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1 Introduction

In recent years, the way in which communication networks are structured and
managed has changed radically. With the �nancial pressures on network op-
erators and the ever-changing demands on the network, many people want
networks to become more agile, adaptable, and �exible to stand out from to-
day’s �nancially hard-to-maintain, rigid, and ossi�ed legacy networks. This is
caused by the rise of data centers with excessive virtualization usage like Ama-
zon AWS, Google Cloud Computing, or Microsoft Azure. This requires the abil-
ity to quickly provision network connections that helps to meet increased net-
work demands on the �y and save costs through greater e�ciency. The funda-
mental idea, originating back to Martin Casado from Stanford University, is to
enforce the decoupling of the foremost strictly connected data and control plane
of switching elements. The data plane merely transports the data and is now in-
dependent of the control functions in the control plane, which is called Software-
de�ned Networking (SDN). SDN is characterized by its bene�ts, namely the in-
creased �exibility in con�guration and management due to the softwarization
of the control plane, the potential for resource usage optimization by its central-
ity of the control plane and the advanced monitoring features, and the vendor
independence by design.

With the introduction of SDN in the late 2000s, not only a new research �eld
has been created, but a paradigm shift was initiated in the broad �eld of net-
working. The programmable network control by SDN is a big step, but also a
stumbling block for many of the established network operators and vendors. As
with any new technology the question about the maturity and the production-
readiness of it arises. Therefore, this thesis picks speci�c features of SDN and
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1 Introduction

analyzes its performance, reliability, and availability in scenarios that can be
expected in production deployments.

1.1 Motivation

SDN is a new networking paradigm that overcomes various drawbacks of cur-
rent communication networks. Unlike in earlier, rigid deployments of traditional
networking deployments, the control and data plane of switching devices is de-
coupled and all control functions are centralized within the network controller.
With this simple principle, SDN allows for the �ne-granular control over packet
forwarding and packet processing. Additionally, new networking scenarios are
possible, facilitated by the introduction of increased control capabilities, dy-
namic modi�cation of networking parameters, or the control of tra�c �ows
on di�erent granularities. Further, the applicability of these features is not re-
stricted to a speci�c type of network, but can be used in access networks, data
center networks, and wide area networks [8–10]. This versatility o�ers both
opportunities and challenges in terms of performance and implementation. The
network operators must balance these points to establish a high performance
operational network.

The question in general is how tra�c in SDN networks a�ects the SDN envi-
ronment with controller, control plane, data plane, and switch. A performance
analysis of the SDN technology is thus essential if the operator wants to under-
stand the network in control and data plane, and yet, does not want to miss the
improvements and advantages of the new technology.

Figure 1.1 shows the schematic architecture of SDN. On the bottom we see the
infrastructure layer, where network devices, both hard- and software are found.
In general, these devices are rather dumb and are only able to execute actions
de�ned in their ruleset, the so-called �ow table.

These tables are programmed via the Southbound API by the control layer
of the SDN architecture: the so-called SDN controller. This piece of software,
depicted in the center of the schematic, is dynamically programmable and cus-
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Figure 1.1: SDN architecture.

tomizable to the requirements of the network. Many of today’s SDN controllers
o�er a core module with the basic functionality such as a protocol agnostic con-
nectivity to network devices, creation of rules, and an API. To enhance the fea-
tures of the controllers, additional modules are available. Examples are a South-
bound API module implementing the OpenFlow protocol or a controller module
replicating the Layer-2 switch functionality. In order to scale with the size of
the network, many SDN controllers allow to physically distribute the controller
whilst still maintaining a logically centralized view of the network.

In general, �ow processing with SDN works like this: As soon as a packet
enters a switching device, it is checked if a matching rule is installed in its rout-
ing table, the so-called �ow table. If a match is found, the packet is processed
following the associated actions. If no match is found, signaling tra�c is cre-
ated by forwarding the packet to the controller, and, thus, informing it about
a table-miss. The controller now calculates the appropriate action for this �ow
and submits a new rule for this match back to the device. The device now installs
that rule into its �ow table and follows the actions of that �ow for all further
packets matching this �ow.
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1 Introduction

Since the switches are only forwarding elements without any decision logic,
they can route network packets e�ciently but require the interaction with a con-
troller that calculates the instructions in the form of rules. This switch-controller
interaction is henceforth called signaling. The central controller must pay atten-
tion to the load by signaling in the network, so as not to interfere with the net-
work performance due to control plane congestion. Scalability issues also foster
the investigation of the SDN signaling load for productive deployments because
they are a key metric for the performance of an SDN-enabled network. More
speci�cally, the rate of signaling messages at various scenarios and stages of de-
velopment is of interest for estimating performance. This applies both to small
scenarios in which measurements can be taken, as well as to large, productive
scenarios in which a large number of network �ows have to be considered in
order to explore the performance limits of an SDN deployment.

A second factor for the performance is the switch itself. As current generation
network devices often lack the space to save an in�nite amount of �ow rules on
the device, a so called time-out is introduced per stored �ow. If a �ow is inac-
tive for a de�ned time, the �ow is automatically deleted from the device, and,
thus, frees table space. A new packet for a �ow resets this timer, �ows without
a match in the table require further processing by the controller, thus creating
additional signaling and load on the controller side and increasing the overall
latency of that �ow on the data perspective. This �ow time-out is determined
by the controller and has a huge in�uence on the signaling load between con-
troller and device and the table occupancy on side of the networking device.
Consequently, it is important to consider which rules should be stored in the
�ow table so that the performance of the SDN deployment cannot be degraded.
Any table miss that causes additional signaling will a�ect performance.

Given a speci�c tra�c mix, the choice of the time-out period a�ects the trade-
o� between signaling rate and table occupancy. On the one hand, small time-
outs might result in unnecessary signaling tra�c, control plane overload, and
long response times for control actions [11]. On the other hand, long time-
outs might cause a high �ow table occupancy and table over�ows. As a result,
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1.1 Motivation

providers have to adjust this parameter to enable a smooth and e�cient net-
work operation. The overall complexity of this problem including uncertainty
of tra�c mix and application characteristics does not allow a one-time opti-
mization of the time-out period. Instead, the relevant system parameters have
to be monitored in regular intervals and the time-out parameter has to be ad-
justed if necessary. To derive viable parameter settings in a timely manner, an
appropriate abstraction is required.

For the commercial usage of a communication network the reliability and
availability of an SDN deployment is of great concern to the operators. In par-
ticular, questions about fault detection and fault localization mechanisms of the
new technology are important, since today, networks with a short update cycle
and constant maintenance and modi�cations, need to provide techniques and
mechanisms to ensure a guaranteed network operation and identify failures.
Through the centralized nature of SDN, a big new point of failure has been intro-
duced, namely the SDN controller, as it orchestrates the whole network. Next,
the �exibility and availability of a central global knowledge o�ers many new
possibilities and opportunities. In order to react in the most e�cient manner,
fast failure detection mechanisms are required.

From a technical point of view, this means that SDN is expected to provide
measures and arrangements to deal with failures. Current state-of-the-art SDN
controllers mostly build up on the limited detection capabilities of the south-
bound SDN protocol OpenFlow for their fast failure mechanisms. In SDN, after
the switching device has detected a failure, a noti�cation is sent to the controller,
which, in turn, reacts according to its programming, i.e. if a link down event
is detected by a switch, it reports that to the controller, which responds with
new routing information for a�ected �ows. This message contains the a�ected
switch, the a�ected port of that switch and the new port status (link down,
blocked or live).

Additionally, SDN o�ers capabilities for �ow monitoring. For example, each
OpenFlow-enabled switch o�ers counters, which store tra�c information in
di�erent granularity, e.g. per-table, per-�ow, and per-port (for example: byte/-
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1 Introduction

packet count per �ow). The controller is able to query this data, and, if pro-
grammed to do so, react on them. Although o�ering basic statistics, these op-
tions also have several limitations. Frequent polling has to be used in order to
monitor the dynamics of a �ow. Moreover, in general, polling of statistics in-
duces load on components, for example, a higher CPU load on the controller or
a higher signaling tra�c due to statistic packets. Therefore, these mechanisms
are insu�cient for large-scale, carrier-grade SDN deployments.

ONOS is one of the currently most common SDN controllers on the market.
Its developers, the ON.Lab, present it as "A new carrier-grade SDN network oper-
ating system designed for high availability, performance, scale-out" [12]. In order
to keep that bold statement, ONOS currently uses LLDP (Link Layer Discov-
ery Protocol) packets to detect broken links. A typical questions that is often
raised is whether the "�ve nines" of availability can be ensured. This expres-
sion describes the percentage an o�ered service is available throughout a year,
in this case only a total downtime of 5.26 minutes is allowed. In order to com-
ply with this, additional conditions are placed on the error detection. In order
to limit the downtime, errors must be detected very quickly. This is currently
one of the biggest challenges in SDN to enable the technology to be used in
production environments. In the end, SDN currently lacks bot a speci�c and a
fast error detection. Therefore, this monograph addresses the high availability
claims of ONOS by analyzing the failure detection mechanism of the controller
for challenging conditions in the data plane by using the means of mathematical
analysis and measurements in a testbed.

Despite the paradigm change and all of its features that came with the intro-
duction of SDN old problems still persist. Hence, another step in the evolution
of networking was paramount. P4, short for Programming Protocol-Independent
Packet Processors, attempts to provide a programmable interface that allows for
�exible mechanisms that can parse packets and match against arbitrary �elds at
line rate. Instead of letting the underlying switching hardware tell the operator
what it is capable to do and how, the operator now is able, thanks to a top-down
design, to tell the hardware how it should behave and how it should switch pack-
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ets, even after they are deployed. Furthermore, it is one of the prioritized goals
to �nally enable target-independence, both for hardware and software switches
alike.

Many big data center operators have joined the P4 community and, therefore,
the question whether this new technology is ready for production deployment
is raised. The adding of tags, e.g. VLAN tags in order to enforce privacy and
data security, is a very common task that is required in today’s data centers
and possible to realize with P4. This thesis runs an analysis of the processing
performance of P4-capable hardware with varying con�gurations by launching
measurements in a testbed.

All of these aspects and facets of SDN contribute to the production-readiness
of this new technology. But with any new technology the questions arises
whether new challenges are created, too. In general, in order to analyze the per-
formance of a system generally three options exists: measurements in a testbed,
simulation, and abstraction through the means of a model. For a detailed anal-
ysis of speci�c issues measurements in a small testbed are the tool of choice.
Here, each environment parameter can be controlled and the e�ects of each
con�guration change and load on the system can be evaluated in a thorough
investigation. For bigger deployments it is more feasible to switch to the means
of simulation, where certain features can be abstracted in order to allow for a
better manageability of the whole system under investigation. Depending on
the requirements of the simulation its abstraction level can vary between the
smallest detail and a very abstract representation of the system.

But, eventually, with scaling out the size of the network, the practicability,
manageability, and feasibility both in time and money becomes disproportion-
ately. Therefore, the means of an abstract model are the best option. From the
perspective of performance analysis, analytical models are important to estimate
and assess the performance of the control and data plane. In the end, they give
guiding paradigms for managing, structuring, and deploying an SDN-enabled
network. Closely linked to this, analytical models for SDN also enable a broader,
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1 Introduction

more holistic understanding of the factors that in�uence the performance of
SDN networks.

1.2 Scientific Contribution

This thesis covers aspects that contribute to the production-readiness of SDN
deployments. The �rst SDN topic is the performance impact of application traf-
�c in the data plane on the control plane. Second, reliability and availability
concerns of SDN deployments are exemplary analyzed by evaluating the detec-
tion performance of a common SDN controller. Thirdly, the performance of P4, a
technology that enhances SDN, or better its impact of certain control operations
on the processing performance is evaluated.

Figure 1.2: Topics discussed and methodology used in this thesis.

Figure 1.2 shows the various topics and methods presented in this thesis to-
gether with their scienti�c research publications. The y-axis shows the chapters
and their focus of this monograph, the x-axis the used methodologies. Overall,
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in order to cover a large spectrum of the covered topics, multiple methodolo-
gies are used which can be classi�ed into mathematical analysis, simulations,
and measurements and implementation. The respective focuses of the corre-
sponding chapters are SDN performance evaluation, SDN availability, and P4
performance.

In the �rst part, the focus lies on the analysis of the impact of data plane
tra�c and the so called �ow table time-out on the overall performance of SDN
deployments. As, in general, networking devices do not have unlimited space
for �ow rules, the entries are usually provided with a time-out value describing
the time after which inactive �ows are automatically deleted from the table.
As �ows without a �ow entry require the interaction with a controller which
increases the processing latency and generates load on the controller, a trade-o�
between table occupancy and signaling load between controller and switch has
to be found.

We create a model that allows us to calculate the e�ects of data plane traf-
�c parameters and the �ow table time-out with respect to the performance of
an SDN deployment. At �rst, we use this model to understand the implications
of these parameters for the case of a single TCP �ow. Secondly, by adapting
an M/GI/∞ queuing system, we extend this model to comprehend the relation-
ships when multiple �ows are in the system. Afterwards, the presented models
are evaluated by a discrete event simulation and measurements in a testbed. The
simulation focuses on package arrivals for each of the applications under inves-
tigation. The measurements, in turn, use a testbed that consists of one single
SDN-enabled switch with a varying number of connected users. Connected to
that switch is an SDN controller. As we are able to control the tra�c param-
eters of the communication between the users in the data plane and the used
time-outs in the switch, we are able to verify our model results by measuring
the signaling tra�c and the table occupancy.

In the second part, the availability of SDN deployments, more speci�c on the
detection capabilities of one common open source SDN controller is of inter-
est for the estimation whether SDN is ready for production environments. We
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1 Introduction

use the means of a stochastic analysis the detection mechanism of the ONOS
controller in order to understand the relationship between the various con�g-
uration parameters and the detection time for the case of challenging network
conditions, such as packet loss or jitter in the data plane. In order to verify the
results measurements in a testbed are conducted.

This testbed consists of multiple switches arrange to a ring topology. Each of
the switches is connected to one of two controller nodes that form a logically
centralized, but physically distributed controller cluster. In this testbed we are
able to control the network parameters, i.e. the data plane packet loss or jitter.
Additionally, by measuring the controller-switch messages, we are able to ver-
ify our theoretical analysis of the probing mechanism. After having identi�ed
the shortcomings of the vanilla probing mechanism of ONOS, a more advanced
active probing mechanism is designed, implemented and evaluated by measure-
ments. Furthermore, as ever-changing network conditions pose a threat, a self-
optimization feature is added which automatically optimized the probing pro-
cess for the current network conditions.

Finally, one of the latest �ndings in the evolution of SDN is P4. Despite the
bene�ts of the whole SDN development, still certain draw-backs exist. One of
the more important shortcomings is the limitations of a deployment that comes
with the choice of the switching hardware. Still, it is the usual case that the
capabilities of the hardware determine the features that are usable in production
environments, forcing the network manager into a so called bottom-up design.
If a new protocol is introduced and the switch does not support processing the
new header �elds network administrators have no choice but to acquire new
hardware or to pass on that protocol.

Here, P4 tries to change the approach by allowing for a top-down design. Now
the network administrator is able to change the processing of packets by pro-
grams that determine the processing behavior of the switch. As this and other
features sound very promising it is crucial to understand the possible perfor-
mance implications of P4. Therefore, we conduct measurements in a testbed
consisting of tra�c generator and P4 hardware. While changing certain header
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�elds of incoming tra�c, we measure the processing time within the hardware
and attempt to understand the impact of the number and scale of the instruc-
tions on the overall performance.

1.3 Outline of the Thesis

After this introductory chapter the three mentioned topics are addressed in sep-
arate chapters. For each chapter a short introduction to the tackled challenge is
given. In order to help understand the context of each topic, each chapter gives
an overview about its backgrounds and related work. Afterwards, the problem
of each chapter is analyzed and evaluated. Where applicable, the means of the-
oretical analysis, the creation of a model, veri�cation by simulation or measure-
ment in a testbed, is used. In the end of each chapter, the lessons learned are
summarized. In the following, the organization of this monograph is described.

Chapter 2 addresses the impact of data plane tra�c on the �ow table uti-
lization, and the trade-o� of choosing the right �ow-entry time-out value vs
the imposed signaling load on the SDN controller. After the creation of mod-
els for single and multiple active parallel �ows, it is evaluated by the means
of simulation and measurement. Chapter 3 focuses on the reliability and avail-
ability aspects of SDN by analyzing the detection performance of the common
ONOS SDN controller in hazardous situations in the data plane. After a theo-
retical analysis of the vanilla detection mechanisms and their vulnerability to
packet loss and jitter in the data plane, a new active probing mechanisms is
implemented and evaluated by the means of measurements in a test bed. As in-
troduced earlier, P4 is the next step in the ongoing evolution of networking, and
more precisely, SDN. Its backers claim that is enhance and simpli�es many task,
such as adding and removing tags, as it is common for example in data centers
with VLAN tags. The impact of VLAN header addition and removal on the pro-
cessing performance of TCP streams is evaluated in multiple con�gurations in
Chapter 4. Finally, Chapter 5 concludes this thesis and provides an outlook to
future research activities.
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2 Analytical Model for SDN

Signaling Tra�ic and Flow Table

Occupancy

Software-de�ned Networking (SDN) is a new networking paradigm overcoming
various drawbacks of current communication networks. The control and data
plane of switching devices is decoupled and all control functions are centralized
within the network controller(s). With this simple principle, new networking
scenarios are possible, facilitated by the introduction of increased control capa-
bilities, dynamic modi�cation of networking parameters, or the control of traf-
�c �ows on di�erent granularities. With this simple principle, a couple of new
features like network programmability, the dynamic modi�cation of network
parameters or the control of tra�c �ows on di�erent granularities are possible.
Further, the applicability of these features is not restricted to a speci�c type of
network, but can be used in access networks, data center networks, and wide
area networks [8–10].

Old challenges can be addressed with SDN, such as the ossi�ed network setup
and operation, which represents a signi�cant �nancial challenge for Internet
service providers and a handicap for the development of cloud and Internet
services. Consequently, operators are increasingly interested in including SDN
principles within planning, dimensioning, and optimization of communications
infrastructures. In production deployments, the question arises how network
tra�c a�ects the SDN environment with controller, control plane, data plane,
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and switch. A performance analysis of the SDN technology is therefore essen-
tial.

From a technical perspective, currently, two modes of operation are discussed
for SDN-enabled networks: proactive and reactive forwarding mode. In proac-
tive mode, most of the tra�c traversing the topology is assumed to be known,
e.g., in a data center. Tra�c �ow rules can be pre-installed in the network. Reac-
tive mode, in contrast, is ideal for highly dynamic tra�c where no information
on the tra�c mix is previously known. In such a scenario, SDN rules are pushed
to the switch based on incoming �ows on the data plane. Typically, �ow rules
are then provided in a network-wide manner, i.e., controller tra�c is not in-
duced at each switch, but only at the �rst one. Thus, each new arriving �ow at
the switch triggers a signaling request to the controller. The controller de�nes a
route through the topology and installs the new �ow in the devices of the topol-
ogy. Generally in SDN, multiple controllers per switch, with various controller
architectures, are possible. Currently, multi-controller architectures are mostly
used in order to increase the availability and reliability of the control plane. In
order to reduce the possibility of contradicting commands sent from controllers
to the switch, the OpenFlow protocol supports, e.g., a master- and slave role as-
signment of the connected controllers. Thus, a switch might have connections
to multiple controllers with each of the connected controllers receiving updates
from the data plane, but only the master controller is allowed to install new rules.
In case a controller fails, the ownership of the a�ected switches is transferred to
a controller which was formerly in slave role. In this chapter we will only work
with one single controller instance. Nevertheless, the �ndings in this chapter
are also applicable for multi-controller environments. Depending on the chosen
controller architecture, only the signaling load on side of the switch increases,
as multiple controllers need to be informed about changes.

To enable high performance of data plane switching decisions, �ow rules are
kept in a so called �ow table with high-speed memory, such as ternary content-
addressable memory (TCAM) and content-addressable memory (CAM). For ex-
ample, a maximum �ow table size on a switch is currently up to 1500 for HP

14



switches [13]. By modifying the matching process, e.g., by supporting only a
limited number of header �elds, the overall number can be increased to typ-
ically "some thousand rules". Since the �ow table space is limited in terms of
TCAM and CAM, unused �ow rules should be removed. This is done with the
help of a time-out value which can be con�gured at installation time of the �ow.
A �ow is removed exactly when the inter-arrival times of packets within the
�ow exceed the time-out value. If the packet inter-arrival time is larger than
the time-out, the �ow entry will be discarded. In case of additional new packet
arrivals of this �ow, the controller is then again involved in the forwarding de-
cision resulting in additional control plane tra�c and waiting times for the data
plane tra�c.

Given a speci�c tra�c mix, the choice of the time-out period a�ects the trade-
o� between signaling rate and table occupancy. On the one hand, small time-
outs might result in unnecessary signaling tra�c, control plane overload, and
long response times for control actions [11]. On the other hand, long time-
outs might cause a high �ow table occupancy and table over�ows. As a result,
providers have to adjust this parameter to enable a smooth and e�cient net-
work operation. The overall complexity of this problem including uncertainty
of tra�c mix and application characteristics does not allow a one-time opti-
mization of the time-out period. Instead, the relevant system parameters have
to be monitored in regular intervals and the time-out parameter has to be ad-
justed if necessary. To derive viable parameter settings in a timely manner, an
appropriate abstraction is required.

