min after
8.33h, 16.66h, and 25h of simulation time, respectively. The
simulated curve shows the mean of the estimated E/[To,] values
of all peers, which were online at the corresponding time. The
error bars represent the interquartile range, i.e. the difference
between the third and first quartiles, as a measure of statistical
dispersion. It can be seen that the estimator is able to capture
the changes in the churn rate and that the time it takes to adjust
to the new value complies with the analysis. Note that, due to

(17

181
161
5
E 147
& 12f
S
g 10 -
«©
£
7 8
w
6F —Simulation
- - Analysis
4t
5 10 15 20 25 30
Elapsed simulation time [h]
Fig. 9. Response time for ¢ = 10 and kynq. = 100

the stabilization period of 30 seconds, the estimated values lie
€on = 155 above the actual value.

The response time can be improved by maintaining more
overlay neighbors or by giving less weight to older values in
the history. This can, e.g., be achieved by using an exponen-
tial weighted moving average [16], which applies weighting
factors which decrease exponentially.

Ey[Ton] = o~ 0bs(i) + (1 — @) - E1[Ton)

Thereby, the smoothing factor o determines the weight given
to the latest observation.

IV. NUMERICAL RESULTS

In this section we will evaluate the proposed estimator using
simulation results. The section is divided into three parts.
First, we will provide a proof of concept (Section IV-A) and
show the accuracy of our proposed method (IV-B). Beside
accuracy one of the desired features of our proposal is a high
responsiveness towards changes in the current churn rate. This
will be discussed in Section IV-C. Finally, we will elaborate
on some issues dealing with the practical implementation of
the estimator in Section 1V-D.

In the following, unless stated otherwise, we will always
consider that the online and offline times of the users are
exponentially distributed with mean E[Ty,] and E[Tyy|, re-
spectively. The default stabilization interval is ¢4, = 30s and
the size of neighbor list is ¢ = 20. We will further assume that
there are 40000 initial peers, resulting in an average of 20000
online peers at a time. Although our estimator yields results for
both online and offline time, we will concentrate on estimating
the online time Tg,, since this is usually a more important
parameter for the system performance. The estimation of T
can be calculated in an analogous way.

A. Proof of Concept

The main purpose of this section is to show that the
theoretic concept of the proposed estimator as described in
Section Il does work equally well in practice. We focus on
Chord since it is the currently most studied DHT network

900

o Estimator (iot)

Estimated E[T},,] [s]

* + Estimator (avg)

200 400 600 800
Estimate number

400O 1000

Fig. 10. Snapshot of mean online time obtained from avg and iot estimation

architecture. In order to support the evaluations, we will pro-
vide additional analytical calculations verified by simulations.
The simulations are not conducted modeling all the features
of the Chord network in detail, but are simplified by only
taking into account such properties which are important to
our estimator. That is, we mainly disregard all mechanisms
dealing with document management or replication. To model
the stabilization algorithm, a peer synchronizes its neighbor
list every ¢4, = 30s with its direct successor. When a peer
notices that another peer is offline, it notifies the peers in its
neighbor list, piggybacking the observed online time in these
messages. We furthermore consider a symmetric neighbor list,
i.e. the number of peers in the successor list is the same as
that of the predecessor list. This improves the stability of the
Chord overlay and provides a better comparability of the result
to symmetric overlays like Kademlia.

Figure 10 plots the estimated values for E[Tq,] obtained by
two different estimation methods. The green crosses, denoted
by avg, show the mean of the observed values as given
by Equation 1. The red circles, denoted by iot, are based
on the mean time between two observations according to
Equation 16. The figure was created by picking 900 random
peers leaving the overlay and calculating their estimates based
on both estimation methods. We can see that both methods
perform quite well, as the estimated values clump around the
actual average Ton of 600s. In general the avg method always
provides a robust estimate. The iot method, however, heavily
depends on the implementation specifics of the stabilization
routine. In our simulation experiments we do assume an
idealized stabilization routine, neglecting packet loss and other
(network) errors. In a real implementation the neighbor list can
still contain wrong or offline entries after stabilization. In such
a case the updates may be sent to less than ¢ contacts. If a
peer, however, assumes that ¢ other peers contribute with their
estimated values, it will receive too few estimates and heavily
underestimate the actual churn rate using the iot method. Thus,
while in theory it can be considered as a good method, it is
in fact not very suitable in practice.

