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tFlow-based load balan
ing algorithms for multipath Internet routing are oftenused for tra�
 engineering. However, the target load distribution and the loadbalan
ed result agree only on average, and there is a signi�
ant ina

ura
y overtime due to sto
hasti
 e�e
ts. Dynami
 load balan
ing redu
es this ina

ura
yby relo
ating �ows to other paths in regular time intervals. This 
auses pa
ketreordering. Therefore, the �ow reassignment rate should be kept low. In this paperwe 
onsider load balan
ing in networks. It di�ers from load balan
ing at a singlenode by the fa
t that several load balan
ing steps may be performed at 
onse
utivenodes in series. This a�e
ts the �ow reassignment rate and the load balan
inga

ura
y due to interdependen
ies and polarization e�e
ts. We quantify the impa
tby simulation results, explain the observed phenomena, and give re
ommendationsfor load balan
ing in pra
ti
e.1 Introdu
tionMultipath Internet routing is used, e.g., for tra�
 engineering to distribute the tra�
more evenly through the network. This requires load balan
ing algorithms to spreadtra�
 with the same destination over several interfa
es. Load balan
ing should be doneper �ow and not per pa
ket to avoid pa
ket reordering and a detrimental impa
t onthe throughput of TCP [1�3℄. Therefore, hash-based load balan
ing algorithms are used,whose basi
 ar
hite
ture is presented in [4℄. As �ows 
ome and go, the tra�
 distributionresult of the load balan
er 
hanges and, as a 
onsequen
e, the out
ome deviates fromthe intended target distribution. To limit the ina

ura
y of the load balan
ed result,dynami
 load balan
ing algorithms 
orre
t the result by reassigning �ows to other paths.This 
auses a route 
hange for these �ows and a 
han
e for pa
ket reordering. Therefore,the �ow reassignment rate of dynami
 load balan
ing algorithms should be kept low.In [4℄ we have 
onsidered the a

ura
y and dynami
s of hash-based load balan
ingalgorithms at a single node. This reveals the general properties of the algorithms and isrelevant if load balan
ing is applied to tra�
 aggregates only on
e. A typi
al appli
ationexample is the self-prote
ting multipath [5℄ (SPM). The SPM transmits the tra�
 overseveral disjoint paths a

ording to a load balan
ing fun
tion (
f. Fig. 1). In 
ase ofa path failure, the �ows are redistributed from the failed path to the working paths1
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Figure 1: The SPM load balan
es thetra�
 only on
e.
A
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Figure 2: ECMP routing 
auses the tra�
to undergo multiple load balan
ingsteps.a

ording to another path-failure-spe
i�
 load balan
ing fun
tion. Load balan
ing isalso required for equal 
ost multipath (ECMP) routing with OSPF [6℄, IS-IS [7℄, or someproprietary RIP implementations [8℄. This appli
ation s
enario di�ers from the SPMby the fa
t that tra�
 undergoes load balan
ing possibly more than on
e and that theamount of input tra�
 for a load balan
er depends on pre
eding load balan
ers, whi
h isillustrated by router C in Fig. 2. This 
reates two new problems: (1) �ows forwarded byan earlier hash-based load balan
er over a spe
i�
 interfa
e are �polarized� su
h that asu

eeding load balan
er is potentially not able to spread this tra�
 aggregate anew [9℄;(2) �ow reassignments by a pre
eding dynami
 load balan
er entails possibly further�ow reassignments at su

eeding load balan
ers sin
e suddenly missing or new �owsa�e
t their tra�
 distribution. In this paper, we study how the load balan
ing a

ura
yand the �ow reassignment rate is a�e
ted by these issues.The paper is stru
tured as follows. Se
tion 2 gives an overview on stati
 and dynami
hash-based load balan
ing algorithms. Se
tion 3 explains our simulation model andreviews the problems of single-stage load balan
ing while Se
tion 4 presents our newresults regarding the a