In this chapter, an analytical model is presented which can be used to ana-
lyze the outlined key performance parameters of SDN in reactive mode. It was
initially presented and described in [5]. Based on various tra�c mixes and ap-
plications, di�erent scenarios in the reactive forwarding mode of the controller
are investigated. With the model we study the control plane tra�c between the
controller and switch. Following the same principle, we also derive the utiliza-
tion of the �ow table in the switch. We use the model in the form for multiple
TCP �ows and evaluate the impact of di�erent TCP �ow characteristics and
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SDN time-outs on the SDN controller tra�c and the SDN �ow table occupancy
in a realistic scenario. We investigate a scenario in which network �ows are in-
stalled upon packet arrival by the controller and are discarded after a certain
time-out period. Using the example of four di�erent applications, the signaling
rate and the table occupancy is then determined for those four applications. The
in�uence of the time-out on both parameters is shown. Finally, lessons learned
are discussed for the dimensioning of the time-out value with respect to the
applications.

In the last section of this chapter, the model is validated for a tra�c mix con-
sisting of several applications in the network. For this purpose, a discrete event
simulation was implemented, which simulates package arrivals for each of the
applications under investigation, and a testbed for measurements with applied
components was created. The results show the signaling volume when several
types of applications are active at the same time in the network. The same is
evaluated for the �ow table occupancy in order to obtain an overall view on the
behavior of the two parameters.

The contribution of this chapter is threefold. Firstly, we provide the analytical
model as a tool ready to use for a network operator to analyze control plane traf-
�c and �ow table utilization. Secondly, the model is validated using a discrete-
event simulation and testbed measurements. Thirdly, we show the impact of
tra�c �ow characteristics on control plane tra�c for di�erent scenarios. These
scenarios include single �ows, multiple concurrent �ows from one application
type, and multiple concurrent �ows from di�erent application types.

The �ndings of this chapter are based on content that is published in [5, 1] and
is structured as follows. In Section 2.1, related work on SDN and network per-
formance analysis is discussed. Section 2.2 presents the analytical SDN model as
well as the used methodology. In Section 2.3, we evaluate the impact of di�er-
ent TCP �ow characteristics and time-outs on the controller tra�c and the �ow
table occupancy in realistic scenario. Section 2.4 shows the simulation and the
measurements for validating the model. Additionally, the simulation is applied
together with the model for an extended scenario, where several applications
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with di�erent characteristics are active simultaneously in the network. Finally,
Section 2.5 concludes this chapter.

2.1 Related Work

This section features work and research with the focus on modeling switch-
controller tra�c and the impact of di�erent time-out values.

The authors of [14] modeled the basic OpenFlow switch model based on
M/M/1-S queues for switch, controller, and the interaction between these two
elements, in order to analyze forwarding speed and blocking probabilities. Their
results indicate, that the packet sojourn time in an OpenFlow-enabled network
is mainly dependent on the controller. Mahmood et al. extended this work, as it
is only viable for one single forwarding element and lacks correctness for highly
bursty network tra�c [15]. Jarschel et al. enhance the model of [14] to the case of
multiple nodes by using an Open Jackson network in [16]. The presented model
is used to evaluate an SDN system’s average packet sojourn time. Afterwards,
they validate their model by simulation for the case of serial topologies. Addi-
tionally, the impact of bursty tra�c on the models output can be analyzed. [17]
created an OpenFlow-based queuing model that provides the average packet so-
journ time through a switch in large-scale OpenFlow networks. Their numerical
analysis concludes that the packet sojourn time mainly depends on the packet
processing capability of the controller.

To demonstrate the correctness of their model, multiple measurements
matching the results have been conducted. Azodolmolky et al. [18] present an
analytical model to investigate the impact of composed application tra�c on
the interaction between switch and controller by using network calculus. The
presented switch model captures the packet delay and the bu�er length inside
the SDN switch according to the parameters of a cumulative arrival process. In
[19] an analytical network calculus model focusing on an upper bound for the
processing delay of unknown �ows arriving at a switch is created. The results
of the model are validated by simulation. According to the authors of [20] their

17



2 Analytical Model for SDN Signaling Tra�c and Flow Table Occupancy

model presents a faster way to predict the performance of SDN for any type of
SDN deployment than benchmarking tools. In their paper, they utilize stochas-
tic network calculus methods to analyze and evaluate the performance of an
SDN deployment. To validate their results, they ran simulations and measure-
ments in a testbed. Miao et al. [21] introduce an analytical model for the SDN
architecture by using Markov-Modulated Poisson Process arrivals. According to
their results, key performance indicators such as average latency and network
throughput can be predicted by their model. An extensive OMNeT++ simulation
experiment approves their results.

Beigi-Mohammadi et al. propose a model to study the e�ciency and scalabil-
ity of an application-aware software-de�ned infrastructure in [22]. After pre-
senting the model, the authors conduct testbed measurements to verify the va-
lidity of their work. While being able to identify a bottleneck in the scalability of
their cloud testbed, the authors do not consider the scalability of the �ow table
space used.

Analyzing di�erent mechanisms of �ow table updates, Liu et al. [23] study
the impact of bandwidth and �ow table size on the performance of �ow updates.
Both, qualitative and quantitative analysis of these trade-o�s in several realistic
network topologies are presented. In contrast to our work, the authors focus
on the updates of already existing �ows within a �ow table. Therefore, possible
�ow table space problems are not considered.

All these papers do not analyze neither �ow time-out, nor table occupancy.
The impact of �ow table time-out length on performance and table occupancy
through measurements is analyzed in [24]. Additionally, multiple caching algo-
rithms for a �ow table are compared and evaluated. Their results indicate that,
with an increasing time-out, the probability of an arriving packet triggering a
request to the controller decreases exponentially, whilst the table size grows
linearly. Depending on the characteristics of the data plane tra�c, the authors
are also able to identify good starting points for the time-out value: 5 and 10
seconds. These values, though, are not put in relation to the characteristics of
the analyzed tra�c. Based on their observations, the authors propagate a dy-
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namically chosen time-out value. According to [25], one of the main scalability
problems of SDN controllers is that the controller is often simply overwhelmed
by the number of requests. To overcome this issue, the authors propose to adjust
�ow time-outs based on the mean inter-arrival time of packets per �ow. Their
results indicate that the dynamic modi�cation of the time-outs, in dependence
of the quality of their prediction, may decrease the controller load by almost
10%. Zhu et al. point out the importance of suitable time-outs for each �ow as
well as a load awareness of the �ow table in [26]. They propose a mechanism to
assign �ow time-outs according to �ow characteristics. Additionally, a feedback
control to dynamically adjust the max time-out value according to the current
load of the �ow table is presented. Kim et al. [27] choose an LRU caching al-
gorithm to reduce the table-miss rate of the switch. Thus, the controller load
can be reduced. In [28] rule-caching is also used to increase the �ow table-hits.
Their design is based on four criteria: elasticity, transparency, �ne-granular, and
adaptability, and satis�es their requirements. Kuzniar et al. [29] describe impor-
tant performance characteristics of �ow tables from di�erent manufactures by
measurements. Their goal is to make controllers’ use of �ow tables more ef-
�cient. The main outcome of this work is that OpenFlow switches, although
implementing the same OpenFlow protocol version, di�er widely.

Several important work has been done in the area of modeling network traf-
�c, which lays the foundations for analyzing the impact of �ow entry time-out
on the overall performance in SDN. Ciucu et al. [30] present an overview on the
general usability and applicability of network calculus for modeling the perfor-
mance of networks. In 1998 and 2000, Feldmann et al. presented fundamental
work for modeling WAN tra�c [31, 32]. The approach we are presenting in the
next chapter features a universal analysis and is easily modi�able to a custom ar-
chitecture. In order to imitate di�erent general arrival processes, we adopt a two-
moment substitution as proposed in [33], using Markovian arrival processes. In
contrast to the Markov property, it has been shown that there is a long-range
dependency in network tra�c, as noted in [34]. Andersen et. al. created a model
to represent these �ndings in superpositions of two-state Markov-modulated
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Poisson processes [35]. Whitt et. al. also present a candidate for source tra�c
models [36, 37].

In [5] we introduced our model to analyze the impact of the �ow table time-
out value T0 on the controller signaling rate of multiple applications, i.e. how
many requests per second are triggered by an application, and the overall switch
table occupancy, i.e. what is the percentage of time a �ow is actually stored in
the �ow table. As shown in our results, the model produces valid output for the
case of one single application generating one or multiple �ows at the same time.
In [1] we presented an enhanced version and validated the model with discrete
event simulations. In this chapter we want to enhance those �ndings by showing
measurements that underline the correctness of the model.

2.2 Modeling Concept, Methodology and Analysis

2.2.1 Scenario Description

For this analysis, we consider a single SDN switch, which is connected to a reac-
tive SDN controller, cf. Figure 2.1. Multiple TCP �ows are active in the network,
thus, packet streams arrive at the SDN switch and have to be forwarded. The
presented model can be applied for any �ow-based tra�c with known packet
inter-arrival time. In this chapter we focus on TCP �ows.

At the start of operation the SDN switch has no knowledge on how to handle
any arriving packet. When the �rst packet of a TCP �ow arrives, the SDN switch
produces a �ow table miss and sends a request on how to handle the new �ow
(Packet_In message) to the SDN controller. The SDN controller replies with a
�ow rule, which is stored in the �ow table of the SDN switch. Any successive
packet belonging to the same �ow can now be processed by the switch inde-
pendently. Due to the limitations in �ow table size, �ow rules cannot be kept
forever in the switch. Therefore, current implementations of SDN switches dis-
card entries after these entries have been rendered useless.
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SDN 
Controller

Switch

Packets
Packet 
arrival streams

Flow
Table

Figure 2.1: SDN switching model.

Accordingly, the arrival of a packet starts a time-out period T0 for the given
�ow rule. If the next packet of the �ow arrives before T0, the time-out period is
restarted. If no packet arrives within T0, the �ow rule is discarded by the switch.
If another packet of this �ow arrives after T0, the packet will cause a �ow table
miss, and thus, the described procedure repeats. T0 can be set to an arbitrary
time-out value between 0 and Integer max. A value of 0 indicates an in�nite
idle time-out (no idle time-out condition), any other value a time-out value in
seconds [38].

2.2.2 Single Flow Model

First, we investigate the situation in which a packet stream of a single TCP �ow
arrives at the SDN switch. Figure 2.2 illustrates the situation and introduces the
used variables. We assume that the inter-arrival times A of the packets of the
TCP �ow follow a general independent distribution A(t) = P (A ≤ t). We
divide the TCP �ow into sub�ows, which are characterized as the time periods,
from the setting of the �ow rule to its time-out to the subsequent setting of the
�ow rule. This means, based on the time-out T0, the sub�ow contains packets
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t

A A (packet inter-arrival time)

T0 (time-out period)

Y (duration of subflow)

N (number of packets in subflow)

TCP flow

resulting
subflows

Figure 2.2: Illustration of resulting sub�ows and their characteristics, i.e., number
of packets N and duration Y , based on the inter-arrival time distribu-
tion A of the TCP �ow and the time-out period T0 of the SDN switch.

with inter-arrival times smaller than T0 until the time-out of the �ow rule, and
continues until the next packet starts a new sub�ow. The following parameters
will be used and introduced in the following sections:

� N : The random variable of the number of packets in a sub�ow

� Y : The random variable of the duration of a sub�ow (in seconds)

� ηY : The signaling rate, i.e., the inter-arrival time of requests towards the
controller (in 1/seconds)

� ρY : The table occupancy, i.e., the percentage of time a �ow rule is present
in the �ow table

As a sub�ow starts with one packet and every subsequent packet belongs to
the same sub�ow if it arrives within the time-out period T0, or else the sub�ow
ends, the number of packets in a sub�ow N follows a geometric distribution.
For shortening reasons, we introduce α as the probability that the inter-arrival
time is less or equal than T0, i.e., α := P (A ≤ T0) = A(T0). Throughout this
chapter, we assume α to be lower than 1, otherwise the single resulting sub�ow
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Figure 2.3: Phase diagram for the composition of Y .

A1 A2

α

1-α

Figure 2.4: Feedback loop for sub�ow duration Y .

would be identical to the original �ow. Eventually, the distribution ofN is given
by Equation 2.1

P (N = k) = αk−1 · (1− α), k ∈ {1, 2, . . .} . (2.1)

This insight helps to derive the duration of a sub�ow Y . We de�ne A1 :=
A·1{t≤T0}

α
as a random variable with the truncated conditional distribution,

which gives the inter-arrival time of the packets in case the arrival is less or
equal toT0. Moreover, we de�neA2 :=

A·1{t>T0}
1−α as the corresponding random

variable in case the arrival is greater than T0. Then, we consider the sub�ow du-
ration Y as depicted in Figure 2.3. Y can be iteratively composed of A1 phases,
such that with probability α an A1 phase is added to Y , until the sub�ow times
out with a phase A2 with probability 1−α. Consequently, the random number
ofA1 phases in Y follows the shifted geometric distributionN ′ := N−1. Thus,
Y can be written as a sum of a random number of random variables:

Y = A1(1) +A1(2) + . . .+A1(N′) +A2 . (2.2)
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Figure 2.3 can be transformed into a feedback loop as depicted in Figure 2.4.
This can be handled by means of standard control theory, which gives the
Laplace transform ΦY (s) as presented in Equation 2.3

ΦY (s) =
(1− α) · ΦA2(s)

1− α · ΦA1(s)
. (2.3)

We can now compute the moments of Y to obtain the expectation and coe�-
cient of variation of Y in Equation 2.4 depending on A1 and A2. The signaling
rate ηY , indicating the rate of requests arriving at the controller, is thus the in-
verse of the average sub�ow duration. It can be seen that the characteristics of
Y depend on higher moments of A1 and A2. Obviously, these moments are in-
�uenced by the characteristics of the packet arrival process A of the TCP �ow
and the threshold T0 of the switch. We will investigate this relationship in detail
in Section 2.3 by utilizing substitute arrival processes, which are introduced in
Section 2.3.1.

E[Y ] = −Φ′Y (0) =
α

1− αE[A1] + E[A2] ,

ηY =
1

E[Y ]
=

1
α

1−αE[A1] + E[A2]
,

E[Y 2] = Φ′′Y (0)

=
2α2E[A1]2

(1− α)2
+

2αE[A1]E[A2] + αE[A2
1]

1− α + E[A2
2] ,

V ar[Y ] = E[Y 2]− E[Y ]2 =
αE[A2

1]− α2V ar[A1]

(1− α)2
+ V ar[A2] ,

cY =

√
V ar[Y ]

E[Y ]

=

√
V ar[A2](1− α)2 + αE[A2

1]− α2V ar[A1]

αE[A1] + (1− α)E[A2]
.

(2.4)
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The removal of each sub�ow from the switch table after the time-out T0 has
the characteristics of an on-o�-process. The on-phase represents the time in
which the �ow rule is stored in the switch table, and its random variable Yon
can be computed by substituting A2 in the above calculations with the deter-
ministic random variable of the time-out T0

1. The o�-phase, being the time in
which the �ow rule is not stored in the switch table, is given by the random
variable Yoff := A2 − T0. Consequently, Y = Yon + Yoff , and the switch
table occupancy ρY for a sub�ow Y , i.e., the percentage of time a �ow rule is
present in the �ow table, can be computed by Equation 2.5

ρY =
E[Yon]

E[Y ]
=

α
1−αE[A1] + T0

α
1−αE[A1] + E[A2]

. (2.5)

2.2.3 Composite Model - The Case with Multiple TCP
Flows

After characterizing the sub�ows of a single TCP �ow, we now transfer our
�ndings to the case with multiple TCP �ows. Typically, not all users in a net-
work topology are simultaneously active. Based on the analysis in the previous
subsection on arrival-rate and service time of a single user, we now draw con-
clusions about the number of simultaneous users in a system.

Therefore, we assume a memoryless arrival process of TCP �ows with rate λ,
each being active for a certain time following a general independent distribution
B. Moreover, we assume that no TCP �ow has to wait or is blocked, which
resembles an M/GI/∞ queuing system. Thus, the number F of currently active
�ows follows a Poisson distribution given in Equation 2.6 with meanE[F ]. The
generated signaling tra�c at the SDN controller is a superposition of all requests
created by the sub�ows of the set of active TCP �ows. This means, the total rate
η at which requests are generated is the sum of the rates of each active TCP

1We substitute the notation T0 for sake of simplicity, instead of formally de�ning a deterministic
random variable T with T (t) = P (T ≤ t) := Θ(t − T0), where Θ refers to the Heaviside
step function.
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�ow. In case all TCP �ows follow the same characteristics and have the same
signaling rate ηYi = ηY , ∀i ∈ F , E[η] can be computed directly from the
expected number of active TCP �ows E[F ].

P (F = k) =
(λE[B])ke−λE[B]

k!
,

E[F ] = λE[B] ,

η =
∑
F

ηYi ,

If ηYi = ηY , ∀i ∈ F :

η = F · ηY ,

E[η] = E[F ] · ηY = λE[B]ηY .

(2.6)

The occupancy of the �ow table at the SDN switch, i.e., the number of entries
in the table T , can be expressed as sum of a random number of indicator vari-
ables. They indicate for each of the F active �ows whether it is in the on-phase,
and thus, a rule is stored in the �ow table. The distribution of the occupancy of
the �ow table in case of F = k active �ows, i.e., P (T = m|F = k), can be
expressed by means of the Poisson binomial distribution as presented in Equa-
tion 2.7, whereFm is the set of all subsets ofm integers that can be selected from
k greater than or equal tom integers. This formula can again be simpli�ed with
a binomial distribution in case all TCP �ows follow the same characteristics,
which also gives an expectation for T .

T =
∑
F

1Yi,on ,

P (T = m|F = k) = (2.7)

=

0, k < m∑
M∈Fm

∏
i∈M ρYi ·

∏
j∈M (1− ρYj ), k ≥ m

.
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If ρYi = ρY , ∀i ∈ k :

T = F · 1Yon ,

P (T = m|F = k) =

(
k

m

)
· ρmY · (1− ρY )k−m , (2.7)

E[T ] = E[F ] · ρY = λE[B]ρY .

2.2.4 Application Mixes Model

For application mixes ω, we again assume independent Poisson arrivals of �ows
with rate λ and exponentially distributed �ow duration with mean E[B]. For
each �ow, the type of application i is modeled using uniformly distributed
random variables according to the �xed �ow probability ωi, 0 ≤ ωi ≤ 1,∑
i ωi = 1. The results for the application mix ηω , ρω can then be computed by

the weighted sum of the signaling rates ηi or table occupancies ρi of the single
application model for each application i:

ηω =
∑
i

ωi · ηi · λ · E[B] ,

ρω =
∑
i

ωi · ρi · λ · E[B] .
(2.8)

In Section 2.3, the deduced characteristics for a single and multiple TCP �ows
will be evaluated in a realistic environment. In particular, the rate of requests at
the SDN controller and the occupancy of the �ow table at the SDN switch will
be analyzed for the presented scenarios.

2.3 Evaluation

We evaluate the impact of di�erent TCP �ow characteristics and SDN time-outs
on the SDN controller tra�c and the SDN �ow table occupancy in a realistic
scenario. In the work of Gebert et al. [11], we �nd Table 2.1, which provides
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inter-arrival times of TCP �ow characteristics of four diverse mobile applica-
tions. It can be seen that the mean inter-arrival times of packets E[A] can be
as low as tens of milliseconds, e.g., in case of the music streaming service Au-
peo, but can also extend to the order of some seconds, e.g., in case of browsing
the social network Twitter. Also, the coe�cient of variation cA is application-
speci�c and rather low in case of video chat application Skype. In contrast, very
bursty arrivals with high cA were measured for the game app Angry Birds and
Aupeo. Thus, we will focus the evaluation on the observed ranges of E[A] and
cA. To demonstrate the correctness of our results, they are cross-validated by
measurement and simulation in Section 2.4.

Table 2.1: Mean inter-arrival time E[A] and coe�cient of variation cA of packet
arrivals for di�erent applications [11].

Application E[A] cA
Twitter 8.91 4.95
Skype 0.55 3.55
Aupeo 0.06 51.00

Angry Birds 0.66 24.09

2.3.1 Substitute Arrival Processes

To imitate di�erent general arrival processes for packets of a TCP �ow, we adopt
a two-moment substitution as proposed in [33]. This means, to obtain a desired
expectationE[A] and coe�cient of variation cA of packet arrivals, the following
substitute distribution functions are used:

Case 1: 0 < cA ≤ 1

A(t) =

0, 0 ≤ t < t1

1− e−(t−t1)/t2 , t1 ≤ t
(2.9)

where t1 = E[A](1− cA) and t2 = E[A]cA.
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Case 2: 1 < cA

A(t) = 1− p · e−t/t1 − (1− p) · e−t/t2

where t1,2 = E[A]

(
1±

√
c2A − 1

c2A + 1

)−1

(2.9)

and p = E[A]/2t1, pt1 = (1− p)t2.

The advantage of these substitute arrival processes is their mathematical
tractability, thus, the moments of A1 and A2 can be calculated based on three
parameters E[A], cA, and T0 as presented in Equation 2.10. This allows to ob-
tain the signaling rate at the SDN controller from Equation 2.4 and the �ow table
occupancy from Equation 2.5.

Case 1: 0 < cA ≤ 1

E[A1] = t2 + T0 +
t1 − T0

1− e−(T0−t1)/t2
,

E[A2
1] = t22 +

(t1 + t2)2 − (T0 + t2)2e−(T0−t1)/t2

1− e−(T0−t1)/t2
,

E[A2] = T0 + t2 ,

E[A2
2] = (T0 + t2)2 + t22 .