In practice too high or too low estimates might have critical

1000

. Upper Bound

900 " re=
800pis% 5 23
T00R 2 et

600

Estimated E[T),,] [s]

ks
500 4"

o

o

e
40
l-+ +H+

3000 200 400 600 800

Estimate number

1000

Fig. 11. Estimates of upper and lower 99% confidence levels
900
—— Mean estimated E[T,,,,] value
— 8001+
[I PSR Actual E[T,,] value
: "l
E T
£ M
=}
£ 5001
£
* 400
3000 5‘0 160 150 260
Number of observations in history
Fig. 12. Influence of the history size k on the estimation accuracy

consequences in terms of performance or even functionality.
In such a case it should be avoided that the estimator un-
derestimates or overestimates the actual churn rate. This can
be achieved by using the upper or lower bound of a specified
confidence level instead of the estimated value itself. Figure 11
shows the upper and lower bounds of the 99% confidence
interval for the mean according to Equation 3 and Equation 4,
respectively. As expected, the upper bound overestimates the
actual value, while the lower bound underestimates it. The
frequency at which the upper bound underestimates or the
lower bound overestimates the actual value can be influenced
by the confidence level. The higher the confidence level is
chosen, the smaller is the probability for this to happen at the
cost of more innacurate values.

B. Accuracy of the Estimator

In this section we evaluate how accurate the estimated re-
sults are by investigating the influence of different parameters.
The key parameter we focus on is the size & of the observation
history, i.e., the number of samples that are used to obtain the
estimate.

In order to show the influence of k& on the accuracy of
the estimate, we perform several simulation runs in which
we vary the size k of the history and for each k& examine

300

++0.975 quantile
200} +++-0.025 quantile

100

..

-100f —— 20 neighbors {1

Deviation from actual value in percent
Response time in multiples of £[T,,,]

— 40 neighbors

200y 20 40 60 80 100
Number of observations &

Fig. 13. Trade-off between accuracy and responsiveness

the estimated F[Tyn] values from 10000 peers. The mean of
these estimated values is shown in Figure 12. The error bars in
the figure represent the sampled standard deviation obtained
from the 10000 estimates. First of all, we can recognize that
the method is robust for estimating the mean, as the mean
estimated E[T,n) value corresponds to the actual mean value of
600s. Furthermore, increasing the history size greatly improves
the accuracy of the estimate in terms of a smaller standard
deviation. The accuracy improves nearly exponentially with
k. However, increasing the history size to a too large value
above k£ = 100 does not significantly improve the accuracy
while it will lead to a slower responsiveness of the estimator
as shown in the next paragraph. Therefore, in the following,
we use a history size of k£ = 100 unless stated otherwise.

In the next step we take a closer look at the trade-off be-
tween accuracy and responsiveness in dependence of the size
of the history. To express accuracy, we regard the deviation
from the actual value in percent. In particular, we consider how
much the 97.5% and 2.5% quantiles of the estimated values
based on k observations differ from the actual value in percent.
This is plotted as the dotted blue curves in Figure 13 using
the left y-axis. As in the previous figure, it can be recognized
that an increase in the history size results in more accurate
estimates. The quantiles confirm the exponential dependence
on k.

An increased accuracy, however, comes at the drawback of
reducing the responsiveness of the estimator. Responsiveness
is defined as the time it takes to collect % fresh results when
there is a change in the global churn rate. It is expressed in
multiples of E[T,n] and approximated by Equation 17. The
responsiveness increases linearly with £ as can be seen in the
green solid curves of Figure 13 using the y-axis on the right.
The slope of the curve is determined by the number of overlay
neighbors. The more neighbors there are, the more results are
obtained per time unit and the faster the estimator reacts to the
change in the churn rate. The study shows that depending on
the application requirements, a trade-off can be made between
a higher accuracy and a faster responsiveness by changing the
number of considered observations.

Ton] = 900s
)] = 600s
T/ = 300s

120 - - Analysi

—><—[

Inter-observation-time [s]
(o]
o

Seq,

AAAAAAAAAAAAAAAR AR Tk

10 20 30 40 50
Number of overlay contacts

Fig. 14. Responsiveness to different churn rates

C. Responsiveness of the Estimator

In the previous section, we have already briefly discussed
the issue of responsiveness. It is a measure for the time it takes
our estimator to react to changes of the global churn rate of the
network. It mainly depends on the number of overlay contacts
which share their observations, but is also influenced by the
absolute churn rate itself. The higher the churn rate is, the
more results can be collected within the same time period.