Case 2: 1 < cA (2.10)

E[A1] =
p(t1 − (T0 + t1)e−T0/t1)

1− pe−t/t1 − (1− p)e−t/t2
· · ·

· · ·+ (1− p)(t2 − (T0 + t2)e−T0/t2)

1− pe−t/t1 − (1− p)e−t/t2
,
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E[A2
1] =

p(2t21 − ((T0 + t1)2 + t21)e−T0/t1)

1− pe−t/t1 − (1− p)e−t/t2
· · ·

· · ·+ (1− p)(2t22 − ((T0 + t2)2 + t22)e−T0/t2)

1− pe−t/t1 − (1− p)e−t/t2
, (2.10)

E[A2] = T0 +
pt1e

−T0/t1 + (1− p)t2e−T0/t2

pe−t/t1 + (1− p)e−t/t2
,

E[A2
2] = T 2

0 +
2pt1(T0 + t1)e−T0/t1

pe−t/t1 + (1− p)e−t/t2
· · ·

· · ·+ 2(1− p)t2(T0 + t2)e−T0/t2

pe−t/t1 + (1− p)e−t/t2
.

2.3.2 Single Flow Model Analysis

Using the above described substitute arrival processes, we analyze the resulting
SDN controller tra�c and the SDN �ow table occupancy for di�erent packet
arrival streams and time-outs.

Figure 2.5 shows the arrival rate η of requests originating from a single TCP
�ow on the y-axis. The mean packet inter-arrival time E[A] is depicted on the
x-axis, and the di�erent curves depict the results for di�erent coe�cients of
variation cA ranging from 0 (black) to 51 (yellow). The time-out T0 is set to 10 s,
which is a typical default value set by SDN controllers, e.g., NOX [39], and is also
used as the default value in the Stanford OpenFlow deployment and DevoFlow
[40]2. In the following the three investigated value ranges of cA are discussed.

� cA = 0:
In the deterministic case, no �ow ever times out when its packet inter-
arrival time E[A] is lower than T0, and thus η = 0. However, if E[A] >

T0, every packet will start a new sub�ow, but because η = 1/E[A] in

2The latest SDN controllers OpenDaylight and ONOS use di�erent values in their default con�gura-
tion: 1800 seconds and∞, respectively.

30



2.3 Evaluation

E[A] [s]
0 5 10 15 20

S
ig

na
lin

g 
R

at
e 
2
 [1

/s
]

0

0.02

0.04

0.06

0.08

0.1

c
A
 = 0

c
A
 = 0.5

c
A
 = 1

c
A
 = 3.5

c
A
 = 5

c
A
 = 24 & 51

E[A] = T
0
 = 10s

Figure 2.5: Arrival rate η of requests at SDN controller for �xed T0 = 10 s depending
on characteristics of TCP �ow, i.e., the packet arrival process A.

this case, the tra�c at the SDN controller will decrease with increasing
E[A]. For very largeE[A]� T0 (not depicted), all curves will eventually
approximate η = 1/E[A], as each arrival is increasingly more likely to
be larger than T0 and start a new sub�ow.

� 0 < cA ≤ 1:
In the hypoexponential and exponential case, the signaling rate increases
monotonically to a maximum before the rate merges (0 < cA < 1, e.g.,
cA = 0.5 at E[A] = 20) or converges (cA = 1) towards η = 1/E[A],
respectively.

� cA > 1:
In the hyperexponential case, we observe that η has a �rst local maxi-
mum for small E[A], then decreases to a local minimum, and increases
to a second maximum before it eventually converges for largeE[A]. The
higher cA, the more the �rst maximum is shifted to smaller E[A], and
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Figure 2.6: SDN controller tra�c arrival rate η depending on SDN switch time-out
T0 for �xed E[A] = 0.55 s.

the smaller the �rst and second maxima. With increasing cA, the curves
converge, which can be seen from the overlap of cA = 24 and cA = 51

for E[A] > 3. The envelope of these curves gives the maximum η for
E[A] < T0 independent of cA. Thus, we see that di�erent TCP �ow char-
acteristics in�uence the arrival rate of requests at the SDN controller in
case of a �xed T0. In the interesting region for E[A] smaller or slightly
higher than T0, we observe that burstiness can decrease the SDN con-
troller tra�c for high E[A], while burstiness increases for �ows with
small E[A].

Taking a look at the impact of the time-out T0, we �x E[A] = 0.55 s (cf.
Skype in Table 2.1) in Figure 2.6. The time-out T0 is varied on the x-axis and the
di�erent curves indicate again di�erent coe�cients of variation cA of the packet
arrivals in the TCP �ow. All curves show a monotonically decreasing behavior
towards 0 when T0 becomes larger thanE[A]. In order to discuss this evaluation
step by step, a division after the three cA ranges is made and discussed.
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� cA = 0:
In the deterministic case, the signaling rate drops from a constant η =

1/E[A] = 1.82 to 0 at T0 = E[A], because no �ow will time out if
T0 > E[A].

� cA < 1:
Starting from this asymptotic curve, for hypoexponential arrival pro-
cesses, the gradient will become smaller if cA increases and the rates will
converge slower towards 0.

� cA ≥ 1:
In the exponential (cA = 1) and hyperexponential cases, two inter-
twined e�ects cause the non-intuitive behavior visible in Figure 2.6 that
the curves for very small and very high cA show a fast convergence to-
wards the asymptotic function, while the curves in between form an en-
velope and converge more slowly. First, when cA surpasses from 1, the
gradient of the curve transforms more quickly from a larger descent into
a �atter slope. This will slow down the convergence towards 0, and can
be seen when comparing the curves for cA = 1, cA = 3.5, and cA = 5.
At the same time, when cA increases, the descent starts earlier, which
brings the curves’ points closer to the asymptotic function (cA = 0).
This will speed up again the convergence towards 0 for high cA and can
be observed when comparing the curves for cA = 5 and cA = 24. The
envelope function of this group of curves constitutes an upper limit for
the signaling tra�c for given E[A] and T0.

Based on these two �gures, several observations can be made concerning the
dimensioning of T0. As long as E[A] < T0 the signaling rate of an application
�ow is acceptably small, especially for E[A]� T0. The coe�cient of variation
cA only seems to play a minor role in these constraints, especially for really high
values of cA the signaling load is negligible. Therefore, controller interaction
for processing this �ow is kept to a minimum. In general, a higher cA of an
applications �ow renders lesser load on a controller.
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Figure 2.7: SDN switch �ow table occupancy ρ for time-out T0 = 10 s and di�erent
TCP �ow characteristics.

The �ow table at the SDN switch is populated by a �ow rule, when the TCP
�ow is in an on-phase, i.e., a sub�ow of the TCP �ow has not timed out. Fig-
ure 2.7 depicts the table occupancy ρ for an SDN switch with time-out T0 = 10 s
depending on the mean packet inter-arrival time E[A], which is plotted on the
x-axis, again for di�erent values of cA.

Two e�ects can be clearly seen. First, all curves are monotonically decreasing,
such that a higher E[A] leads to a lower occupancy ρ in the �ow table. This is
due to the fact that a higher E[A] increases the probability of a �ow time-out
when the next packet arrives later than T0. Larger E[A] will also contribute to
longer o�-phases, which decreases the �ow table occupancy. Second, the higher
cA, i.e., the more bursty the packet arrival process, the lower ρ, due to longer
periods between two bursts, which will more likely cause a �ow time-out and a
long o�-phase.

In the extreme case of cA = 0, the occupancy ρ is 1 if E[A] < T0, and
decreases hyperbolically with ρ = T0

E[A]
if E[A] ≥ T0, which is the asymp-
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Figure 2.8: Impact of time-out T0 on SDN switch �ow table occupancy of a single
TCP �ow with E[A] = 0.55 s.

totic function in this plot. In the hypoexponential case (cA < 1), the larger the
deterministic share of the substitute process (i.e., the smaller cA), the sooner
convergence occurs. In the plot, the convergence for cA = 0.5 is visible, when
the curve overlaps with the asymptotic function for E[A] > 18. Eventually,
the higher cA, the earlier the drop of table occupancy and the more inert the
convergence towards the asymptotic function.

Figure 2.8 depicts the impact of the time-out T0 on the �ow table occupancy
of a single TCP �ow for a �xed E[A] = 0.55 s. The x-axis shows the time-
out T0, and the y-axis presents the resulting occupancy ρ for di�erent cA. The
smaller T0, the more often TCP �ows will time out and free the occupied space
in the �ow table. It can be seen that the choice of T0 has more impact for TCP
�ows with small coe�cient of variation. The resulting occupancies for small cA
range up to 1, i.e., there are time-outs T0, for which the �ow rule will never
be discarded. For TCP �ows with high cA, the occupancy will increase very
slowly for increasing T0 since the �ows are generally more likely to time out.
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For example, a �ow with cA = 51 does not reach a higher occupancy than 50%
throughout the investigated range of T0.

Figures 2.7 and 2.8 demonstrate that a change in the parameter T0 also has
a signi�cant impact on the switch table occupancy ρ. The general conclusion
is that a lower T0 value decreases the occupancy. Keeping the previous results
for the signaling rate η in mind, it is to bene�cially trade-o� between signaling
rate and table occupancy. For the values investigated, T0 = 3 s o�ers a good
solution: independent of the mean inter-arrival time E[A] of an application and
its coe�cient of variation cA, both signaling load and table occupancy are at
acceptable levels. A higher T0 would lead to a higher occupancy, a lower value
to higher signaling tra�c towards the controller, which, in turn, may bring up
another undesirable e�ect: overload at the controller.

2.3.3 Trade-o�s between Signaling Load and Table
Occupancy in the Case of Multiple Flows

At the SDN switch, multiple TCP �ows arrive, which will contribute to the sig-
naling rate at the SDN controller and the occupancy of the �ow table. In this
section, we will investigate this behavior and the resulting trade-o�s for the
four apps described above (cf. Table 2.1). From a previous work [41], we have
taken several numerical values for the composite model. Based on an exten-
sive measurement of Internet access in dormitories, the authors observed an
arrival rate of TCP �ows of λ = 158.73 1

s
and a mean TCP �ow duration of

E[B] = 234.95s. The numbers from [41] are used in our composite M/M/∞
model to compute the average number of active TCP �ows E[F ] = 37293.6

in the evaluation scenario. In the following �gures, we will consider the simple
case that all TCP �ows are from the same type of application.

Figure 2.9 shows the composite signaling rate ηTotal at the SDN controller
in the evaluation scenario depending on the time-out T0. It can be seen that a
very low time-out value T0 will cause a signi�cant amount of signaling tra�c
at the controller, which will put it at risk of overload. Especially, applications
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Figure 2.9: Composite signaling rate at SDN controller depending on �ow time-out
T0 for the four applications in the evaluation scenario.

like Aupeo, Angry Birds, and Skype will often time out and start a new sub�ow,
which results in frequent requests at the SDN controller. However, we see that,
for the bursty applications Aupeo and Angry Birds, a large enough T0 ≥ 2 s will
make sure that the SDN controller tra�c becomes very low. The signaling rate
caused by applications like Twitter and Skype will decrease more slowly when
T0 increases. Nevertheless, a higher time-out value T0 generally decreases the
tra�c at the SDN controller. Thus, the default value T0 = 10 s is a good choice
to relieve the SDN controller.

Figure 2.10 investigates the �ow table occupancy in the given scenario for
di�erent T0. In general, the �ow table occupancy increases with the time-out
T0, as TCP �ows are discarded later from the table. This results in the monotonic
increase of all curves in the �gure. Low table occupancies can only be achieved
by very low T0. We see that the less bursty applications like Skype and Twitter
continue to have a high gradient when T0 increases. Thus, setting a high T0 will
cause a high table occupancy for these applications. In contrast, the occupancy
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Figure 2.10: Flow table occupancy at SDN switch depending on �ow time-out T0

for the four applications in the evaluation scenario.

of bursty applications Angry Birds and Aupeo only increases very �atly for high
enough T0 ≥ 2 s.

All in all, we see that a very low T0 is required to reach a low occupancy of the
�ow table. However, this will cause a high signaling rate at the SDN controller.
In turn, a high T0 will cause a low signaling rate but a higher table occupancy.
Still, some room for trade-o� is left by setting T0 to a value around 2-3 s. For the
investigated applications Twitter and Skype, this will result in a reduction of the
�ow table occupancy compared to the default time-out of T0 = 10 s, but will
only cause a negligible increase of signaling at the SDN controller. Bursty ap-
plications like Aupeo and Angry Birds are not negatively a�ected considerably
by such choice of T0.

2.3.4 Application Mix Model

Usually, not only one application is active within a network but a whole mix of
applications. Therefore, a mix of the four introduced applications is evaluated. In
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Figure 2.11: Signaling rate & �ow table occupancy for varying T0 values in the case
of an application mix.

order to create a �x application mix, the number of downloads in the beginning
of December 2016 from Google’s Play Store [42] for each application have been
taken and put into relation. The resulting share-ratio amongst the applications is
depicted in Table 2.2. Twitter has a share-ratio of 32 %, Skype one of 35 %, Aupeo,
though running out of service on December 16th 2016, a ratio of 15 %, and, last,
Angry Birds a ratio of 18 %. In Figure 2.11, the signaling rate ηω and the switch
table occupancy ρω of this previously mentioned application mix for a range

Table 2.2: Share-ratio of the four applications comparing their Google Play Store
downloads

Application Share-Ratio
Twitter 32%
Skype 35%
Aupeo 15%

Angry Birds 18%
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of T0 values are depicted. The x-axis shows T0 ranging from 0 to 10 seconds,
the y-axis on the left side the signaling rate from 0 to 4000 signals per second,
and the y-axis on the right side the table occupancy from 0 to 4000 entries. As
anticipated by the results for a single application, increasing the T0 value has
an enormous e�ect on the signaling rate towards the controller. With T0 equal
to 0, each �ow times out for each arriving packet, and, thus, the signaling rate
is here at its highest value of around 3300 signals per second. Higher T0 values
lead to a lesser ratio of packet inter-arrival times from this application stream,
and, thus, a lower frequency of �ow deletions from the �ow table.

As the �ow remains for a longer time inside the �ow table, less signaling to
the controller is required. Therefore, the signaling rate continuously decreases
in an exponential manner to a value of 50 signals per second for T0 = 10 s. For
the switch table occupancy a coherent behavior is shown. With a small T0 value
below 1 second almost each new arriving packet of this application mix is arriv-
ing after the time-out has passed. Thus, the number of entries is low, e.g. only
650 for T0 = 0.1 s. With a further increasing T0 the �ows remain for a longer
time in the �ow table. Therefore, the increase of the �ow table occupancy �at-
tens. Overall the table occupancy behavior has the resemblance of a logarithmic
function. In the range of 0 to 1 seconds, the table occupancy heavily increases
in this region from 600 to 1600. Beyond that the table occupancy only increases
from 1600 to 2600 in the range of 1 to 10 seconds. In conclusion, for this applica-
tion mix scenario, T0 = 3 s is again the most suitable choice. With values below
3s, the signaling rate is too high, with values beyond 3s the table occupancy is
only marginally increasing.

2.3.5 Lessons Learned for Dimensioning T0

Figure 2.12 summarizes the above �ndings by opposing signaling rate η and
table occupancy ρY for �xed E[A] = 0.55 s. Four qualitatively di�erent cases
are distinguished.

40



2.3 Evaluation

Signaling Rate  [1/s]

0 0.5 1 1.5 2

T
a

b
le

 O
c
c
u

p
a

n
c
y
 

Y

0

0.5

1

(a) Deterministic cA

Signaling Rate  [1/s]

0 0.5 1 1.5 2

T
a

b
le

 O
c
c
u

p
a

n
c
y
 

Y

0

0.5

1

(b) Hypoexponential cA

Signaling Rate  [1/s]

0 0.5 1 1.5 2

T
a

b
le

 O
c
c
u

p
a

n
c
y
 

Y

0

0.5

1

(c) Exponential cA

Signaling Rate  [1/s]

0 0.5 1 1.5 2

T
a

b
le

 O
c
c
u

p
a

n
c
y
 

Y

0

0.5

1

(d) Hyperexponential cA

Figure 2.12: Joint evaluation of signaling rate η and table occupancy ρY for �xed
E[A] = 0.55 s and cA = [0, 0.5, 1, 3.5]m.

� cA = 0:
Figure 2.12a shows the deterministic case. If the time-out T0 is larger than
E[A] the signaling rate is 0 and the table occupancy is 1. The smaller the
time-out is set, the less the table occupancy. However, the signaling rate
will not be a�ected by the choice of T0.

� 0 < cA < 1:
For the hypoexponential example cA = 0.5, Figure 2.12b illustrates that
the choice of T0 in�uences both η and ρY . Starting from η = 0, ρ = 1,
a decreasing T0 will slowly decrease the table occupancy, but faster in-
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crease the signaling rate. When the signaling rate has reached its maxi-
mum, lowering T0 will still decrease the table occupancy.

� cA ≥ 1:
While Figure 2.12c shows a balanced behavior, it constitutes the transi-
tion to the hyperexponential case for which the example cA = 3.5 is
presented in Figure 2.12d. Here, we see that decreasing T0 can signif-
icantly reduce the table occupancy ρY , while only negligibly a�ecting
the signaling rate η. Only if T0 becomes too small, the signaling rate will
increase. As most applications produce tra�c with hyperexponential cA
this behavior can be exploited.

Recapitulating, a smaller T0 decreases the switch table occupancy whilst in-
creasing the signaling load o�ered to the controller. The biggest optimization
potential can be observed especially for �ows with small, hyperexponential cA.
If the time-out T0 was optimized for these applications, the highest gain of table
occupancy could be reached. Revisiting the results described above, a trade-o�
between these two metrics can be found for T0 = 2-3 s: beyond that point, the
switch table occupancy only marginally increases (on average), whilst the sig-
naling load is at an acceptable value and decreases in small terms.

In general, an application-speci�c T0 value would be preferable, though a
smaller T0 value already o�ers a good starting point. For setting an application-
speci�c value, additional tra�c characterization mechanisms have to be de-
ployed within the network. A possible integration could start with a small T0

value whilst the application is still unknown and not enough packets were yet
received. After successful characterization, the T0 value can be changed dynam-
ically. Another in�uencing factor on the current T0 values should be the overall
table occupancy of a switch. If a �ow table is full, no new �ow can be installed.
As most current SDN controllers do not have a failure handling for this case,
they simply retry to install that �ow for each incoming packet until the action
completes or no more packets of a �ow arrive at the switch or at the controller.
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A bene�cial factor for the controller load could also be to enable caching at
the switches. As soon as a �ow times out due to its T0 value, it could be marked
as to delete, but yet still left active within the �ow table. Now, if a packet
matching that �ow arrives again at the switch, the packet can immediately be
forwarded and the entry and its timer can be reset to the initial setting. This
would reduce the controller load, however, the controller should be noti�ed,
such that it maintains a coherent view of the network. If the �ow table is full,
to delete entries can be deleted from the �ow table and replaced by new rules.
Caching algorithms for �ow tables in an SDN environment have been investi-
gated by various authors, as presented in Section 2.1. Nevertheless, an analytic
approach has not been taken yet.

2.4 Validation of the Model

In order to validate the presented model, a discrete event simulation was im-
plemented in MATLAB [43] and a testbed allowing measurements was created.
This section features the implementation of both the simulation and the testbed.
Afterwards, three di�erent scenarios are evaluated and compared to the corre-
sponding model values. The three scenarios include the case of a single �ow
being active in the system, multiple �ows, and, �nally, the case of an applica-
tion mix, as introduced in Section 2.2.4. Due to the long duration of the mea-
surements, only validation for the case of the single �ow model was conducted.
However, further validations are easy to catch up according to the guidelines of
the previous sections.

2.4.1 Simulation Procedure

Based on the results from [11], packet arrivals were simulated for each applica-
tion. This means, random packet arrival times were obtained from the substitute
arrival processes presented in Section 2.3.1 for the given mean inter-arrival time
E[A] and coe�cient of variation cA. The packet arrivals of each �ow allow to

43



2 Analytical Model for SDN Signaling Tra�c and Flow Table Occupancy

exactly determine the signaling and the �ow table occupancy at the SDN con-
troller depending on the time-out T0.

The simulation implements Poisson arrivals of �ows with arrival rate λ =

158.73 1
s

as measured in [41]. However, using exponentially distributed �ow
durations with the mean presented in [41] (E[B] = 234.95 s) proved to be
much to short to reach the desired E[A] and cA given in [11] within the simu-
lation. Therefore, for the validation of the model, the mean of the exponentially
distributed �ow duration is set to E[B] = 3600 s (one hour), and a minimum
�ow duration of 900 s (15 min) is introduced. These modi�cations allowed the
average E[A] and cA of the �ows, which were created by the substitute packet
arrival processes described in [11].

In the validation scenario, the simulation duration is set to 50000 s (13.89

hours). The presented results show the mean overall signaling rate and the �ow
table occupancy as observed by the SDN controller during �ve simulation runs.
In addition to the mean results, also the 95% con�dence intervals are shown.
To account for the transient phase of the simulation, only the last 25000 s of
a simulation run have been evaluated. As all simulation runs converged to the
stationary phase typically after around 10000 s simulated time, the presented
results can be assumed to provide a consistent view of the system in the long run.
This long convergence time of the initially empty system occurred especially for
simulation runs with a high coe�cient of variation cA. In these cases, the high
burstiness of the packet arrivals and the resulting high variability of the �ows’
on- and o�-phases slow down the convergence.