In order to provide a more comprehensive study of the
responsiveness of the estimator and to validate our analytical
approximation in Equation 17, we perform simulation runs
with different churn rates and measure the time between
two successive observations. Obviously, the smaller this inter-
observation time is, the faster our method will react to changes
of the churn rate. This is shown in Figure 14. For different
churn rates of E[Ty,] = 300s, 600s, and 900s, the inter-
observation time is depicted as a function of the number of
overlay contacts. The dashed lines are the results obtained
by the approximation, cf. Equation 17. It can be seen that the
inter-observation time decreases exponentially and that the an-
alytical curves match well with those obtained by simulations.
However, we can also recognize that a greater number than
20 neighbors is not justified due to the small improvement in
responsiveness and the higher overhead in maintaining those
neighbors. Smaller values of E[Tqn), i.e. higher churn rates,
result in smaller values of the inter-observation time. However,
the number of overlay contacts has an even greater influence
on the inter-observation time. Note, that the responsiveness
also depends on the quality of the stabilization algorithm.
If a simple algorithm is used, the neighbor lists might be
inaccurate, which in turn results in a loss of updates and thus
a higher inter-observation time.

To show how the inter-observation time translates into the
actual response time and how the estimator behaves during
these reaction phases, we simulated a network where the mean
online time of all peers was globally changed from the initial
value of 300s to 900s after a simulation time of 250 minutes. In
Figure 15 each data point shows the average of the estimated
E[Ton) values of all online peers at the same time instant.

¢ =10, 20, 30, 40

Estimated E[T,,,] [min]

250 300 350 400
Elapsed simulation time [min]

Fig. 15. Reaction to change in global churn rate

The figure visualizes that the estimates react differently to the
change of the global churn rate. Again the more neighbors
there are, the faster the estimator approaches the new churn
rate. While the increase is nearly linear for ¢ = 10, there is not
much difference between the curves for ¢ = 20, 30, and 40
neighbors. Thus, using a too large number of overlay contacts
is not justified due to the additional overhead. Using 20
overlay neighbors, as e.g. suggested in Kademlia, is therefore
a reasonable choice.

D. Practicability and Implementation Aspects

So far, we studied the performance of the approach based
on theoretical issues such as accuracy and responsiveness.
However, in real implementations, other aspects will be even
more important. In practice, the estimate of the churn rate will
be used to self-adaptively tune maintenance algorithms of the
P2P network, e.g. the stabilization of the overlay structure and
the control of the replication of stored documents. Therefore,
it would be desirable that all peers obtain equal estimate
values in order to derive similar input parameters to these
algorithms. Since our proposed estimation method is entirely
distributed and each peer calculates its own estimate from local
measurements, different peers also tend to obtain different
estimation results. However, most maintenance algorithms are
performed between direct overlay neighbors of the DHT.

1) Correlation Between Estimates of Overlay Neighbors:
Since these direct overlay neighbors also exchange their mea-
sured observations, their churn estimates derived from this
data are expected to be highly correlated. To quantify the
degree of this correlation, we took a global snapshot during
the simulation and had a closer look at the estimates of 5000
consecutive peers on the Chord ring. We then investigated
the correlation between these peers by applying methods from
time series analysis. Figure 16 depicts the autocorrelation over
the number of neighbors. The z-axis represents the different
lags 2, which in our case corresponds to the x-th overlay
neighbor. If z is positive, this corresponds to the z-th successor
on the ring, whereas a negative value represents the |z|-th
predecessor. The figure shows that the estimates of a peer
are indeed highly correlated among neighboring peers. The

0.8 ¢ =10, 20, 30, 40
0.6}

0.4f

Autocorrelation

30 -20 -10 0 10 20 30 40 50
Neighbor

Fig. 16. Autocorrelation of estimates over neighboring peers

160 "
+ Quantile (emp)
140 . +
=
<L
|
>
o
el
Q
o
k=l
2
<
£
k7
it
0 Quantile (MLE)

0 200 400 600 800
Estimate number

Fig. 17. Comparison of 0.05 quantile from MLE and empirical estimate

curves for the different numbers ¢ of overlay neighbors among
which the measurement values are exchanged show that the
correlation extends to at least ¢ neighbors in both directions of
the ring. Note that due to our symmetric neighbor lists a value
of ¢ = 10 overlay neighbors means that the peer maintains 5
neighbors in both directions of the ring.