2.4.2 Measurement Procedure

Additional to the validation by simulation of the previous section, also a vali-
dation by measurements was performed. For this purpose a testbed was built
and software packet generators, allowing to con�gure the packet inter arrival
time and their coe�cient of variation cA, have been implemented. As vec-
tors of packet inter-arrival times with some values of cA are di�cult to gen-
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erate, as discussed in Section 2.4, we focused only on speci�c values, namely
cA = {0, 0.5, 1, 2} The measurement duration was set to 20 min per parameter
combination. The results show the mean results over 10 repetitions. Addition-
ally, also 95% con�dence intervals are shown.

Testbed

This section features the testbed, as depicted in Figure 2.13. The network de-
vices required for the �rst measurements are emulated in Mininet [44]. This
network consists of one Open vSwitch [45] which is connected to two hosts.
Open vSwitch is an Open Source virtual software switch that supports the Open-
Flow protocol. Host 1 is running a con�gurable TCP packet generator, host 2 the
corresponding packet sink. The packet generator is a self-written small JAVA ap-
plication allowing the generation of packet streams with a con�gurable mean
inter-arrival time E[A] and coe�cient of variation cA. These inter-arrival times
are calculated based on the two-moment formula of [33]. For the purposes of
these measurements, we have chosen the RYU SDN controller as it allows for
an easy adaption of the installed �ow time-out period. The RYU SDN controller
is connected to the virtual switch and only running a reactive forwarding appli-
cation with a con�gurable time-out T0. In order to measure all required param-
eters, two sensors have been installed: the �rst one is tcpdump [46], capturing
the communication between switch and controller. The second one is a small
program recording the �ow table utilization of the switch each 0.5 s.

Measurement Process

In order to generate reliable, repeatable measurement results, the following mea-
surement process was de�ned.

1. At �rst, a reset of the whole measurement environment is conducted,
meaning that all running applications are shut down and no other com-
ponent is accessing the Mininet topology.
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Figure 2.13: Testbed Architecture.

2. The second step is to con�gure the RYU SDN controller, start it up, and
connect it to the software switch using the OpenFlow 1.3 protocol [47].
Depending on the current scenario, the �ow time-out of RYU will be con-
�gured and the appropriate number of hosts will be started in the Mininet
topology.

3. Third, the program recording the �ow table utilization is �red up. After-
wards, the TCP tra�c sink is started on the appropriate host.

4. Forth, the recording of the tra�c between switch and controller via tcp-
dump begins.

5. Fifth, the TCP packet generator is started with the parameter con�gura-
tion of the current scenario.

6. After the measurement duration, which is de�ned by the scenario, the
TCP generator is stopped, Mininet is shut down, and the connection be-
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tween Ryu and the switch is cut. Tcpdump exits and the measurement
data is collected.

Now, the testbed is ready for another measurement run and the process starts
over with step one.

2.4.3 Single Flow Model

For the single �ow model, we reproduce the results presented in Figures 2.5 to
2.8. This means, we simulate one �ow each with di�erent mean packet inter-
arrival times ranging from 0 to 20s for a time-out T0 = 10 s. Additionally, we
simulate one �ow with E[A] = 0.55 (cf. Skype) and varying T0 from 0 to 10 s.
All presented coe�cients of variation were used (0, 0.5, 1, 3.5, 5, 24, 51). Note
that for this validation, the simulated single �ows span the whole simulation
duration, and thus, the application characteristics presented in [11] could be ex-
actly replicated. As the curves obtained from the simulation are perfectly aligned
with the respective curves in Figures 2.5 to 2.8, we conclude that the single �ow
model is accurate and refrain from presenting the plots.

The curves obtained from the measurements are shown in Figures 2.14 to
2.17. For the measurements the same scenarios as described for the simulation
were validated, meaning that we generate one �ow each with a packet mean
inter-arrival time from 0 to 20 s with a step size of 0.5s and a time-out T0 = 10 s.

For the scenario with varying T0, we had to limit the range from 2 to 8 s.
For T0 values below 2s the communication between controller and switch did
not show the expected behavior. Open vSwitch interprets a time-out value of
T0 = 0 s as T0 = inf . For T0 = 1 s, our investigations showed that the �ow-mods
sent from the controller to the switch had the right time-out value set and these
entries were successfully added to the switches �ow table. But, somehow, the
Open vSwitch does not follow the set time-out value and internally uses another
one. Therefore, rules were deleted from the switch �ow table although packets
have arrived within the time-out period. An educated guess is that the internal
time-out clock of Open vSwitch does cope with this value of T0. Yet, various
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Figure 2.14: Measurement results for the impact of mean inter-arrival time on the
controller signaling rate.

investigations did not show a deterministic behavior, therefore, we excluded
this range from the results.

Figures 2.14 and 2.15 show the signaling rate and the �ow table occupancy of
the measurements for the varying mean packet inter-arrival time for the coe�-
cient of variation values cA = {0, 0.5, 1, 2}. The x-axis shows the inter-arrival
time between 0 and 20 seconds, the y-axis the signaling rate between controller
and switch or the �ow table occupancy, respectively. The results for the di�er-
ent coe�cients of variation with 95% con�dence intervals are shown in di�erent
colors. The black line represents the results from the model, the dashed vertical
red line at E[A] = 10 s depicts the con�gured idle time-out of 10 seconds. The re-
sults show that the measurement results verify the model, as they overlap with
the model values. Moreover, the model results are often within the con�dence
intervals of the appropriate measurement results. This, combined with small size
of the con�dence intervals, validates the model.

The measurement results for the signaling rate and the �ow table occupancy
with a varying time-out value are depicted in Figures 2.16 and 2.17. The x-axis
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Figure 2.15: Measurement results for the impact of mean inter-arrival time on the
switch table occupancy.

shows the time-out values T0 from 2 to 8 seconds, the y-axis the signaling rate of
controller and switch or the �ow table occupancy, respectively. The measured
coe�cients of variation are shown in di�erent colors. The intervals depicted
are 95% con�dence intervals. For each measurement result the corresponding
model values are shown as a solid black line. Again, the measurement results
match with the overall behavior of the model values. With increasing the T0

value on the Open vSwitch, the deviation between model and measurements
decreases and becomes almost invisible.

In general, the deviation between model values and measurement results can
be traced back to the following reasons. First, the model values are generated
for packet inter-arrival times between 0 and 20 s with a step size of 0.1 sec-
onds, whereas the measurement step size has been 0.5 seconds. This is caused
by the length of the measurements. In order to generate the results for one cA
it takes 20 minutes ∗ 40 values ∗ 10 repetitions = 8000 minutes ≈ 5.55 days.
An increased resolution of measurement results would have increases the mea-
surement time by a factor of 5 and would not have been feasible.
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Figure 2.16: Measurement results for the impact of the time-out on the signaling
rate.

Additionally, especially for higher cA values, the measurement duration of 20
minutes is at a minimum. As discussed earlier, with high cA values (i.e. cA > 5)
it may happen that the packet generator only generates a small number of packet
inter-arrival times. Calculating the coe�cient of variation of these three values
often leads to a cA value smaller than anticipated. This is not a fault of the imple-
mentation, as increasing the sample size would lead to the anticipated cA value.
To achieve better results, the measurement duration could be increased, respec-
tively further increasing the total measurement duration. Moreover, increasing
the number of repetitions per measurement would bene�t the measurement ac-
curacy. Another factor that has not been mentioned yet is the network delay
being present to the usage of real network connections. This further contributes
to the deviation between model and measurement.

2.4.4 Multiple Flow Model

Figures 2.18 and 2.19 show the results of the validation of the multiple �ow
model, and correspond to Figures 2.9 and 2.10. In Figure 2.18 the results for both
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Figure 2.17: Measurement results for the impact of the time-out on the �ow table
occupancy.

simulation (solid) and model (dotted) for the signaling rate are shown. Here, the
simulation is matching the model perfectly, as both results for all applications
align. Additionally, the con�dence intervals are between very small for low T0

values and not visible for higherT0 values, con�rming the validity of our results.
In Figure 2.19 results for the table occupancy in the case of multiple �ows for
the introduced applications are presented. For the applications with a small cA
(Skype and Twitter) both simulation and model align perfectly. For Angry Birds
and Aupeo with a very high cA of 24 and 51 the limitations of the simulation are
visible. The alignment between them is lower and the con�dence intervals are
bigger. This deviation in the results can be explained by the challenges presented
at the beginning of this Section.

2.4.5 Application Mix Model

To validate the model for a tra�c mix of various applications, the application
mix introduced in Section 2.3.3 is simulated. In Figures 2.20 and 2.21, the dotted
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Figure 2.18: Validation of the multiple �ow model for signaling rate.

line shows the model results, and the solid line the mean results of the simula-
tion and 95 % con�dence intervals after �ve runs. The small con�dence inter-
vals indicate a consistent behavior for all simulation runs. The model provides
accurate results for which the deviation never surpasses 10 % throughout the
whole parameter range of T0. The remaining deviation can be attributed to the
randomness within the single �ows and the inadequacy to consistently repro-
duce the desired application characteristics for all �ows, which propagate to the
aggregated results. Still, the results con�rm that the application mix model is
su�ciently accurate to describe the signaling rate and table occupancy of an
SDN controller.

In the following, it will be investigated how a variation of the application
mix impacts the SDN controller. Instead of assuming one application mix with a
constant �ow ratio between the applications, we now evaluate application mixes
of two applications for varying ratios. To better compare the impact of a speci�c
application, we �x Twitter in the application mix, and mix it with the remaining
three applications. For these scenarios we use the time-out T0 = 3 s, which we
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Figure 2.19: Validation of multiple �ow model for table occupancy.

found earlier to be a good trade-o� between signaling rate and table occupancy
for application mixes in Section 2.3.4.

Figure 2.22 shows the resulting signaling rate at the SDN controller for the
considered mixes of two applications. Thereby, the application mix is depicted
on the x-axis, starting from 100 % Twitter �ows and 0 % other app tra�c, grad-
ually decreasing Twitter until 0 % Twitter and 100 % other app tra�c �ows. The
y-axis presents the signaling rate from 0 to 400 requests per second. Here, again,
the dotted line displays the model results and the solid line the mean results and
95 % con�dence intervals of our simulation after 5 runs. The Twitter values al-
ways start at 320 signals per second for the modeling results, and 350 signals per
second for the simulation, respectively. The discussed inadequacy of the simula-
tion, which only reproduces the desired application characteristics on average,
reappears here. Increasing the ratio of the other applications Skype, Angry Birds,
and Aupeo softens these e�ects, because these application characteristics can be
more easily reached in the validation scenario. For example, increasing the ratio
of Skype will decrease the signaling rate at the SDN controller. Both, simulation
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Figure 2.20: The impact of the T0 value on the signaling rate η for the case of a
mixed application stream.

and adapted model, produce a signaling rate of 280 per second, decreasing the
deviation of the simulation down to almost 0 %. For Aupeo and Angry Birds,
the same linear course of the signaling rate can be seen. The high coe�cient of
variation of these applications decrease the signaling rate close to 15. Thus, for
the given time-out of T0 = 3 s, a higher ratio of such tra�c will reduce the load
of the SDN controller.

The corresponding results for the total �ow table occupancy is presented in
Figure 2.23. The x-axis again depicts the application mix, the y-axis shows the
overall �ow table occupancy in the SDN switch. For Twitter-only tra�c the
model produces a result of 1300 entries in the �ow table, which is slightly be-
low the actual 1500 entries obtained by the simulation. Increasing the ratio of
the other applications again decreases the deviation between model and simula-
tion. Skype-only tra�c results in around 3700 entries on average, while Aupeo
and Angry Birds-only tra�c will store almost 3000 entries in the �ow table. As
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Figure 2.21: The impact of the T0 value on the �ow table occupancy for the case of
a mixed application stream.

Twitter tra�c uses the least �ow table entries, again the trade-o� between the
signaling rate and the table occupancy is clearly visible.

To sum up, the simulative validation and the validation by measurements
proved the accuracy and applicability of the single �ow, the multiple �ow, and
the application mix models. Thereby, the small con�dence intervals indicate a
consistent behavior of the presented results, which well aligns with the mod-
els. Thus, as they allow to produce accurate results for a given evaluation sce-
nario much faster, the analytical models can be used to replace simulative and
measurement approaches. Moreover, the impact of di�erent application charac-
teristics and the resulting trade-o� between signaling rate and table occupancy
could be con�rmed. As the trade-o� can be tuned by setting the time-out T0

properly, our analytical models are a useful tool for operators of SDN networks
to �nd the optimal settings with respect to the speci�c application mixes in their
networks.
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Figure 2.22: Signaling rate η of multiple application mixes with varying percent-
age.

2.5 Lessons Learned

In this chapter, an analytical model for SDN controller tra�c and switch table
occupancy is presented. The model focuses on the reactive operation mode of
a controller. Incoming and unknown tra�c at a switch therefore generates a
request towards the controller. Based on this tra�c, rules are created in the �ow
table of the switch, which specify the forwarding behavior. According to this
�ow table entry, further packets of this �ow are processed by the switch only,
and do not require any further controller interaction, i.e. generate no signaling
tra�c. To avoid table over�ows, unused entries are removed after a prede�ned
time-out period T0. A time-out value is added to each �ow entry. As soon as
no packet has matched a �ow for a duration of T0, the �ow is automatically
removed from the table. Any further packet of this �ow triggers a new request
towards the controller.

As both the switch table occupancy and the controller signaling can render a
limiting factor to the forwarding speed of a network, a trade-o� between signal-
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Figure 2.23: Flow table occupancy ρ of multiple application mixes with varying
percentage.

ing rate and switch table occupancy has to be found. The results in this chapter
deliver three main conclusions.

1. First, with our presented model it is possible to calculate the e�ects of the
discussed parameters with respect to the performance of the SDN-based
network. We start by modeling a single �ow to understand its impact
on the �ow table occupancy and the resulting controller tra�c. Based
on these results, we adapt an M/M/∞ queuing system and extend our
model to understand the implications when multiple users, i.e. multiple
�ows, are in the system.

2. Second, the presented discrete-event simulations and the measurements
validate the model in all scenarios, proving the accuracy and the applica-
bility of our model. The impact of multiple application characteristics is
additionally discussed.
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3. Third, it is shown that application speci�c parameters, such as the inter-
arrival time of packets E[A] and its coe�cient of variation cA, have a
non-negligible impact on both the signaling rate and the table occupancy.

However, the time-out value T0 introduces an opportunity for trade-o�. As long
as E[A] < T0 both factors are quite �ne, independent of an applications coe�-
cient of variation cA. For applications with a high cA, small T0 are preferable, as
the probability for time-out is comparatively high, which will relieve the �ow ta-
ble. High cA values also introduce another e�ect to this analysis: At some point
the inter-arrival time of packets is that high, that the �ow table time-out inde-
pendent of the set T0 value, which would only increase the in-e�ective time of a
�ow-entry, as the only activity is the countdown of the timer. We observed that
very bursty applications with high cA are relatively una�ected by the choice
of T0 because of the likely long times between bursts. Thus, the highest opti-
mization potential could be seen for �ows with small cA. Especially for these
applications, T0 should be set to improve the �ow table occupancy, which can
be reached by small T0. This causes �ows to time out and free the �ow table
space sooner, and thus, enables the processing of more applications within in
the network at the same time.

Nevertheless, a too small T0 has to be avoided as this will result in quickly
increasing tra�c at the SDN controller, which puts it at risk of overload. Conse-
quently, our results show that the default value of T0 = 10 s is too large. This is
comparable to the �ndings of Zarek et al. in [24], which proposes a static time-
out value of 5 s. Based on our observations, the best trade-o� could be reached by
decreasing T0 down to 2-3 s. With these values, e.g., the �ow table occupancy of
Skype �ows could be reduced by around 25%, while the controller tra�c would
only slightly increase.

The best results in terms of signaling rate and �ow table occupancy could
be achieved for an application speci�c T0 value, e.g., as presented by Vishnoi
et al. [48]. This, however, renders the requirement for identifying applications
or collecting �ow statistics based on the packet stream, which can pose quite
new challenges. Additionally, the model itself can also be applied to a composed
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network. However, the impact of switch-controller interaction on the packet
inter-arrival times of a �ow are not covered by the current model. How exactly
this a�ects the accuracy in a composed network has to be covered by future
research.

One might argue that the new generation of switches has much bigger �ow
table sizes, and, therefore, the importance of this work could decrease in the
future. But, as the size of �ow tables increase, more �ne-granular �ow rules are
possible, and, thus, the �ow table size could become an issue again.
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Deployments

Software-de�ned Networking (SDN) is an increasingly important technology
that breaks up the ossi�ed structure in networking: it decouples the control from
the data plane of network devices [8]. With this shift in networking, it is possible
to centralize the control plane of many devices into one single software, the
so called controller. This controller opens up many new possibilities, such as a
�exible and programmable management station to steer, control, and monitor
the network.

Providing high availability is and remains one of the biggest challenges of
network management. For the ordinary user, this struggle is only visible through
some magical promise of services with "up to x nines of availability" or is only
discussed if a certain service, e.g. Google, is unreachable or users of a certain
ISP are unable to access the Internet [49]. In the background, providers have to
monitor their services for availability 24/7 in order to ful�ll contracts and SLAs
and not to lose money over it.

The process of monitoring the network, especially for larger deployments,
is very complex and contains many pitfalls, for instance, the balance between
granularity of information and their performance impact on the network. With
the help of SDN this challenge can become easier, as it o�ers new methods,
mechanisms and opportunities. One of the current most important open source
controllers is the ONOS SDN controller [50]. According to its developers, it is
a production ready controller that o�ers high availability due to its logically
centralized and physically distributed architecture. But, as our investigations
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show [6], it is unable to cope with hazardous network conditions such as spo-
radic or recurring packet loss on network links. It either does not detect haz-
ardous conditions or only detects it after long time periods, failing all common
network availability targets. From the technical point of view network monitor-
ing needs con�guration, planning, and constant adjustment in order to guaran-
tee high availability. To enable high availability in the case of failures or errors
of the network, at �rst a fast failure detection is required.

The contribution of this chapter is threefold: At �rst we present a stochastic
analysis of the theoretical detection performance of the ONOS SDN controller
towards link impairing e�ects. Second, we support our evaluation by measuring
the detection performance of the ONOS controller for the case of packet loss in
the data plane. Based on these results it becomes evident that ONOS is unable
to reliably detect packet loss scenarios. Third, we present and design a detection
extension to the ONOS SDN controller. It generates probing messages for each
topology link that are induced into the data plane, and forwarded back to the
controller. There, the message is processed and multiple statistics for each link
can be derived, e.g. link delay or packet loss. If these values surpass con�gurable
thresholds, a noti�cation of an unusable link to the ONOS SDN controller is
generated, triggering a rerouting of a�ected �ows. Additionally, based on the
current measured network conditions, it optimizes its probing process by, e.g.
changing the time between two successive probing packets. Therefore, it always
provides the desired detection performance while automatically balancing the
load on the controller. Forth, we present an evaluation of this probing extension
in multiple scenarios and compare it to the performance of the vanilla ONOS
SDN controller. The �ndings of this chapter are also presented in [6, 7].

Section 3.1 presents related work and the background of the probing networks
with SDN. Section 3.2 introduces a theoretical analysis of the detection mecha-
nisms of the ONOS controller and veri�es it with measurements. Afterwards, in
Section 3.3, the active probing extension is presented and evaluated. Section 3.4
brings up the necessity to adapt to the current network conditions and intro-
duces a suitable extension of the active probing application to cope with these
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network conditions. Finally, Section 3.5 summarizes the content of this chapter
and gives an outlook to further work on this topic.

3.1 Failure Detection in SDN

The remainder of this section is structured as follows: At �rst, a de�nition of
existing approaches towards failure detection and failure tolerance is discussed.
Secondly, background on detection mechanisms in the OpenFlow SDN proto-
col is presented. Finally, existing failure detection and recovery approaches are
listed and discussed. The �ndings of this section form the basis for the further
investigations.

3.1.1 Definition of Fast Failure Detection

Fast failure detection is a cornerstone for high available systems and ensures
that a reaction to a failure can occur in a fast manner. In order to evaluate a
fast failure detection, we �rst de�ne common properties a fast failure detection
mechanism should provide. Second, at �rst, it is a hard requirement to detect
failures within de�ned time constraints. The failures the solution should be able
to detect are node, link, network or controller failure. In our case “failure” includes
anything that imposes a deviation from normal operation of the network, e.g.
device outage, lossy link, or a misbehaving controller. Additionally, failure de-
tection is a fundamental building block for ensuring fault tolerance in large-scale
distributed systems. Its main objective is to reduce the time it takes to detect a
failure. The challenge is to meet carrier-grade requirements with a detection
time of less than 50ms without impacting the data tra�c [51].

3.1.2 Background: Detection Mechanisms in the
OpenFlow SDN Protocol

Current state-of-the-art SDN controllers mostly build up on the limited detec-
tion capabilities of the southbound SDN protocol OpenFlow for their fast failure
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mechanisms [38, 52]. A fundamental part to detect link failures is the LINE pro-
tocol. This protocol detects a direct physical link between two adjacent com-
ponents, and, therefore, is able to detect a physical change in the connection.
In average, the detection time ranges from 50 to 150 ms, and is, therefore, not
suitable for the provider requirements with less than 50 ms of detection time. In
SDN, after the line protocol has detected a failure, a noti�cation is sent to the
controller. This message contains the a�ected switch, the a�ected port of that
switch and the new port status (link down, blocked or live). Consequently, in an
SDN-only network two messages are sent to the controller, one from each side
of the link. Upon receipt, the controller reacts according to its internal speci�-
cations. As the line protocol is already in use for more than ten years, it also has
some limitations. First, it is only able to detect a link failure at one local link.
Second, it cannot detect packet loss or temporary partial failures within the net-
work. Finally, it cannot detect network failures even if each of the used links is
up and running according to the line protocol, e.g. if the routing between two
end hosts in a network is not possible.

Additionally, OpenFlow o�ers capabilities for �ow monitoring. Each
OpenFlow-enabled switch o�ers counters, which store tra�c information in dif-
ferent granularity, e.g. per table, per �ow and per port (for example: byte/packet
count per �ow). The controller queries these statistics in regular intervals. Al-
though o�ering basic statistics, these options also have several limitations. Fre-
quent polling has to be used in order to monitor the dynamics of a �ow. More-
over, in general, polling of statistics induces load on components, for example,
a higher CPU load on the controller or a higher signaling tra�c due to statis-
tic packets. Therefore, these mechanisms are insu�cient for carrier-grade SDN
deployments.

3.1.3 Existing Failure Detection and Recovery Approaches

This section presents related work on the topic of SDN fast failure.
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Reitblatt et al. [53] present a declarative language for writing fault-tolerant
network programs. By using the fast-failover mechanisms provided by the
OpenFlow protocol, it allows network administrator to specify paths through
the network as well as the required level of reliability of these paths. Trinocular
by Quan et al. [54] presented an outage detection system that uses active prob-
ing to understand reliability of edge networks. This approach learns the status
of the Internet with probes driven by Bayesian inference.

Googles well-known B4 network presents probably one of the biggest SDN
architectures [49]. Google uses OpenFlow to control relatively simple switches,
which leverage control at network edges and allow for multipath forwarding.
Additionally, they enable a dynamic bandwidth reallocation in case of link or
switch failure. In order to increase the fast recovery performance, Adrichem et
al. [55] introduced a failover scheme with per-link bidirectional forwarding de-
tection (BFD [56]) sessions with precon�gured primary and secondary paths
computed in advance by an OpenFlow controller. BFD sends probes with a con-
�gurable interval and as soon as three consecutive probes are lost, the link status
is set to down. As long as all links are up, the primary path is always chosen for
�ow routing. As soon as BFD detects a link failure, their recovery process is
divided into two steps: at �rst, the switch itself initiates a fast recovery based
on precon�gured backup rules. Afterwards, the controller is noti�ed and able to
calculate and con�gure new optimal paths. Santos et al. used BFD and OpenFlow
features for failure detection and resiliency in an mmWave meshed testbed [57].
Their results show the impact of the BFD probing interval on the failure detec-
tion time and its impact on the packet loss of active �ows during a failover. In
contrast to the presented approach of this chapter, BFD based mechanisms are
only able to detect link failures.

Packet loss on a data plane link or even link delays are not covered by this
approach. Scalability and fault management are of interest for Kempf et al. [58].
For fast recovery, they postulate that monitoring messages must be sent within a
millisecond interval. They implemented their monitoring function on OpenFlow
switches directly.
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3.1.4 Probing Mechanisms

In general, two types of probing exist: active and passive probing. Passive prob-
ing determines the state of the network by relying on in-network tra�c moni-
tors. For example, by comparing the packet count statistics of a �ow from two
adjacent switches, the packet throughput and the packet loss can be computed.
The advantage of this technique is that no additional measurement overload is
generated in the data plane. The disadvantage is that it is often not as accurate
and fast as the second probing mechanism: active probing. Furthermore, in SDN,
these statistics have to be polled by a central mechanism, e.g. a plugin on the
controller. This leads to additional load on the network and rises the problem of
polling accuracy.

An active probing mechanism, in turn, inserts special probing packets into
the networks data plane, routes them through the network, with its �nal desti-
nation again at the generator. According to the investigated metric (e.g. packet
loss, packet delay, throughput, or congestion), the accuracy of the results and
the resolution in time is higher than it is for passive probing. A non-neglectable
disadvantage of the active probing approach is the induced measurement over-
load in the data plane by the measurement packets. In critical situations, such
as a link overload, each additional packet that has to be transmitted via a link
worsens the e�ect on the data plane tra�c.

3.2 Failure Detection Analysis

This section is dedicated to the analysis of the performance of active probing.
On the example of ONOS we evaluate the detection times, consequently, we
need to start by considering the theoretical limits of its approach of time-out
based probing. Afterwards, we measure the performance of our application in
our testbed for the case of packet loss in the data plane.
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Figure 3.1: Probing process of one link.

3.2.1 Detection Time Analysis

In order to identify best probing rate, the current ONOS implementation is an-
alyzed. To monitor a link ONOS sends probes with a �xed rate λ as shown in
Figure 3.1. After each arrival of a probe a timer is reset to zero. The ONOS im-
plementation detects a link failure and sends a link failure event if the timer
exceeds a threshold θ (see Figure 3.1). To analyze the performance of the prob-
ing mechanism we use A as random variable (RV) for the inter-arrival time of
probes. We consider the packet loss probability p as the probability that a probe
is lost. Due to the loss of probes and the network dynamics the process of suc-
cessful probes that arrive at the controller di�ers from the inter-arrival process
of probes. Therefore, we use A′ as RV for the inter-arrival time of successful
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probes, withE[A′] ≥ E[A]. The probability of a link failure event is then given
by

pfail = P (A′ > θ) = 1− P (A′ ≤ θ) = 1− FA′(θ) , (3.1)

where F ′A(t) is the cumulative distribution function of RV A’. The mean de-
tection time of a failure is calculated by considering the number of successful
probes X that arrive at the controller until the �rst successful probe comes late
with probability pfail. Considering that a failure event is triggered if A′ > θ,
the mean detection time can then be calculated by

tdetect = E[X]min(E[A′], θ) =
1

pfail
min(E[A′], θ) . (3.2)

Since X follows a geometric distribution with parameter pfail, which has
expected value E[X] = 1

pfail
. If the probes are sent with a constant rate λ,

as in the ONOS implementation, the inter-arrival time of probes A is 1
λ

with
probability 1. In this case the inter-arrival time of successful probes A′ can be
calculated by considering Y as RV for the number of probes that are sent to the
controller until a probe successfully arrives at the controller with probability
(1− p). Y follows a geometric distribution with parameter (1− p) and has the
CDF FY (k) = 1 − pk and expected value E[Y ] = 1

1−p . Since the probes are
sent with constant rate λ, we can calculate A′ by A′ = Y · A = Y · 1

λ
, with

E[A′] = E[Y ] · 1
λ

= 1
1−p ·

1
λ

and FA′(t) = 1− pbt·λc.

Hence, in this case the probability of a link failure is

pfail = 1− F(A
′)(θ) = pbθ·λc (3.3)
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and the mean detection time is

tdetect(p, θ, λ) =
1

pfail
min(E[A′], θ)

=
1

pfail
min(

1

1− p ·
1

λ
, θ)

=
1

pbθ·λc
min(

1

1− p ·
1

λ
, θ) .

(3.4)

Based on the con�guration parameters of ONOS, a calculation of multiple
metrics is possible. In the following, two metrics will be evaluated: the mean de-
tection times and the detection probability. The mean detection time describes
the time interval between the con�guration change of a link, e.g. from 0% packet
loss to 5% packet loss, and the point ONOS is actually recognizing it. Link detec-
tion probability describes the probability ONOS is able to detect packet loss on
a data plane link. Variable input parameters are the probing frequency λ, how
often a probe is sent through a link per second, and the time-out θ, the number
of probing packets that are required to be lost consecutively in order for ONOS
to detect a link failure.

Figure 3.2 shows the probability pfail of the ONOS detection module to rec-
ognize a change in the links status. The x-axis depicts the data plane packet loss
probability, the y-axis the probability an event is recognized by ONOS. Three
probing frequencies are shown. From left to right: 1/3 s, 1/2 s and 1/1 s. The time-
out has been set to θ = 9 s. For the default probing frequency of 1/3 s, the results
show the highest detection probabilities. If the probing frequency is increased,
a higher number of consecutive probes have to be lost so that the timeout is
exceeded. Hence, for a �xed time-out, the probability of ONOS to trigger a link
failure event decreases with the probing frequency. In order to detect link fail-
ure events with high probability for high probing frequencies, the time-out has
to be reduced with the probing frequency.

Figure 3.3 shows the probability of a link failure event pfail dependent on the
packet loss probability for a �xed probing rate 1/3 s and di�erent time-outs 3 s,
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Figure 3.2: Calculus - detection probability for varying probing rate λ.

6 s and 9 s. The probability of a link failure event increases with the probability
that a probe is lost. With increasing time-out the probability of a link failure
event decreases, since a higher number of consecutive probing packets have to
be lost so that the time-out is exceeded. If the time-out is set lower than the
inter-arrival time of probes θ = 1

λ
, a link failure event is triggered after each

probe. Hence, to maximize the probability of a link failure event given a probing
rate, the time-out is set to θ = 1

λ
.

Figure 3.4 shows the mean detection time calculation for a variable probing
frequency and two time-out values. On the x-axis the data plane packet loss
probability is depicted, the mean detection time by ONOS in seconds is depicted
on the y-axis. The solid line always depicts a probing frequency of 1/3 s, the
dashed line a frequency of 1/2 s, and the dashed and dotted line a frequency of
1/1 s. Results in black have the time-out set to three times the probing frequency,
for results in blue the time-out is set to one time the probing frequency. Appar-
ently, ONOS mechanisms do not perform very well in this scenario. Only for
data plane packet loss values larger than 45%, the mean detection time is less or
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Figure 3.3: Calculus - detection probability for varying time-out θ.

equal to a minute. Increasing the packet loss further also decreases the detection
time. But still at 100% packet loss the detection time is still at more than 10 s.
Increasing the probing rate from 1/3 s to 1/2 s also decreases the detection time.
Here, mean detection times of less than 60 s can be found for a packet loss value
of circa 35%. For 100% packet loss the mean detection time is around 8s. Finally,
for a probing frequency 1/1 s, the mean detection time decreases even further.
Here, for packet loss values around 25% lead to a detection time of around 60 s.
The �nal detection time for loss values around 100% is less than 5 seconds. De-
creasing the time-out value to the probing frequency also drastically decreases
the detection time. Here, already for values below 10% of packet loss, detection
times below 60 s can be found. Again, increasing the probing frequency leads
to better results, but this time the improvement is smaller in comparison. The
evident kink at 70% is caused by the minimum function in equation 3.4.
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Figure 3.4: Calculus - mean detection time.

3.2.2 Practical Performance Evaluation

Figure 3.5 shows the testbed used for the measurements of this section. One
physical server is running Mininet to emulate a SDN topology of four switches.
The topology of the testbed is a ring topology with four switches. To each of the
switches one simulated host is connected. Two physical servers form the ONOS
controller cluster. The switches are load-balanced between these two nodes, i.e.
one controller node controls two switches.

In order to test the detection capabilities of ONOS for the packet delay, packet
loss is con�gured on the data plane link between Switch 1 and 2. To be able to
determine the reactions and their delay, the signaling tra�c between the con-
trollers and their connected switches is recorded and evaluated after each run.
Analyzing these traces allows us to calculate the mean reaction time and the
detection probability of each scenario.

In this section we evaluate the detection capabilities of ONOS for the case of
packet loss based on measurements. Finally, we compare these results with the
predicted performance presented in Section 3.2.1.
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Figure 3.5: Testbed overview.
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Figure 3.6: Number of successful detections for the ONOS controller for the case of
packet loss.
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In Figure 3.6 the detection probability of the ONOS controller for multiple
packet loss values is depicted. The x-axis shows the con�gured packet loss in
the data plane, the y-axis the detection probability after 10 measurement repeti-
tions with a measurement duration of 120 seconds each. The blue bars visualize
the measurement results, the black line show the according model results of Fig-
ure 3.2 with σ=9 s and λ=1/3 s for comparison. These measurement results only
begin after a con�gured packet loss value of 30% as ONOS is unable to detect
any change in the inter-connection of the connected switches for lower values.
Taking a look at Figure 3.4 a�rm these results, as the expected mean detection
time for packet loss below 35% is beyond our measurement duration of 120 s.
Beginning with 40% packet loss ONOS slowly and unreliably begins to detect
the change in the link quality with a detection probability of 10%. Increasing
the packet loss further to 50% and 60%, the detection probability rises to 20%
and 30%. For packet loss values beyond 70% ONOS is able to reliably detect a
change in the network conditions with a detection probability of 90%. After that
the detection probability remains at 100%.
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Figure 3.7: Mean reaction time of the ONOS controller for the case of packet loss.
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Figure 3.8: Composition of the measured reaction time.

Figure 3.7 shows the mean reaction time of the ONOS controller in this mea-
surement scenario. The x-axis shows the range of measured packet loss values.
The y-axis depicts the mean reaction time in seconds, respectively. Each result
is shown as a yellow bar, additionally, 95% con�dence intervals are shown in
red. For the purpose of comparison, the calculated model values are shown as a
black line. As these results have been derived from the same measurements as
the ones from Figure 3.6, there are no results for the mean reaction time for 30%,
depicted here as a bar �lling the whole height of the �gure. With a con�gured
packet loss value of 40%, ONOS takes 105 s to detect a change in the data plane.
For 50% packet loss, the reaction time decreases to around 60 s. A packet loss of
60% leads to reaction time of around 45 s. 33 s are required for a detection of 70%
of packet loss in the data plane. Further increasing the packet loss value from
80% to 100% leads to a decrease of the reaction time to 20 s, 10 s, and 8 s. As the
con�dence intervals show, di�erent variances of the reaction time have been
recorded. Throughout the results, all con�dence intervals are small, indicating
a low variance of the results

Comparing these measurement results to results with the model in Sec-
tion 3.2.1, it con�rms our theoretical analysis. However, for the detection time
an o�set between measurements and model can be seen. This can be attributed
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to the di�erence in the two displayed metrics: detection time vs reaction time.
With the detection time tdetect, we express the time the internal detection mech-
anisms of ONOS require to realize that a link is exposed to hazardous conditions.
The reaction time treact, as depicted in Figure 3.8, actually can be expressed as
a sum: treact = tdetect+ tcalc, where tcalc identi�es the time ONOS requires to
calculate a the reaction to the detected event. Within our testbed we are unable
to measure tdetect directly, therefore, we only capture treact.

3.3 Towards an Active Probing Application for the
ONOS SDN Controller

As observed in the last section, ONOS, in its current version, is unable to meet
service provider requirements in certain scenarios. As the approach of ONOS
has several shown limitations, we n to create a new detection application for
the ONOS controller that increases the detection performance for the case of
packet loss in the data plane.

First, before designing the application, required features have to be de�ned.
The new probing application should be able to detect packet loss and link delay
in the data plane by using an active probing mechanism. As we rely on the ONOS
controller, the app should be designed to interact with it using the Northbound
API. This API o�ers a well-de�ned interface between additional applications,
such as our detection mechanism and the connected network devices. The con-
troller o�ers information on the status of the devices, for example �ow tra�c
statistics, and transforms actions from an application into device-speci�c com-
mands, e.g. the creation of a route between two hosts using multiple switch hops.
As the controller is the "brain" of an SDN, and most network operation comes
to a halt without it, the application should not generate a utilization overhead
on the controller resources such as CPU load or memory utilization.

The remainder of this section features a description of the general concept of
the application, and gives insights into the most important components, such
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as the structure of the probing packets and how the algorithm is implemented.
Finally, its functionality and performance is evaluated with measurements in a
testbed.

3.3.1 Concept of the Application

Figure 3.9 shows the schematic concept of the application. On top, the active
probing application is depicted, at the bottom the controller. After the activa-
tion of the probing application, the initial con�guration is loaded and the cur-
rent topology known to the controller is requested 1 . Based on this topology,
the application now selects a new link between two data plane devices for the
probing process 2 and automatically generates a new probing packet 3 . This
packet is then handed over to the controller via the Northbound API. The con-
troller then injects this packet through its Southbound API into the data plane
4 . At the sink of the link, the probing packet is automatically redirected to the

controller, which, in turn, passes this packet to the active probing application
5 . The application now processes this packet and updates the links properties,

e.g. the packet loss and the link delay 6 . If one of these properties exceeds a
threshold, for example the packet loss is greater than 10%, a noti�cation is trig-
gered and sent to the controller via the Northbound API 7 . The controller then
is able to calculate an appropriate reaction, e.g. recalculating the routes of �ows
that traverse a link with bad quality.

3.3.2 Probing Packet Structure

For each link, an INFO3LLDP probing packet is sent each prede�ned probing in-
terval. The packet structure expands the IEEE 802.AB LLDP standard [59]. The
exact structure consists of an Ethernet frame, a number of mandatory LLDP
TLVs (Type-Length-Value), an optional TLV list, here depicted as LS3 Content
and �nally an "end of LLDP" TLV, see Figure 3.10. Setting the destination MAC
address of the Ethernet frame to a special multicast address, and the EtherType
of this packet to 0x88cc ensures that network devices receiving this packet are
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Figure 3.9: Schematic concept of the application.

Figure 3.10: LS3LLDP packet structure.

able to handle it. Each of the TLVs, regardless of mandatory or optional, has
three �elds. Field 1 is the type of the TLV with 7 bits (e.g. 1 for chassis id or 2

for port id). Field 2 is 9 bits wide and describes the length of the following value.
Field 3 is the actual value with a length ranging from 0 (minimum) to 511 (maxi-
mum) bytes. This structure is used for each TLV, even for the optional TLVs and
the "end of LLDP" TLV. The mandatory TLVs include the chassis id, the port id,
and the time-to-live. For the advanced purposes of our probing application, we
use optional TLVs with a unique OUI (organizationally unique identi�er), in or-
der to identify as packets generated from our application, and multiple subtypes
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followed by a value. These subtypes are device id, name, departure time, packet
id, and packet mode. The device id identi�es the source switch of this packet.
The name �eld is used to identify this packet as an INFO3LLDP packet. The
departure time �eld is set to the system time of the host of this packet at the
time of creation and is used to calculate the transmission time of a packet upon
reception. The packet id is incremented for each packet and is used to deter-
mine packet loss on a link, as explained later on. The e�ect of the packet mode
will also be described below. In order to transmit multiple values (e.g. the whole
set) via one single LLDP packet, for each information a new TLV is created and
attached to the packet.

3.3.3 Implementation of the Application

As soon as the extension has been activated, it creates multiple internal data
structures for each link. For each link of the topology, the following data is stored
within the application:

� Link History: saves the history of probes, tracks packet loss and link
delay

� Outstanding: a list that tracks probe packets that are currently in trans-
mission

� Requested: a list that tracks requested emergency probe packets

Each entry of the Link History saves the following data: id of the source port
including the switch, id of the target port (including the switch it belongs to),
a list of the last 300 received probing packet ids, the timestamp of the last re-
ceived packet, and a time-out which describes when the next probing packet is
expected.

Figure 3.11 depicts an overview on the interconnections of the di�erent parts
of the active probing application. In total, there are �ve parts in the application:
the Sender, the Receiver, Update History, Control, and Emergency Probing. In the
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Figure 3.11: Interconnections between the parts of the application.

top middle of the �gure there is the Sender. It regularly generates and trans-
mits probing packets for each link of the topology. The Receiver is at the middle
left of the �gure. Its purpose is to receive incoming packets and decode their
information. Depending on the packet type the information is passed on to Up-
date History, or to Emergency Probing. Update History receives the information
of one probing packet at a time and updates the corresponding statistics. If any
threshold is exceeded, a noti�cation to the controller is triggered, depicted by
the red Notify Controller box in the �gure. The Control part at the top right reg-
ularly checks for each link if the probing time-outs are within their limits. If a
deviation from these thresholds is detected, the link is put under investigation
in Emergency Probing, shown in the middle of the �gure. Here, the Sender gen-
erates and transmits "emergency" packets. If these packets do not arrive within
a time-out, the link under investigation is considered down and a noti�cation
to the controller is triggered. If these packets arrive, the investigation status is
canceled and the probing packets are passed on to Update History. The exact
functionality and procedure of each part is explained in detail in the following.

Sender Figure 3.12 shows the details of the Sender. Regularly for each link, a
probe is generated and transmitted using the ONOS northbound API. In order
to be able to track the probes, the time of its transmission is recorded and a new
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Figure 3.12: Flowchart of the sender.

entry containing the packet id is added to the Outstanding list of this link is
added. The other function of this part is to generate emergency probing packets
for a speci�c link on behalf of the Emergency Probing part. The procedure is
similar to the �rst one, the only di�erence is that these packet ids are added to
the Requested list.

Receiver & Update History In Figure 3.13 the internals of the Receiver are
depicted. As soon as a probing packet is received by the probing application, the
information of the packet is decoded and the reception time is recorded. Out of
this information, a new link object is created. If this link object is found in the
Outstanding list of a link, this object is removed from the list and the information
is passed on to Update History procedure. If this object is not found in this list, a
match is searched for in the Requested list. If a match is found, the information is
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Figure 3.13: Flowchart of the receiver.

passed on to the Emergency Probing part of the application. If no match is found
in both lists, the packet is discarded.

As soon as a probing packet is passed on to Update History, shown in Fig-
ure 3.14, the packet id is put into the list of the last received packet ids and the
link latency now is calculated via the di�erence of reception and transmission
time. Based on the list of received packet ids, the packet loss rate of a link can
be calculated. The list always contains 300 entries, where the �rst entry is the id
of the oldest received packet, the last entry indicates the id of the last received
probing packet. As soon as a new packet is received, it is put at the end of the list
and the �rst entry is removed. Now, based on the di�erence of the last packet id
and the �rst id in the list, one can be calculate how many packets have actually
been received.
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Figure 3.14: Flowchart of the history update procedure.