2) Influence of Assuming a Wrong Distribution: In practice,
maintenance algorithms usually require quantiles instead of
just average values of the churn rate. The following study
considers simulation results of a network using a stabilization
interval of 10s and an exponentially distributed 75, with mean
E[Ton] = 900s. We now compare the estimation of the 0.05
quantile of the online time of a peer obtained by two different
methods. In the first method we calculate the maximum
likelihood estimator (MLE) of the exponential distribution and
then take the 0.05 quantile. In the second method we simply
use the empirical 0.05 quantile based on the 100 observations
in the history of the peer. The exact value lies at 46s. In
Figure 17 we can see that the MLE clearly outperforms the
empirical estimate as the values lie much closer around the
exact value. Obviously, this good result is due to the fact that
the actual online time is really exponentially distributed and
the MLE method thus uses a perfect assumption.

In real networks, however, this assumption is rarely valid.

160
1401
}__‘I 1207
8
& 100f
3
g 8ok lognormal MLE
z
©
.E 60 empirical
I I
40 exponential MLE
20
0 1000 2000 3000 4000 5000
Sorted Estimates
Fig. 18. Estimation based on empirical quantile and MLEs for exponential

and lognormal dsitributions

i | [
g)|\ T[T |

Number of observations in history

Fig. 19. Influence of history size on choice of stabilization interval

Therefore, we are interested in the results in case the un-
derlying distribution is not known or a wrong assumption
about the distribution is made. This is examined in another
simulation run with the same parameters as before. This time
the quantile is calculated using three different approaches: the
empirical quantile and the quantiles based on the MLEs for
the exponential and lognormal distributions. Figure 18 shows
the estimates of the quantiles with the three methods sorted
by size. Again the exponential MLE achieves the best results
since the underlying assumption of an exponential distribution
is correct. The lognormal MLE tries to estimate the parameters
of a lognormal distribution while the actual distribution is
exponential. It can be seen that this false assumption leads
to a significant overestimation of the actual value. Therefore,
when the actual distribution is unknown, which is usually the
case in a real network, any assumption must be made with
care. The validity of the underlying assumption can be tested
by performing a hypothesis test where the appropriate MLE
will only be used when the test is positive. In case the test is
negative the empirical estimate should be preferred.

3) Sdf-Tuning the Stabilization Interval: The main purpose
of the proposed estimator is expected to be the self-tuning

of the stabilization of the overlay structure. In practice, the
stabilization interval, i.e. the frequency at which overlay
neighbors are contacted to update the neighbor lists, is a
fixed value. Thus, when there is no churn in the network this
results in unnecessary overhead. However, when there is a high
churn rate, the stabilization overhead may not be sufficient to
maintain the stability of the overlay. For self-adaptive selection
of the ¢4, Setting, a peer should therefore estimate the current
churn rate and use this estimate to derive the probability that
all neighbors will be offline before the next stabilization call.
Such a scenario would result in the entire overlay structure
becoming instable. For example, given a mean online time of
E[Ton] = 600s, a peer needs to stabilize at least every 300s
in order to maintain the overlay stability with a probability
of 99.99%. In Figure 19, the stabilization interval ¢4, as
derived based on an estimated churn rate, is shown over the
size of the observation history. As before in Figure 12, the
figure includes the mean and standard deviation. It can be
seen that the standard deviation decreases exponentially and
that a history size of 100 again results in a good value for
practical purposes.

V. CONCLUSION

Structured P2P networks apply different maintenance mech-
anisms to guarantee the stability of the overlay network and
the redundancy of stored documents. Ideally, the parameters of
these mechanisms should be adapted to the current churn rate.
The more churn there is in the system, the more overhead
is needed to keep the system stable. As a first step toward
a self-organizing overlay network, we introduced a method
which enables a peer to estimate the current churn rate in the
system. The estimate can then be used to autonomically adapt
the overhead.

The estimator is based on the changes a peer observes in
its list of overlay neighbors. The more observations a peer
makes, the better is the quality of its estimate. Therefore, a
peer shares observed events with its direct overlay neighbors
by piggybacking the corresponding information in regular
protocol messages. Both analytical and simulation results show
that the estimator is able to capture the current churn rate.
The accuracy, the required overhead, and the responsiveness
to changes can be adjusted by the number of observations
considered in the estimation process and by the number of
overlay neighbors which share the results. We investigated
the corresponding trade-offs and deduced values which are
suitable for practical purposes. For applications, which are
sensitive to an overestimation or underestimation of the actual
value, we showed how to use the upper and lower bounds of
a confidence interval as estimates themselves.

In future work, we intend to use the estimator to enable a
peer to self-adapt the number of overlay neighbors and the
number of replicas to the current churn rate. This way, the
functionality of the overlay network will still be guaranteed in
times of high churn while the maintenance overhead will be
reduced in times of no churn.

ACKNOWLEDGMENTS

The authors would like to thank Dirk Staehle and Simon
Oechsner for their many ideas, the much appreciated input,
and the insightful discussions during the course of this work.

REFERENCES

[1] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling Churn in
a DHT,” in 2004 USENIX Annual Technical Conference, (Boston, MA),
June 2004.

[2] 1. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-peer Lookup Service for Internet Applica-
tions,” in ACM SIGCOMM 2001, (San Diego, CA), August 2001.

[3] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-
tion system based on the xor metric,” in IPTPS 2002, (MIT Faculty
Club, Cambridge, MA, USA), March 2002.

[4] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems,” in [FIP/ACM
International Conference on Distributed Systems Platforms (Middle-
ware), (Heidelberg, Germany), pp. 329-350, November 2001.

[5] D. Liben-Nowell, H. Balakrishnan, and D. Karger, “Analysis of the
Evolution of PeertoPeer Systems,” in ACM PODC, (Monterey, CA,
USA), July 2002.

[6] S. Krishnamurthy, S. EI-Ansary, E. Aurell, and S. Haridi, “A statistical
theory of chord under churn,” in The 4th Annual International \Workshop
on Peer-To-Peer Systems (IPTPS05), (Ithaca, NY, USA), February 2005.

[7] P.B. Godfrey, S. Shenker, and I. Stoica, “Minimizing churn in distributed
systems,” in Proc. of ACM SSGCOMM, (Pisa, Italy), September 2006.

[8] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and
J. Zahorjan, “Measurement, modeling, and analysis of a peer-to-peer file-
sharing workload,” in SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, (New York, NY, USA),
pp. 314-329, ACM Press, 2003.

[9] R. Bhagwan, S. Savage, and G. Voelker, “Understanding availability,” in

Proceedings of the 2nd International Workshop on Peer-to-Peer Systems

(IPTPS’03), 2003.

M. Castro, M. Costa, and A. Rowstron, “Performance and dependability

of structured peer-to-peer overlays,” in DSN '04: Proceedings of the

2004 International Conference on Dependable Systems and Networks

(DSN'04), (Washington, DC, USA), p. 9, IEEE Computer Society, 2004.

G. Ghinita and Y. Teo, “An adaptive stabilization framework for

distributed hash tables,” in Proceedings of 21st International Parallel

& Distributed Processing Symposium, |[EEE Computer Society Press,

(Rhodes Island, Greece), April 2006.

[12] A. Binzenhofer, D. Staehle, and R. Henjes, “On the Fly Estimation of

the Peer Population in a Chord-based P2P System,” in 19th International

Teletraffic Congress (ITC19), (Beijing, China), September 2005.

R. Mahajan, M. Castro, and A. Rowstron, “Controlling the cost of

reliability in peer-to-peer overlays,” in IPTPS 2003, (Berkeley, CA,

USA), February 2003.

M. A. Stephens, “Edf statistics for goodness of fit and some com-

parisons,” in Journal of the American Statistical Association, vol. 69,

pp. 730-739, 1974.

E. J. Chen and W. D. Kelton, “Quantile and histogram estimation,” in

WSC '01: Proceedings of the 33nd conference on Winter simulation,

(Washington, DC, USA), pp. 451-459, IEEE Computer Society, 2001.

[16] J. Kurose and K. Ross, Computer Networking A Top-Down Approach

Featuring the Internet. Addison Wesley Longman Inc., 2005.

[10]

[11]

[13]

[14]

[15]