An example is illustrated in Figure 3.15. Here, the last packet id is 345, the
oldest is 15. The di�erence of both ids is 330. As the length of the list is 300, the
packet received rate is 300/330 = 0.91. Therefore, the packet loss rate is 1-(packet
received rate) = 1 – 0.91 = 0.09.

Afterwards, it is checked whether all thresholds for all metrics are not ex-
ceeded. If a transgression is found a noti�cation to the controller is triggered.

Control & Emergency Probing In the Control part of the application, as
shown in Figure 3.16, each link is additionally regularly checked for exceeded
time-outs. Therefore, the oldest entry of the Outstanding list of each link is
checked for its transmission time. If the application does not receive a probing
packet for a prede�ned time-out θ, the link is put under investigation and the
Emergency Probing procedure, depicted in Figure 3.17, is triggered: more probe
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Figure 3.15: Exemplary packet history.

packets are sent via this link within a short period of time. If these packets are
received within a prede�ned time interval, the above progress for the recep-
tion of a probing packet comes into play, c.f. Receiver, and this investigation is
stopped and the probing process returns to its normal mode of operation. If not,
this link is considered down and its updated status is forwarded to the controller
which then is able to take appropriate actions, e.g. to adopt the routing of the
installed �ows.

3.3.4 Evaluation of the Benefits of the Active Probing
Extension

After designing and implementing this application its functionality and perfor-
mance has to be evaluated. Therefore, measurements comparing the detection
performance of ONOS with its own detection application and with our new ac-
tive probing application have been conducted. For this purpose the introduced
testbed of Section 3.2.2 has been used again. The only di�erence is in the con-
�guration of ONOS. For scenarios evaluating the active probing application, the
vanilla detection application has been disabled and, accordingly, the new prob-
ing app has been installed and activated. The settings of the application were
con�gured to a probing rate of 30 ms and a time-out θ of 100 ms. For the vanilla
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Figure 3.16: Flowchart of the control thread.

application the default values of a probing rate of 3000 ms and a time-out θ of
9000 ms were kept.

At �rst we will investigate the resource utilization of the application in com-
parison to a vanilla ONOS con�guration. Afterwards, the enhanced detection
performance is evaluated using di�erent scenarios and con�gurations. The pre-
sented data represents the mean values of 10 repetitive measurement runs. If
not mentioned separately, a packet loss value of 10% has been con�gured in the
data plane.

Resource Utilization

Figures 3.18 and 3.19 show the resource utilization on side of the controller
host with and without using the active probing application. Of course, the mea-
surements contain the collection of the statistics from both servers. However,
our investigations have shown that their behavior only di�ers marginally, and,
therefore, it is su�cient to display only the results of one of the hosts. The red
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Figure 3.17: Flowchart of the emergency probing.

line displays the usage without the application, the blue line the usage with the
application installed and activated. Figure 3.18 shows the mean CPU utilization
during the whole time of the measurement. The x-axis depicts the measurement
time in seconds, the y-axis the mean CPU usage in percent. Both measurements
show only a small CPU usage varying between 1 and 3% throughout the mea-
surement. Additionally, the measurement with the extension enabled is only
marginal higher than the one without.

Figure 3.19 shows the mean memory usage with and without the active prob-
ing application. The x-axis shows the measurement time in seconds, the y-axis
the memory usage in megabytes from 0 to 1200 MB. Again, only a small di�er-
ence is noticeable: whereas the measurement without the probing application
starts at 1000 MB and slowly decreases to a �nal value of 950 MB, the measure-
ment with the app activated requires 1050 MB and slowly decreases to 1000 MB.
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Figure 3.18: Mean CPU usage with and without the active probing application en-
abled.

Nevertheless, as the host of this controller instance has had a total of 16 GB of
memory available, both memory usages do not carry any weight.

Looking at the resource utilization, the goal of not overloading the controller
host with our application has been accomplished. For the case of the CPU load,
the utilization more or less remains the same. For the case of the RAM load,
the usage even is smaller than before. The reasons for this behavior are sim-
ple: Whereas the vanilla ONOS probing mechanism creates instances for each
connected switch, our application only runs one instance per controller host.
Therefore, less RAM is required.

Detection Performance

In order to determine the detection rate and the detection time, the threshold
for the application has been set to the corresponding packet loss value con�g-
ured in the data plane. As soon as a the Update History procedure noti�es the
the controller, the successful detection is logged and the detection time is calcu-
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Figure 3.19: Mean RAM usage with and without the active probing application.

lated. Figure 3.20 shows the detection rate of the active probing interval after 10
runs with a measurement time of 120 seconds each. The x-axis displays multiple
con�gured data plane packet loss values, ranging from 3 to 50%. The y-axis dis-
plays the detection rate in percent. For this scenario, the packet loss threshold of
the application has been set to the corresponding packet loss value con�gured
in the data plane. As soon as For the lowest packet loss values of 3 and 5%, the
probing application o�ers a detection rate of 10%. For 10% and 15% packet loss
the detection rate increases to 70%. A detection rate of 90% has been measured
for the packet loss values between 20 and 30%. Beyond that packet loss rate the
application is in 100% of the cases able to detect the con�gured packet loss in
the data plane. There is a trade-o� between detecting all packet loss rates and
generating not too much additional tra�c.

In Figure 3.21 the reaction times of the active probing application for mul-
tiple packet loss values are depicted. The x-axis shows the packet loss values
ranging from 3 to 50%, the y-axis the reaction time in seconds. Beginning with
a detection time of around 96 seconds for 3%, the detection time continuously
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Figure 3.20: Detection rate of the active probing application.

decreases with an increasing packet loss value. For 5% the reaction takes place
within 85 seconds. 10% of packet loss is detected within 47 seconds, 15% within
42 seconds, 20% after 40 seconds. Roughly 37 seconds required to detect 30%
of packet loss, 29 seconds for 40%, and, �nally, 50% of packet loss are detected
within 19 seconds.

In summary, the results of Figures 3.20 and 3.21 demonstrate the increased de-
tection performance of the active probing application. In terms of detection rate,
the new application surpasses the performance of the native ONOS detection
mechanism. Our model, and the provided measurements, in Section 3.2 show a
detection probability of 10% for a packet loss probability of 40%. The new appli-
cation, in comparison, already o�ers this detection rate for packet loss values of
3%. Additionally, the detection times have decreased as well. Before implement-
ing the active probing mechanism, the detection time for packet loss value of
40% was around 100 seconds. After the successful implementation of the app,
the detection of this link status is already possible after 29 seconds. Reviewing
the resource utilization on side of the controller host also reveals that the goals
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Figure 3.21: Reaction times with the active probing application enabled.

in terms of overhead have been kept. The new application o�ers a better detec-
tion performance whilst requiring the same or even less CPU or RAM usage.

3.4 Adapting to Change

The proposed mechanisms for the active probing application does not yet con-
sider one parameter that requires consideration: the constant change in the net-
work, especially the variance in the packet inter-arrival times, i.e. the jitter. The
remainder of this section focuses on how jitter does impact the probing process
of the native ONOS detection mechanisms, how the new active probing appli-
cation is also a�ected by it. Finally, a mechanism to cope with this is proposed
and its performance is evaluated.
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Figure 3.22: Probing process with false positive caused by jitter.

3.4.1 False Positive Failure Rate

The results from Section 3.2.1 show that the mean detection time of a link failure
indicated by packet loss depends on the probing rate λ and the time-out θ. As
shown in Figure 3.22, the jitter on the link scatters the arrivals of the successful
probes at the controller. On a link with no packet loss the inter-arrival time of
two successful probing packetsA′ can also exceed the time-out, due to jitter on
the link. Hence, in this case a false positive link failure event is triggered even if
no packet is lost. These false positive link failure events need to be avoided, as
they would interrupt the operation of a healthy system. Especially, if the probing
frequency is high, a too low time-out θ can lead to false positive link failures due
to jitter.

In order to evaluate the rate of false positive link failures, we implement a
Monte-Carlo simulation that simulates the probing process of one link. The sim-
ulation time is T , probes are sent with rate λ and are dropped with probability
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Figure 3.23: Rate of false positive link failure events caused by jitter.

p. Each probe is delayed by a normal distributed random time with parameters
(0, σ). The probing time-out is θ.

As performance metrics we consider the rate of link failure events

ffail =
1

T

∑
i>0

Xi,

where Xi =

1 t′i − t′i−1 > θ

0 else
.

(3.5)

In case of p = 0 %, ffail is also the rate of false positive link failure events.
Figure 3.23 shows the rate of failure events for 0% packet loss, i.e., the rate of

false positive link failure events caused by jitter. The probing rate is 1/100 s−1,
and the time-out is varied relative to the average inter-arrival time of probes 1

λ
.

The results show that a small time-out θ leads to high false positive rate. This
leads to a high probability of �apping of the link status. With increasing jitter a
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Figure 3.24: Rate of false positive link failure events for Equation (3.6).

longer time-out θ is necessary to keep the rate of false positive link failures low.
Hence, for e�ective operation with a low rate of false positives, the time-out θ
has to be set depending on the jitter on the link. As rule of thumb the time-out
θ can be set using a margin of 2 times the jitter:

θ := 2E[A] + 2σ = 2/λ+ 2σ . (3.6)

Figure 3.24 shows the rate of false positive link failures for the rule of thumb
setting for 100 and for 10 probes per second. The result shows that using the rule
of thumb setting the less than one false positive link failure event is triggered
every 10 seconds.

The minimum value for the time-out θ can be calculated by evaluating the in-
verse cumulative distribution function of a normal distribution N−1

1/λ,θ(p) with
mean 1

λ
and standard deviation σ depending on the tolerated false positive rate

f̄fail:
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θmin(λ, σ, f̄fail) = N−1
1/λ,σ(1− f̄fail) . (3.7)

3.4.2 Automated Probing Rate Adaptation in the App

As shown in the previous Section 3.4.1 the time-out θ has to be increased de-
pending on the jitter on the link to ful�ll a certain target rate of false positive
link failure events. To ful�ll a certain target detection time, as shown in Sec-
tion 3.2.1, the time-out θ can be reduced or the probing rate λ can be increased,
which in turn a�ects the rate of false positive link failures. Hence, there is a
trade-o� between a low rate of false positive link failure events and a low fail-
ure detection time. To keep the load on the controllers low, the probing rate
has to be minimized. Therefore, we propose an algorithm for a self-optimized
process that meets the target rate of false positive link failure events f̄fail and
the target mean detection time t̄detect given the tolerated packet loss rate p̄ and
minimizes the controller load.

Algorithm 1 Probing Rate Adaption
1: procedure probing rate adaption
2: input parameters:
3: tolerated packet loss rate p̄
4: tolerated false positive rate f̄fail
5: target detection time t̄detect
6: variables:
7: jitter σ
8: probing frequency λ
9: time-out θ

10: start:
11: determine θ(λ, σ, f̄fail) based on Equation 3.7
12: calculate expected detection time tdetect(p̄, θ, λ) based on Equation 3.4
13: set probing frequency λ := λ · tdetect(p̄, θ, λ)/t̄detect
14: go to start
15: end procedure
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At �rst, the new time-out θ is calculated according to Equation 3.7. After-
wards, by using the new time-out, the new expected detection time is calculated
according to Equation 3.4. Finally, the new probing frequency is set to the old
probing frequency times the division of the new expected detection time by the
detection time at the beginning of this iteration. Afterwards, the process restarts
at the beginning, and, therefore, is always adapting to the current network sit-
uation.

3.4.3 Integration with the Active Probing Application

In order to take advantage of the proposed auto-adapting algorithm, it has to be
implemented and integrated with the already existing active probing applica-
tion. The currently only missing information inside the application is the current
network jitter. The probing frequency and the time-out are both con�guration
parameters that can be read from the application. The target variables tolerated
packet loss rate p̄, tolerated false positive rate f̄fail, and the target detection time
t̄detect are input parameters that will be loaded upon start-up of the application.

The app already measures the one-way latency of each connected link with
each transmitted probing packet. Therefore, to determine the network jitter,
only a new data �eld has to be created that stores the di�erence in link delay
from one measurement point to the next one. The remainder of the implemen-
tation is putting together the data and implementing Algorithm 1.

Figure 3.25 shows the new optimization cycle of the application. The active
probing extension measures the packet delay, the packet loss and the jitter of a
link of the network topology. These values are then put into the algorithm. Based
on the prede�ned con�guration parameters, the algorithm then calculates a new
probing frequency and a new probing time-out for the current environment con-
ditions. This output is then used to modify the actual probing frequency and the
probing time-out of the active probing extension. As network environment pa-
rameters such as link delay, network jitter, and packet loss tend to change over
time, this whole optimization process is repeated regularly.
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Figure 3.25: Implementation of the self-adaption mechanism.

3.4.4 Evaluation

In order to highlight the advantages of the self-optimization algorithm, mea-
surements with and without activated self-optimization have been conducted.
In order to proof the functionality of the auto-optimization feature of the active
probing application new measurements have been performed. Again, the testbed
of Section 3.3.4 has been used, now with the additional auto-optimization fea-
ture.

At �rst the actual adaption of the probing rate under changing jitter levels
is investigated. In this scenario, the probing interval for the probing extension
without the optimization has been set to 100 ms and the time-out-factor to 3.
Figure 3.26 shows the jitter interval in orange, the probing interval for mea-
surements without the optimization algorithm enabled in blue and the probing
interval for measurements with the optimization algorithm enabled in red. In
this scenario, the jitter level changes each 50 seconds. For the �rst 50 seconds
the jitter level is at almost 0 ms. For the time interval of 50 to 150 seconds, the
jitter is increased to 10 ms for 50 to 100 seconds, and to 20 ms for 100 to 150 sec-
onds. Afterwards, the jitter level is relaxed to 0 ms, before it is increased to 50 ms
for seconds 200 to 250. After another 0 ms jitter phase from 250 to 300 seconds,
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Figure 3.26: Impact of jitter on probing interval.

the jitter is increased to 100 ms for 50 seconds. For the remaining measurement
time the jitter is again reduced to 0 ms.

With the probing interval of the probing extension without the optimization
the change in the jitter level does not impact it in any way. The probing interval
is constantly at 100 ms. The optimized version, in contrast, shows an adoption
to the changed networking environment. As the probing extension has been set
to a desired detection time of 300 ms, the probing interval at �rst is at 300 ms
and the time-out factor at 1.0, leading to a time-out value of 300 ms. With the
detection of the rise in jitter, the algorithm now changes the probing interval
to 296 ms and the time-out factor to 1.043. This small change can be a drastic
di�erence in the actual reaction time if a failure happens with such environment
parameters. As introduced in Section 3.4.1, a small change in the jitter level can
have a huge impact if the probing extension does not react to it. As soon as the
jitter increases, the time-out factor increases as larger time-outs lead to reduced
false positive rate of link failure events. Additionally, as demonstrated later on,
this change in the probing frequency has an impact on the resource utilization
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Figure 3.27: CPU usage both with and without the optimization algorithm enabled.

of the controller host. The rise of the jitter level from 10 to 20 ms at 100 seconds
leads to a changes of the proving interval to 276 ms and only has a minor impact
on the time-out factor. For the reset of the jitter to 0 ms, the interval and the
time-out factor again are set back to 300 ms and 1.0. Increasing the jitter level
to 50 ms decreases the probing interval to 247 ms and the time-out factor to
1.259. For the �nal jitter level of 100 ms the optimization result sets the probing
interval to 186 ms and the factor to 1.689. Throughout the whole measurement
the adaption time of the optimization mechanism is in mean 3 seconds. This
factor is in�uenced by two factors: First, the probing extension has to detect the
jitter level, which takes some time, as probing packets have to be transmitted,
received and analyzed. Second, as we use multiple controllers, a synchronization
between these two nodes is required. For this setup, the synchronization time
has been set to 5 seconds. Decreasing these values is possible, but would not
necessarily increase the detection performance.

Figure 3.27 shows the CPU usage for above scenario. The CPU usage for the
controller host without the optimization algorithm enabled is shown in blue,
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Figure 3.28: Reaction times to packet loss events both with and without the opti-
mization algorithm enabled.

the usage with the optimization Algorithm enabled is shown in red. Here, the
previously mentioned di�erence in the CPU usage is visible. Without the opti-
mization, the CPU usage is always in between 8 and 11%, with the exception of
a few peaks. With the optimization enabled, the CPU usage is lower throughout
the measurement, with values between 3 and 8%. Each time the probing interval
is increased, the CPU load is reduced, and vice versa. The memory utilization
for both with and without the optimization has also been analyzed. But, as the
measurement showed little to none di�erence in the results, they are not shown
here. The memory utilization was at levels that have been shown in Section 3.3.4.

In order to measure the detection time for the case of link failure in the data
plane, the scenario settings have been changed. The optimization algorithm cal-
culates a probing interval of 208 ms and a time-out factor of 1.2. For the non-
optimized variant, a probing interval of 100 ms and a time-out factor of 3 is
chosen. As the actual packet loss in the data plane has no impact on the opti-
mization process, the calculated parameters remain constant. In Figure 3.28 the
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reaction times for both with and without the optimization algorithm are com-
pared. For this scenario, the topology is set up and running without any packet
loss for 150 seconds. Afterwards, as introduced in Chapter 4.1, packet loss is
added to the link between switch 1 and switch 2. Finally, the network is set back
to 0% packet loss for the next measurement. The x-axis of Figure 13 shows mul-
tiple packet loss values from 5 to 40%, the y-axis shows the detection time to a
packet loss event in seconds. The values for the probing extension without the
optimization algorithm are depicted in blue, the results with the optimization
algorithm in yellow, respectively. In red 95% con�dence intervals are shown.

For the 5% packet loss value, the non-optimized probing extension requires
28 seconds to detect a change in the data plane link, whereas the optimized
variant reduces the detection time to 14 seconds. For 10% packet loss, the de-
tection times of both variants are reduced. Here, the probing extension without
the optimization enabled requires 19 seconds to detect a rise in the packet loss
of a link. Enabling the optimization algorithm reduces the detection time to 12
seconds. Increasing the packet loss to 15% would decrease the detection times
to 17 and 8 seconds for the active probing extension with disabled and enabled
optimization algorithm. For 20%, the reaction time only decreases marginally
for both optimization settings: the packet loss is detected in 15 seconds with-
out the optimization, and stays at 8 seconds with the optimization. Increasing
the packet loss to 30% and 40% further decreases the reaction times. The stan-
dard probing extension without any optimization algorithm requires 12 and 10
seconds. Enabling the optimization mechanism decreases these times to 7 and
5 seconds. Overall, the measurements present the expected results. In all cases
increasing the packet loss decreases the reaction time.

Furthermore, the optimization algorithm constantly outperforms the non-
optimized version of the probing extension. The decrease of the reaction time
for increasing packet loss can be explained by the mechanism of the active prob-
ing extension. In order to detect packet loss on a link three consecutive packets
have to be lost. Therefore, increasing the packet loss increases the probability of
three consecutively dropped packets on a link. This phenomena has been intro-
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duced an explained in Section 3.2. It also explains the performance gain of the
optimization algorithm. The optimization algorithm analyzes the con�guration
parameters and calculates a suiting probing interval and time-out. In order to
optimize the reaction time for the case of packet loss, it reduces the time-out.
With this setting less than two consecutive packets have to be lost to trigger a
detection, which has a higher probability of three consecutively dropped pack-
ets.

Overall, the performance gains of the optimization mechanism are as ex-
pected. With normal network environment parameters, close to 0% packet loss
and 0 ms of jitter, the algorithm relaxes the probing interval and, therefore, re-
quires less CPU resources. Furthermore, under harder network conditions, the
optimization algorithm detects a challenging situation and decreases the prob-
ing interval in order to increase the detection performance.

3.5 Lessons Learned

Software-de�ned Networking is gaining momentum since its introduction at the
end of the last decade. Through its decoupling of the control and the data plane
of network devices, it is possible to con�gure the network in a very �exible and
central manner. These advantages lead to an interest by service providers. But,
before migrating to a new technology, providers have to be ensured that, despite
the possible advantages, their reliability and availability requirements are met.

One of the currently most important SDN controllers is ONOS. According to
the ON.Lab, the company developing this controller, it is very reliable and pro-
duction ready. In this chapter we theoretically analyzed the capabilities of the
detection mechanisms of ONOS and veri�ed this analysis by exemplary mea-
surements. According to the presented results, the implemented mechanisms
only provide an unreliable detection and is therefore unable to ful�ll the re-
quirements of service providers. For example, it can take more than one minute
to detect packet loss values of 50% in the data plane.
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Reducing or disabling the threshold of failure mechanisms is a possible ap-
proach to increase the fast-failure reaction performance. Usually, most detection
and reaction mechanisms have implemented safety margins, so that the con-
troller does not already react to the slightest possible failure in the network. For
example, the standard probing application of the ONOS controller only reacts
to three consecutively lost probing packets. The reason for this behavior is that
there always is a very small packet loss and jitter within a network. Therefore,
it is only logical to take this in to mind when designing detection algorithms as
so-called false-positive failure events can lead to congestion on the calculated
backup links, which, in turn, would trigger a real link failure on that link. How-
ever, by decreasing these safety thresholds or even disabling them, a reaction to
real failure can also be faster detected.

The approach presented in this chapter introduces an active probing mech-
anism for the ONOS SDN controller as a Northbound API application. It gen-
erates, transmits, and receives probing packets through and from the network.
Therefore, it is possible to derive network data on a link level, e.g. the packet
loss rate, or the link delay. The evaluation performed in a testbed shows that this
application is able to increase the detection performance, both in rate and time,
whilst only marginally increasing the load on the controller resources, such as
CPU or RAM.

An additional feature presented in this chapter is to implement a self-adapting
active probing mechanism into the ONOS controller that adapts to the changes
in the network conditions, e.g. jitter. With a history over a number of active
probes, a packet loss and jitter detection has been implemented. Furthermore,
in order to trade-o� controller load to detection performance, the time between
two succeeding packets and the internal time-outs are adapted to the current
network conditions. An algorithm that optimizes the whole probing process
during run-time has been presented. This algorithm analyzes the current net-
work environment parameters and calculates new probing intervals and probing
time-outs, which have a large impact on the detection performance. Afterwards,
the algorithm is implemented as part of the already existing probing extension.
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Measurements demonstrating the di�erence between an enabled and a disabled
optimization algorithm are presented. Due to the implementation of the algo-
rithm, the probing extension is able to react to changes in the network environ-
ment parameters, such as jitter. Furthermore, under normal environment param-
eters, the probing interval will be increased and, therefore, the CPU utilization
on side of the controller can be reduced.

Another approach to increase the fast-failure performance of the ONOS SDN
controller is to implement a hyperreactive controller reaction. In regular detec-
tion and reaction mechanisms some application is analyzing the current net-
work environment, e.g. through active probing, and, as soon as certain thresh-
olds are reached, a link is registered as failing and the controller tries to reroute
all �ows traversing that said link. As sooner or later a failure in a network will
occur, there are two approaches to further increase the reaction performance:
1) Pre-calculating backup routes, or 2) Reducing or disabling the thresholds. By
pre-calculating backup routes the controller assumes that sooner or later a link
failure will occur and sooner or later it will have to calculate alternative routes
for �ows.

Valuable time could be lost if this recalculation is done on-demand, i.e. only af-
ter a link failure is detected by the controller. Therefore, for each link, alternative
backup paths are already pre-calculated and stored by the controller. After a link
failure happens, the controller is now able to react to this failure faster by using
the previously pre-calculated route. A further addition for this approach could
be to actually install the backup paths inside the �ow tables of the switches.
Then, the controller only has to send a command to the a�ected switches to
replace the active routing with the backup routes. With this approach more re-
action time can be saved.
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With the rise of Software-de�ned Networking (SDN) in both campus and data
center networks, more and more network engineers use it due to its �exibil-
ity and appreciate its bene�ts. Especially in data centers the o�ered �exibility,
programmability, and centrality of SDN is indispensable. With current state-of-
the-art SDN technology, it is possible to dynamically populate the tables of the
connected data plane devices through a �exible and logically centralized con-
trol plane via a vendor-independent protocol. That means that the network en-
gineer can, by programming the SDN controller, dynamically react to events in
the network and ever changing application requirements. Furthermore, through
the central knowledge being available in SDN, it is also possible to harden the
network against upcoming challenges, e.g. link failures or frequently recurring
tra�c spikes. But, when trying to �exibly change the data plane, still strict
boundaries apply. With most networking hardware, especially those with high
throughput, it is simply not possible to adapt the matching mechanics to new
protocols. The currently most common control plane protocol OpenFlow does
not allow for the dynamic de�nition of its �ow table entry attributes that can
be used for �ow rule matching.

Despite common SDN-protocols that support features and functionality of
SDN at suitable networking devices, such as the OpenFlow protocol, there is still
a heterogeneity between device-support for di�erent vendors, both in feature
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and functionality. Very few vendors have successfully implemented full capa-
bilities of the latest stable version, 1.5.1, or even one of the earlier versions. One
of the reasons for this circumstance is certainly the short time spans between the
major OpenFlow versions. Between the beginning of 2011 and the end of 2014
�ve versions of the OpenFlow speci�cation have been released. Additionally,
with OpenFlow devices are only able to match against speci�ed header �elds.
This means that for each supported data plane protocol each �eld that should
be supported as an attribute of a possible �ow table entry, e.g. destination IP
or TCP source port, requires a de�nition in the OpenFlow speci�cation. There-
fore, as the support for more data plane protocols has been added, the number
of �elds grew with each version. OpenFlow 1.0 only had 12 �elds de�ned in its
speci�cations, with version 1.4 the number already increased to 41 �elds. This
is another downside as only a few vendors are able to deliver programmable
ASICs at networking devices that are capable of dealing with all of those �elds
in the fast-path of a switch. Otherwise, the packets have to be processed by the
slow-path of a switch, meaning that each packet has to be processed by the CPU,
drastically reducing the processing latency.

The reason behind this is the limitations of the availability of fast memory for
the match tables, as with each combination of �elds for a table entry, the mem-
ory requirements per entry rise. As not every vendor is able to cope with these
requirements, di�erences in the behavior, feature set, and programmability be-
tween switches of di�erent vendors and their implementation of the OpenFlow
protocol were introduced. As a result of that network administrators and man-
agers have to target their controller programming with its policies and services
to the underlying hardware. This is a contradiction to one of SDNs principles:
the vendor independence.

Despite the increasing number of �elds, it still does not su�ce for production
deployment. For example, VXLAN support still is unsatisfactory and NVGRE is
not supported at all. With the OpenFlow approach the only solution is to add
further �elds to the speci�cation, which would increase the di�erences between
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the devices of multiple vendors even further as the adoption time di�ers signif-
icantly.

Therefore, the idea to implement an interface that allows for �exible mech-
anisms that can parse packets and match against arbitrary �elds at line rate
became one of the cornerstones whilst designing the next step in the evolution
of SDN. This is the problem P4 attempts to solve. P4 hereby stands for Pro-
gramming Protocol-Independent Packet Processors which describes the goals of
this new approach. Being able to specify by programs how a switch processes
packets o�ers protocol independence. Instead of the former bottom-up design
of SDN, e.g. with OpenFlow, where the network hardware is telling the opera-
tor what and how it is able to process packets, P4 allows for a top-down design
where the operator is able to tell the hardware how he wants it to behave and
how he wants to switch packets. Additionally, the aim is to create a target in-
dependent solution that is suitable for both hardware and software switches. In
contrast to the OpenFlow approach, network engineers can change the way the
network devices process packets after they are deployed.

This di�erence in the approach is visualized in Figure 4.1. On the top, the
well-known SDN control plane is presented, at the bottom a target switch. With
OpenFlow it is only possible to install and query rules from the switch. P4 adds
another layer of con�gurability: it allows the user to modify the parser and ta-
ble con�guration. Nevertheless, OpenFlow is not rendered useless with this ap-
proach. It can still be used to populate the tables dynamically during operation.

The �rst public P4 related document is the paper at SIGCOMM in 2014 [60–
62]. Shortly after this publication, the �rst P4 speci�cation, today known as
P414, draft has been released. To the initial draft, authors from Barefoot, Google,
Intel, Microsoft, the universities of Princeton and Stanford contributed. Since
then many new companies, both networking device developers, engineers, and
users, have joined the P4 community. All of the publications, including the lan-
guage speci�cations and code examples, are available as open source.

With P4, network devices still should be built with ASICs, but they should
now become more �exible. Recent research has shown that such �exibility can

107



4 The Impact of Header Modi�cation on the P4 Processing Performance

Figure 4.1: Depiction of the enhanced features and possibilities of P4 in comparison
to OpenFlow.

be achieved with programmable ASICs. That this is not in contrast with the
requirement for processing speed has been shown in previous publications [63].

In this chapter, the performance impact of modifying packets with P4-enabled
hardware is analyzed. One of P4s promoted features is the possibility to modify
packets at line rate. One proposed application by the P4 community is to add in-
formation, e.g. the processing latency of the packet itself, to packet headers dur-
ing the processing in a switch. When continuously monitoring this information
for the whole network, it is possible to identify processing bottlenecks without
any additional controller involvement [64]. The contribution of this chapter is to
analyze the performance impact of packet header modi�cations by adding and
removing VLAN headers to a TCP packet stream. The analysis focuses on the
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processing latency within the switch and the impact on the resulting network
bandwidth.

This chapter is structured as follows. In Section 4.1, P4, including its archi-
tecture and current development directions, is introduced. Section 4.2 presents
the measurement methodology, including a description of the testbed and the
hardware devices used. The evaluation in Section 4.3 presents the measurements
and discusses the implications of the results. Finally, Section 4.4 concludes this
chapter and gives an outlook.

4.1 Background on P4

The P4 language speci�cation consists of multiple pillars that, in conjuncture,
allow for the promised �exibility whilst still maintaining line-rate speeds. This
section, therefore, focuses on each of these fundamental parts. At �rst, the ab-
stract P4 forwarding model is presented and explained on the example of PISA
(Protocol-Independent Switch Architecture) that allows for the �exible realiza-
tion of P4 programs in hardware. Second, the current state of P4, including
related work is discussed. Finally, information on the VLAN protocol and its
header is given as these headers will play a crucial role in the evaluation section
of this chapter.

4.1.1 P4 Forwarding Model

An abstract representation of the P4 forwarding model is shown in Figure 4.2. In
general, a packet has to run through the following parts of a P4 enabled switch
(from left to right): A parser, which extracts header information from the packet.
Here, the network administrator is able to freely program which parts of an in-
coming packet are recognized and in which order they are placed. After parsing
the extracted information, it is processed in the programmable match-action ta-
bles which de�ne what to do with which part of the packet and in which order.
Furthermore, the egress port(s) is/are determined here. Finally, for the egress
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Figure 4.2: PISA architecture: abstract forwarding model.

queues it is possible to declare how an output packet will be structured before
it is put on the wire. Additionally, a switch stores the so called packet metadata
with the packet between ingress and egress. Internally, they are treated just as
extracted header information. This data contains additional information, e.g. on
the ingress port, the enqueuing time within the switch, or the queue length at
packet arrival. This information can be used during the processing of the packet.

In order to start up operation of a P4 switch the following steps have to be
completed. At �rst, the P4 device-independent program de�ning the headers
including their �elds, their order, and possible actions to take on them, has to be
written. Second, a device-speci�c compiler transforms the code into a �rmware.
This �rmware is then loaded onto the device. Finally, based on the de�ned tables
with their matches and actions, entries can now be added to the table. This can
be done by hand with static entries, or, similar to the OpenFlow operation, on
the �y from a central controller. Now the switch is ready for operation.

For example, a simple Layer-2 switch would therefore have a parser that is
able to extract Ethernet header �elds. The match/action tables would most likely
be �lled with MAC-to-port entries, e.g. destination MAC de:ad:be:ef:ba:11

to egress port 4. The corresponding code de�ning the structure of the Ether-
net header can be found in Listing 4.1. In P4 each de�ned header is required
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Listing 4.1: Ethernet header de�nition in P4
1 header_type eth_hdr {
2 fields {
3 dst : 48;
4 src : 48;
5 etype : 16;
6 }
7 }

to have a fields attribute that contains an ordered list of header �elds includ-
ing their length in bits. These �elds are unsigned, and their position within a
whole packet is determined by adding the width of all previous �elds, including
those of preceding headers. Here, for the case of the Ethernet header, at �rst the
destination MAC address with 48 bits is de�ned and is followed by 48 bits of the
source MAC address. The EtherType �eld with 16 bits concludes the header. List-
ing 4.2 shows two possible actions that could be applied to an Ethernet packet.
Lines 1-3 show a simple drop action that could be used as a default action in
an environment where all MAC addresses are supposed to be known. In the
lines 5-7 a forwarding action is de�ned. Applying this action to packets, sets
the metadata �eld egress_spec to the value of prt. This value is read in the
egress queue and transmits the packet on the speci�ed output port. The action
fwd_and_add_label is an example on how to add a VLAN header to an Eth-
ernet packet. At �rst, the egress port is set. Afterwards, with the add_header

call, a VLAN header, that needs to be de�ned as the Ethernet header example, is
added. The following lines 15-18 with the modify_field command change �eld
values of the VLAN header to those of the input parameters. Finally, in Line 19,
the EtherType �eld is set to the corresponding VLAN value, indicating that the
Ethernet header is followed by a VLAN header.

Besides the already introduced actions, called primitives, P4 allows to copy
the contents of one �eld to another via copy_field, to pop a header including
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Listing 4.2: Exemplary P4 actions
1 action drop_act() {
2 drop();
3 }
4
5 action fwd_only(prt) {
6 modify_field(standard_metadata.egress_spec, prt);
7 }
8
9 action fwd_and_add_label(prt, pcp, dei, vid) {

10 modify_field(standard_metadata.egress_spec, prt);
11 add_header(vlan);
12 modify_field(vlan.etype, eth.etype);
13 modify_field(vlan.pcp, pcp);
14 modify_field(vlan.dei, dei);
15 modify_field(vlan.vid, vid);
16 modify_field(eth.etype, ETHERTYPE_VLAN);
17 }

all of its �elds via remove_header, to increment or decrement via increment,
and to calculate checksums over �elds, e.g. an IPv4 checksum, via checksum.

The �lling of the match&action tables of P4 is strongly dependent on the
used hardware. For example, the Netronome P4 cards which will be used for the
experiments of this chapter use a JSON like �le format that can be transmitted
as a so-called user config during run time to the card. An example can be
found in Listing 4.3. This user con�g sets the default rule, which matches every
packet that is not matched by another rule, to the fwd_and_add_label action
of Listing 4.2 and sets the parameters to the de�ned values.

4.1.2 Current State and Related Work

This section gives an overview on the general directions of P4-related research
and later on, focuses on other research on the impact of processing latency on
the networking performance
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Listing 4.3: Exemplary P4 user con�g
1 {
2 "tables": {
3 "in_tbl": {
4 "default_rule": {
5 "action": {
6 "data": {
7 "dei": { "value": "0" },
8 "pcp": { "value": "1" },
9 "vid": { "value": "0x123" },

10 "prt": { "value": "p1" }
11 },
12 "type": "fwd_and_add_label"
13 },
14 "name": "default"
15 }}}}

With the introduction of P416 in May 2017 [65], a long-term evolution of
P414, the architecture has been relaxed. The same basic building blocks and
concepts still apply, but the semantics have been de�ned more formally. This
renders the operation of the devices more convenient and the language archi-
tecture separation has been enforced. The fundamentals of P4 still remain the
same and all devices that supportP416 are also able to execute programs written
in P414.

Although still in its infancy, the number of research directions is already quite
all-embracing. Also, the number of P4-enabled devices is increasing rapidly.

With the introduction of the INT (In-band Network Telemetry) framework
Kim et al. [64] presented a way to query, analyze, and detect switch-internal
processing information such as queue size, and processing latency. With the
help of these information, they showcase a scenario to detect congestion on a
per switch level.

Beyond the scope of this paper, the development of the INT framework con-
tinued and is today the topic of one of the working groups of the P4 project.
The current draft speci�cation [66] states that the goal is to improve network
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monitoring and management without the expensive intervention of the control
plane. In an INT-enabled network environment, devices add "telemetry instruc-
tions" to the packets. These tell the switch what information to collect and to
add to the packet data. Network devices are divided into two categories: tra�c
sources and sinks. INT tra�c sources execute these instructions and add it to
the packet, if applicable, INT tra�c sinks retrieve this data and optionally refer
them to a special data processing unit. This way, the packets "report" themselves
the state of the network they "observed" while traversing the network.

P5 from Abhashkumar et al. presents a way of using knowledge about ap-
plications that are deployed in the network [67]. One of the bene�ts of this ap-
proach is that it is able to detect and remove inter-feature dependencies between
tables. This increases the pipeline e�ciency by improving the pipeline concur-
rency. Furthermore, if the network tra�c of an application never uses some
switches of the network topology, those switches do not require the installation
of application-speci�c features on said switch which increases the free resources
which, in turn, increases its e�ciency. Experiments of the authors show a pos-
sible e�ciency increase of up to 50%.

HyPer4 is an approach that tries to virtualize the programmable data plane in
order to allow for the storing of multiple programs on the same P4 device [68].
The bene�t of this technique is that multiple programs can be run in parallel or
as hot-swappable snapshots. In contrast to plain P4, programs that are currently
inactive are even modi�able without interrupting running ones. After evaluat-
ing the performance, the isolation and possible limitations of their proposal, the
authors conclude that their HyPer4 is deployable on ASIC-based hardware.

One of the remaining gaps in the feature set of the P4 speci�cations is tackled
by Jepsen et al. [69]. The authors aim to create stateful processing, or what is
required to achieve it with the current P4 spec. An implementation of their ap-
proach is able to run the Linear Road benchmark [70] and exceeds the through-
put of any prior work in that direction.

Another approach that tries to bring statefulness to the P4 data plane is pre-
sented by Luo et al. [71]. By piggybacking information to the tra�c, they allow
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for the migration of state information without updates from the control plane.
Their �rst implemented prototype shows that this is already possible to realize.

Gelberger et al. discuss the in�uence of the �exibility brought by SDN on the
performance [72]. Metrics to qualify and quantify this performance and include
throughput, latency, and jitter which are compared between OpenFlow-enabled
SDN and ProGFE [73], which is based on IETFs ForCES [74]. They are also in-
terested in performance penalties whilst using more complex SDN functions.
Their conclusion is that SDNs �exibility comes with the price of performance.
In contrast to our research focus, this paper focuses on OpenFlow-enabled SDN
without any P4-enabled enhancements.

Whippersnapper Dang et al. introduce a P4 language benchmark suite [75].
Rather than only targeting switching devices and their networking perfor-
mance, Whippersnapper also takes the compilers into consideration. With the
help of their synthetic approach, it evaluates the main components of the P4
language. The authors argue that their research is helping innovation in the P4
context. They also demonstrate the usefulness of their benchmark by comparing
latencies of multiple header modi�cations between four P4 systems. Although
also covering the impact of header modi�cation on the processing latency, Dang
et al. do not di�erentiate between single packets, bursts of packets or a packet
stream. This is covered by our scenario selection.

4.1.3 Background on VLAN

The term Virtual Local Area Network (VLAN) describes a logical division of the
physical network into multiple subsections. As these subsections are isolated
from each other it is often used to secure crucial data from forbidden access. For
example, a common VLAN application is to isolate the VoIP tra�c that is routed
through a LAN from the remaining data tra�c.

When talking about VLAN technology today, most of the time the discussion
is about the IEEE 802.1Q standard [76]. In order to enable VLAN in a network,
hardware that supports this standard is required. This hardware then is able
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Figure 4.3: VLAN header in the Ethernet frame.

to apply so called VLAN tags to incoming tra�c based on certain rules. The
rule-set includes simple mapping of input-port-to-vlan-tag or more dynamical
mappings, e.g. based on MAC addresses or after user authentication. In most
deployments the VLAN tag is removed (also ’popped’) at the destination switch,
as not all client network interfaces support VLAN tagging.

The VLAN tags of the IEEE 802.1Q standard consists of four data �elds with
a total length of 32 bits that are added to the Ethernet frame, as depicted in Fig-
ure 4.3. The protocol id uses two bytes and is set to the default value of 8100,
indicating the usage of 802.1Q. The pcp and dei are indicators for the priority
of this tra�c and are 4 bit wide each. Finally, the vid, the VLAN identi�er is
12 bit wide, allowing for the creation of 212 − 2 = 4096 − 2 = 4094 VLANs.
The VLAN ids 0 and 4095 are reserved and cannot be used. Devices that are
within the same VLAN id group can transmit data to each other but are unable
to communicate with devices from another VLAN id.

Today, especially in data center deployments, where it makes sense to iso-
late the tra�c of one consumer from the tra�c of another consumer or even
management tra�c, the number of 4094 possible VLAN ids is often too small.
Therefore, new approaches that enable for the utilization of more VLANs have
been created. Two currently competing standards are VXLAN (Virtual Extensi-
ble LAN) and NVGRE (Network Virtualization Generic Routing Encapsulation).
Both of these approaches have their own advantages and disadvantages. Behind
both approaches stand di�erent interest groups, namely Cisco and VMware for
VXLAN and Microsoft, Intel, and Dell for NVGRE. Therefore, it is most likely
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that the questions which standard will be enforced, will be a political one. Nev-
ertheless, VXLAN looks to be the certain winner, as, in contrast to earlier years
where Microsoft could dictate the protocols in use by their servers, simply the
number of virtual machines running on VMware hosted servers are already in
favor for VXLAN.

The VLAN header addition or removal will be used as an example for the
P4 performance as its application is a very common usecase. Therefore, evalu-
ating the P4 performance in this scenario can derive a valuable insight in the
practicability of P4 in existing deployments.

4.2 Methodology and Testbed Setup

This section introduces the methodology used during the measurements in or-
der to analyze the packet modi�cation performance. At �rst, the testbed setup
is presented. Second, the various scenarios are discussed.

4.2.1 Testbed Setup

The testbed, as depicted in Figure 4.4, consists of two inter-connected compo-
nents: a Spirent tra�c generator and a NIC by Netronome that is P4-enabled.

The Spirent tra�c generator [77] is a hardware device that is, among other
things, able to generate packets of well-known protocols with a rate of 10 GBit/s.
In this testbed it is used to generate random data that is encapsulated into a
random IPv4 packet.

The P4-enabled card is a Netronome Agilio CX with two 10 GBit/s inter-
faces [78]. According to its vendor, the card supports the full P414 language
speci�cation and has 2 GB DRAM for lookup tables, which allows tables with
"millions of entries" [79].

The measurement procedure of the test will be as follows: The Spirent will
generate packets and transmit them to the �rst port of the Netronome NIC.
Depending on the scenario the packet does or does not include VLAN tag(s).
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Figure 4.4: Testbed overview.

The Netronome NIC will then apply the de�ned action and forward the packets
back to the Spirent via the second port. The Spirent receives the packets and
calculates some basic statistics, such as average processing latency and number
of transmitted and received packets including their length. These statistics are
then saved to �le and evaluated.

4.2.2 Scenarios

As the target of this evaluation is to measure the impact of the header modi�-
cations on the processing latency of a P4-enabled network device, a baseline of
non-modi�cations has to be established. The only two actions that do not mod-
ify any header of a packet are forward and drop. As drop does not return any
packets and, therefore, does not generate any valuable statistics at the Spirent,
forward is the only option left. In order to compare the e�ects of adding or re-
moving multiple headers or just a single VLAN header, the second baseline is to
measure the addition and subtraction of a single VLAN header.

Furthermore, in order to add or remove multiple VLAN tags with P4, multiple
options are possible. The special use case with multiple VLAN tags is also found
in existing data centers. Figure 4.5 exemplarily depicts the possible options when
adding two headers. Adding more tags or removing tags works analogously.
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Figure 4.5: Options to add multiple tags to a packet with P4.

A very simple, but viable option is to simply copy and paste the statements of
the de�ned action. Instead of simply executing the addHeader()-action once, it
is now executed twice in order to add two VLAN tags.

Another option is to de�ne multiple tables that each execute one ad-

dHeader()-action. According to the P4 speci�cations, functional identical ta-
bles that only di�er in their name are possible. The additional table only costs
memory for the table declaration and not for the action declarations as multiple
tables can be associated with the same action(s).

The third, most complex operation is to ’loop’ the packet. By design, P4 does
not allow looping constructs as they are undesirable in hardware pipelines. This
is also a decision to have a �xed upper bound of the processing time of a packet
within a network device.

For this at least two tables are required. The �rst one executes addHeader()

whereas the second one executes recirculate() which takes the extracted
packet header information and puts it again at the beginning of the packet pro-
cessing pipeline, namely the parser. This primitive accepts a list of �elds that
speci�es which �eld should keep their values during the reparsing of the header
�elds. Here, the packet metadata comes into play: it allows for the tracking of
the exit condition of this ’loop’. This ’looping’, however, is expected to be as-
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sociated with a performance penalty. As a rule of thumb, recirculating a packet
n times cuts the throughput by a factor of n. For example, the ruleset of this
variant would be to create the following matching entries in the tables:

1. inTbl: add VLAN header to each incoming packet from port #1, add re-
circFlag and set it to 1, and set output port to #2,

2. resubTbl: if recircFlag equals 1 and output port is #2, recirculate to inTbl,

3. inTbl: if recircFlag equals 1 and output port is #2, add VLAN header and
set recircFlag to 2,

4. resubTbl: if recircFlag equals 2 and output port is #2, do nothing,

5. enqueue packet on egress queue of port #2.

Despite the capabilities of P4 to enable bursty tra�c, the behavior in full band-
width tra�c is also crucial. Therefore, a second series of scenarios will be inves-
tigated. Using the introduced testbed, the Spirent tra�c generator will generate
10 GBit/s streams of data and the Netronome NIC will add or remove VLAN
headers. Evaluated will be the processing latency, the number of lost packets,
and the bandwidth received by the Spirent from the P4 NIC.

4.3 Evaluation

After setting up the testbed and specifying the scenarios, the evaluation of the
measurements is done. At �rst the bursty scenario is evaluated, then, the full
bandwidth scenario is analyzed.

Figure 4.6 shows the processing latencies for multiple scenarios of adding or
removing VLAN tags and their corresponding average processing latencies. For
all scenarios the color coding is the same: blue bars depict the average value of
a burst-size of 1 packet, red bars of 100 packets, and yellow bars 1000 packets.
This means, that the depicted value of the yellow bar is the average from 1000
repetitions of an average processing latency of 1000 packets, for example. Due to
the limited data recording features of the Spirent tra�c generator, no extended
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Figure 4.6: Average processing latency when adding and removing multiple VLAN
headers.

statistical evaluation of the measurement runs is possible, as, for example, a
measurement run of with a burst size of 1000 packets only provides three values:
average, minimum and maximum of the desired metric. The shown scenarios are
those that have been introduced earlier in Section 4.2. At �rst the baseline with
plain forwarding is shown. Afterwards, all possible combinations for adding 1,
2, and 3 tags are presented. Finally, the results for removing (here: popping) 1,
2, and 3 VLAN headers are given. For all results 95% con�dence intervals are
shown that have been calculated over the data of 1000 measurement runs per
con�guration. The inter frame gap for the burst scenarios has been set to 120 ns.

With an average latency of 4.48, 4.66, and 5.09 µs only forwarding a packet is
the fastest processing option within the Netronome P4 card. Already noticeable
is the presence of a di�erence by 14 % between processing a single packet and a
burst of 1000 packets.

Adding one VLAN header to a single packet results in a processing latency of
5.36 µs. When processing a burst of 100 packets the latency increases to 5.83 µs,
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for 1000 packets to 7.26 µs, respectively. Removing a single VLAN header shows
comparable results with a processing latency of 5.18 µs, and increases to 5.41 µs
and 5.71 µs. Here, already, di�erences between adding and removing of the tags
are evident. Especially for the case of the burst size set to 1000, the deviation is
1.55 µs, with the bene�t being on the removing side.

For the scenario of simply copy-pasting the statements the number of modi-
�ed headers seems not to have a large impact on processing performance. Whilst
adding two headers, the latency ranges from 6.15, to 7.11 and 11.26 µs, with the
di�erence between the values of two and three headers being less than 0.10 µs.
For removing the header, a similar behavior is observable. Here, the values range
from 5.05, over 5.32, to 5.63 µs. Again, removing the headers is faster than adding
them.

In the multi-table scenario, the previously observed trends continue. Adding
two headers requires 6.12 µs of processing for one single packet, and 6.82 µs for
100 packets, and, �nally, 9.70 µs for bursts of 1000 packets. The margins when
adding three headers instead of two are a bit taller than before: for one single
packet 8.42 µs of processing time pass, whereas 100 packets are processed within
7.75 µs. For 1000-packet-bursts the processing time again rises to 12 µs. 5.88, 6.17,
and 6.64 µs are the latencies for removing two headers, 7.92, 6.64, and 7.01 µs are
the processing times for three headers, accordingly. The results for removing
two and three headers con�rm the general tendencies of the previous results.
But, this time, the results for adding and removing three headers from a single
packet are larger than those for the other con�gurations. This is a very odd
observation that is also found in the results for removing two headers.

Using the looping-construct with recirculate, the longest processing times can
be found for each category. Adding two headers to a single packet on aver-
age takes about 10.88 µs of processing time. For the case of 100-packet burst,
the time increases to 12.84 µs, and is surpassed by the value for a burst with
1000 packets of 18.03 µs. Adding three headers to a packet increases the times
even further: For a single packet 16.6, for a burst of 100 packets 20.37, and for
1000-packet-bursts 58.4 µs are required in average for processing within in the
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Figure 4.7: Average processing latency per VLAN header.

P4 NIC. Removing the headers ranges from 10.22 over 11.68, to 13.98 µs for the
case of two headers, and from 14.99, over 17.64, to 43.17 µs for the case of three
headers. These values, especially for 1000-packet-burst of adding and removing
three headers with the recirculate method, show a large deviation from all other
scenarios.

The reason for this behavior could be manifold. The increased processing time
is not unexpected per se for this scenario. As introduced in Section 4.2, this
looping workaround with the recirculate-command is one of the most ine�ective
ones and no guarantees about the processing performance can be given. What
instead is astonishing is the jump in processing time between single to batch-
processing by a factor of almost 4. For all other measurement scenarios, the
factor was less than 2.

Here, the processing latency per added VLAN header is plotted for all previ-
ously mentioned scenarios. The results are calculated by taking the processing
latency of one scenario, e.g. adding two VLANs via multiple tables, subtracting
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4 The Impact of Header Modi�cation on the P4 Processing Performance

the latency of the forward only baseline and divide it by the number of headers
modi�ed. This is expressed in Equation 4.1.

latency per headeri =
latencyi − latencyfwd
count(#headers)

,

where i : = {All Scenarios}\{FWD} .

(4.1)

Throughout the scenarios and their burst con�gurations, except for the loop-
ing variant, the latencies are almost constant per added or removed header.
Adding a header in the single-packet-burst scenarios takes between 0.53 and
1.32 µs, for 100-packet-bursts between 0.84 and 1.16 µs, and for 1000-packet-
bursts between 2.01 and 3.01 µs. Removing a header is, as previously observed,
less costly. In the single packet scenario the latency varies from 0.19 to 1.15 µs,
in the 100 packet scenario from 0.22 to 0.75 µs, and in the 1000 packet scenario
from 0.18 to 0.77 µs. The results for looping variant have been excluded from
these previous results, as they are, again, drastically slower than all the other
results. The factors vary between 3 and 9 times the latencies of the other sce-
narios for adding heading headers, for removing headers it varies between 2.5
and 50.

Figure 4.8 shows the average processing latency for the con�guration with
full 10 GBit/s. The x-axis shows the various available options to add or remove
one, two, or three VLAN headers to and from a packet stream. The results de-
picted in this �gure show only small deviations from the previously observed
behavior in Figure 4.6 for the con�guration using packet bursts. Overall, the dif-
ference between each con�guration option, has become smaller and the over-
all processing latency has increased. For example, the result for forwarding a
packet without any modi�cation remains at values around 5 µs. Only the high
spikes that have been observable for the looping variant with 1000 packets do
not appear in this con�guration.
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Figure 4.8: Average processing latency.

Figure 4.9 shows the average receive bandwidth at the Spirent tra�c gen-
erator. For most of the scenarios the P4 card from Netronome is able to keep
the con�gured transmit bandwidth of 10 GBit/s. For the scenarios removing the
VLAN header(s) the bandwidth shows small deviations. These are caused by
the fact that by removing a VLAN header, the overall size of packet is reduced
slightly, namely 4 Byte per VLAN header. This results in a slightly o� bandwidth
on the receiver side. Only for the looping variants huge deviations can be found.
For adding two or three VLAN headers whilst using the recirculate command re-
duces the bandwidth to 3.1 and 2.4 GBit/s. Removing two VLAN headers shows
comparable results with a reduction of the receive bandwidth to 2.9 GBit/s. This
general behavior has been expected, as it has already been introduced that the
recirculate command comes with a performance penalty.

Only the result for removing three VLAN headers in this con�guration is odd,
as the bandwidth rises again to 6.7 GBit/s. Investigating this scenario further re-
veals that the P4 card is unable to cope with this scenario properly. Only half
of all the packets received at the sink have all the VLAN header removed, for
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Figure 4.9: Average receive rate.

some only one or two headers are removed, for some none. This can only mean
that the internals of the card work not as expected under heavy load. Presum-
ably whilst the card is busy removing the header of some packets, more packets
arrive, and are bu�ered. As soon as this bu�er over�ows, the packets are not sim-
ply dropped but somehow circumvent the matching instructions and are simply
forwarded to the destination port without the proper count of recirculations.

In Figure 4.10 the average rate of packets lost per scenario is depicted on the
y-axis. Throughout the measurements a low packet loss rate between 0.01% and
0.04% can be noticed. Only the packet loss rate of the recirculation results show
a deviating behavior. Here, the packet loss rate is between 0.16 and 0.61%. This
behavior is in line with the results for the receive bandwidth.

Altogether, the presented results for the full bandwidth scenario con�rm the
results for the scenarios with packet bursts. Overall, three general observation
can be made from these processing latency results. First, adding or removing
VLAN headers introduces latency to the processing in the data plane as the base-
line scenario in which the packets are only forwarded from one port to the other
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Figure 4.10: Average packet loss rate.

shows the lowest latency results. Second, the introduced latency is, except for
the looping-variant via recirculate, independent of the method used. The results
depicted in Figure 4.7 con�rm this assumption. Third, the recirculate/resubmit
command introduces a lot of overhead. Therefore, the usage of this command
should only take place for special, time-insensitive use-cases.

4.4 Lessons Learned

P4 is a new and upcoming evolution of the whole SDN movement. It allows for
a top-down design where the network operator is able to instruct the hardware
how to behave and how to switch packets. Put into concrete terms, this means
that a network operator is now also able to program the parsing unit of a switch,
whilst still maintaining line rate bandwidths. Furthermore, P4 claims to be able
to modify any of these programmable header �elds at line rate. Additionally, it
is the goal of P4 to create a target-independent solution that is suitable for both
hard- and software switches alike.
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4 The Impact of Header Modi�cation on the P4 Processing Performance

As it is always the case with new technology, the applicability of this in pro-
duction deployments requires research of the performance, the reliability, and
the availability. The goal of this chapter is to analyze the impact of header modi-
�cations on the processing performance at the example of the VLAN header. As
the action to add or remove a VLAN header is a very common use-case for net-
working devices in data centers the results can be used as an indicator whether
the deployment of P4 is already useful and, within in some limitations, what to
take in mind when designing a P4 program. The analysis focuses on the pro-
cessing latency within the switch and the impact on the bandwidth of modi�ed
TCP packet streams.

Our performance investigations show that the seemingly simple task of
adding or removing VLAN headers to TCP packets already contains several pit-
falls. Already adding or removing a single VLAN header introduces delay to
processing of a packet stream within a device. Except when using the recir-

culate method, the introduced latency is mostly independent of the method
used for the header modi�cations. Finally, the recirculate command is, as ex-
pected, rather complex and introduces a lot of delay. Additionally, the packet
loss probability is at the highest levels for this action. Therefore, the usage of
this command should be limited to low-bandwidth and time-insensitive packet
streams.

Dang et al. already evaluated the impact of header modi�cations on the pro-
cessing performance in more general scenarios [75]. Their overall observation
that more adds/removes result in a higher processing latency are in line with
our observed behavior. Nevertheless, they observe that removing a header is
slower that adding a header, which is in contradiction to our results. The au-
thors explain this behavior with a non-optimization in their P4 compiler, which
adds additional stages for each remove action. Additionally, compared to Dang’s
work, in this thesis more actions and scenarios are evaluated.

Altogether, the development of SDN towards P4 is a necessary step in the
evolution of software-de�ned networking. Nevertheless, P4 is not a jack of all
trades, and, therefore, thoughtful development and deployment of P4 programs
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is required as well as comprehensive performance evaluations. The evergrow-
ing community is driving the development of P4 into new directions and �lls
gaps. Among other working groups, especially the INT framework [64] o�ers
interesting opportunities. Through its in-place addition of switching informa-
tion, such as queue length or processing time per network device, it is possible
to have even deeper insights into the performance and status of the network
than before. Nevertheless, as this approach is also a novel one, the performance
implications of this technique needs to be analyzed and considered - especially
when it its deployed outside the safe world of a testbed.
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5 Conclusion

With its simple principle of decoupling the control plane in networking devices
from the data layer, Software-de�ned Networking (SDN) has brought innova-
tions back into networking. After almost one decade of SDN, it is fair to say that
this principle has led to a radical shift in networking thinking. New business
models are opening up, and with SDN, �exibility is entering the data networks.
As the control plane can now be centralized in software, the so-called SDN con-
troller, network operators are able to steer the entire network in a more �exible
and agile way than before. Yesterday’s legacy networks required each device on
the network to be accessed individually and according to the vendor and model
in its own way. This has been a major challenge, especially for large topologies
that have evolved over time, resulting in high operational costs. Thanks to the
paradigms of SDN, operators are now able to change the policies of an entire
global network by changing only a few lines in their controller con�guration.
Thanks to its paradigms, SDN enables vendor independence and, therefore, al-
lows network administration the management of the networking without hav-
ing to think about the capabilities of the underlying network hardware. How-
ever, as with any emerging technology, SDN still has to prove that it is already
production ready and able to provide carrier-grade reliability and availability.

In summary, this thesis focused on reliability and availability challenges of
SDN deployments in production environments by conducting a performance
analysis and investigating currently common SDN error detection mechanisms.
Finally, P4, the latest and most recent evolution of the SDN technology was
investigated by evaluating the in�uence of the P4 program implementation on
the data plane processing performance.
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5 Conclusion

In SDN packet processing is normally done via a matching of incoming pack-
ets against the so-called �ow table. This �ow table can be �lled in two di�erent
ways. The pro-active way assumes that most or all tra�c is known at the start-
up of the switch and �ow table rules are installed before the �rst packet of a �ow
arrives at a switch. This operation mode is most likely used in environments
where most sources of tra�c are known, e.g. in a data center. In reactive mode,
the controller only responds to incoming tra�c because it is assumed to be un-
known before start. If no match can be found, the packet is usually forwarded
via a noti�cation message to the controller which, in turn, calculates the further
actions for this packet stream. The decision is then sent to the switch, e.g. by
installing a new rule, containing the match and the associated action, into the
�ow table. As the �ow table space of current generation hardware SDN switches
is very limited in general, these rules are annotated with a time-out value. If a
�ow is inactive for a certain amount of time, the �ow entry is removed from the
table and, thus, frees the space for other rules. This creates signaling overhead
that poses a new challenge in SDN-enabled networks. Especially with switches
with small �ow tables much signalization is generated, which corresponds to a
performance metric of SDN. This results in a trade-o� between stored �ows in
the table and signaling tra�c, which is subject of Chapter 2.

With the means of an analytic model the relationship between the charac-
teristics of a data plane tra�c, the �ow table occupancy, and the control plane
signaling is evaluated. As both, �ow table occupancy and signaling rate between
switch and controller, can become a bottleneck in the performance of the whole
network, a trade-o� has to be found. Therefore, a model for a single �ow is pre-
sented in order to understand its impact on the mentioned metrics. From there,
anM/M/∞ queuing system is adapted in order to enhance our model for mul-
tiple simultaneous �ows. Afterwards, our results have been validated by the
means of discrete-event simulations and measurements in a testbed. Further-
more, it became evident that tra�c parameters, such as the mean inter-arrival
time and its coe�cient of variation cA have an impact on both mentioned met-
rics. On the one hand, the choice of the time-out has a relatively small impact
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for very bursty applications with high cA as they are more likely to have long
inter-arrival times between two tra�c bursts. On the other hand, a large opti-
mization potential for applications with a small cA has been discovered. With a
small time-out for these applications, their �ow time out and free the �ow table
space sooner, and thus, more applications within the network can ben processed.

With the time-out value for the �ow table entries a powerful tool is given to
each network administrator. Setting this value right is one of the challenges of
SDN deployments and is best done on a per-application level. As the character-
istics of each application data �ow may vary enormously, it is impractical to set
a network-wide static default value. With such a choice, too much unnecessary
signaling load would be generated, and, thus, the performance of the whole net-
work would su�er. Nevertheless, this approach would open the new challenge
of a reliable application detection based on �ow tra�c characteristics.

In Chapter 3, the detection capabilities of the common SDN controller ONOS
for challenging network conditions, e.g. packet loss in the data plane, is evalu-
ated. After theoretically analyzing the built-in mechanisms and verifying these
results through measurements in a testbed, it became evident that this controller
lacks detection performance under these conditions. The presented results show
that the implemented algorithms are unreliable and therefore unable to keep the
carrier-grade reliability claims of the ONOS developers. For example, it can take
more than one minute to detect packet loss values of 50% in the data plane.

Our approach is to develop and implement an active probing application that
uses the features of the Northbound API of ONOS. With the means of gener-
ated probing packets that are sent through the network, the application is able
to determine the current metrics for links in the data plane, e.g. packet loss or
one way delay. In order to further increase the detection performance of this
application, also a self-adapting mechanism is introduced that adjusts the con-
�guration of the probing mechanism and, therefore, hardens it against further
hazardous network conditions such as jitter. Our evaluations by measurements
in a testbed have shown that the detection performance is increased without
generating a noticeable overhead on side of the controller resources, namely
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CPU and RAM. For example, with the application enabled it is already possible
to detect packet loss values of 5%, while the native detection mechanism is only
able to detect packet loss values beyond 40%. Furthermore, as soon as the net-
work environment conditions relax and become less challenging, the algorithm
is able to adopt its probing strategy, and thus reduces the CPU utilization.

Finally, Chapter 4 of this monograph focuses on a recent evolution of SDN: P4.
It enables the programming of processing mechanisms of hardware network-
ing devices and, therefore, o�ers new �exibilities for network operators. The
question whether this new technology is already ready for production deploy-
ments is addressed by performance measurements of a common data center task:
adding and removing of VLAN headers. This simple use-case already showcases
that there are many pitfalls when designing and implementing P4 programs.
The shown approaches of adding multiple VLAN headers present a huge gap
between the fastest and slowest options. For instance, for a tra�c burst of 1000
packets the fastest option is able to add 3 VLAN headers within 11.26 µs, while
the slowest option using a looping-construct takes more than 58.4 µs. Keeping
these results in mind, two statements about the P4 technology can be made:
At �rst, it is already usable in deployments, and, but secondly only with the
knowledge of how to realize the desired actions.

Using the results of this monograph, several aspects of the production readi-
ness of SDN deployments can be evaluated, analyzed, and improved. As intro-
duced, there are still many pitfalls for a reliable network. With SDN, network
operators have many opportunities and parameters to adjust the functionality,
performance, and availability of their networks. As SDN is still evolving and
developing, e.g. shown by the introduction of P4, the interest of the networking
community all over the world is undaunted. Short-development cycles, being
one of the advantages of SDN, contribute to the realization of new approaches,
insights, and features. Especially the P4 technology will bring a lot of new inputs
to this ever-changing �eld.
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