ura
y and the dynami
s of multi-stage load balan
ing. Finally,we summarize our work in Se
tion 5.2 Overview of Hash-Based Load Balan
ing AlgorithmsThe following notation formalizes the problem of load balan
ing for multipath routing.The set of outgoing links (interfa
es) L(r, d) at router r to destination d 
an be derivedfrom the routing table and 
orresponds to the paths used from r to d. All �ows at a
ertain router r with destination d are denoted by the �ow set F(r, d). The destination
d a
tually represents the set of destinations subsumed by one entry in the routing table.Hen
e, the �ows in F(r, d) are all spread over the same interfa
es. The target loadfra
tion tLF (r, d, l) for a spe
i�
 outgoing link l ∈ L(r, d) des
ribes the desired loadbalan
ing obje
tive as a per
entage of the total tra�
 forwarded at router r towardsdestination d over link l. Thus, the 
ondition ∑

l∈L(r,d) tLF (r, d, l) = 1 must be ful�lled.For instan
e, if router r uses two outgoing links l0 and l1 to spread the tra�
 towards dequally, then L(r, d) = {l0, l1} and tLF (r, d, l0) = tLF (r, d, l1) = 50%.2



Hash-based load balan
ing algorithms �rst use a hash fun
tion h(·) and a 
hara
teristi
�ow ID id(f) of a �ow f to 
ompute a hash value h(id(f)). A link sele
tor fun
tion
sr,d(h(id(f))) then yields the outgoing interfa
e l ∈ L(r, d) from the respe
tive set ofoutgoing links. This fun
tional approa
h avoids the need to store the 
orrespondingoutgoing interfa
e for every �ow separately. The authors of [10℄ analyzed di�erent hashfun
tions for this purpose. We use the 16-bit 
y
li
 redundan
y 
he
k (CRC) in ourexperiments as re
ommended in their study. The �ow ID id(f) 
onsists mostly of the�ve-tuple sour
e and destination IP address, sour
e and destination port number, as wellas proto
ol id, or a subset thereof, whi
h are part of the invariant header �eld of ea
hpa
ket. Thus, hash-based algorithms di�er with respe
t to the applied hash fun
tion hand link sele
tor fun
tions sr,d.We assume that the 
urrent tra�
 rate cTR(r, d, l) at router r over a spe
i�
 link
l∈L(r, d) to destination d 
an be obtained by some means, e.g. by online measurements[11℄. It allows to 
al
ulate the 
urrent load fra
tion cLF (r, d, l) = cTR(r,d,l)∑

l′∈L(r,d)
cTR(r,d,l′)

.If it di�ers substantially from the target load fra
tion tLF (r, d, l) due to sto
hasti
 ef-fe
ts, a 
hange of the link sele
tor fun
tion sr,d is required. For instan
e, if 
urrently
cLF (r, d, l0) = 40% < 50% = tLF (r, d, l0) and cLF (r, d, l1) = 60% > 50% = tLF (r, d, l1)for the example from above, then �ows should be relo
ated from l1 to l0 to abolish thisimbalan
e.2.1 Stati
 and Dynami
 Load Balan
ing AlgorithmsStati
 load balan
ing algorithms do not allow su
h a 
hange of the link sele
tor fun
tion
sr,d while dynami
 algorithms automati
ally adapt their link sele
tor fun
tion to a
hievea new balan
ed tra�
 distribution.
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Figure 3: Data stru
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tor fun
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2.1.1 Stati
 HashingLink sele
tor fun
tions perform either a dire
t mapping between hash values and linksor an indire
t, table-based mapping using intermediate data stru
tures.Dire
t Hashing Dire
t link sele
tor fun
tions may be implemented by a simple modulooperation, i.e., mod (h(id(f)), |L(r, d)|) determines the number of the outgoing interfa
ewithin the link set. This leads to an even obje
tive distribution of the tra�
 aggregate
F(r, d) over the links in L(r, d): tLF (r, d, li) = tLF (r, d, lj) ∀li, lj ∈ L(r, d). The datastru
ture of su
h a dire
t link sele
tor fun
tion is illustrated in Figure 3.
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ture of a table-based link sele
tor fun
tion.Table-Based Hashing Target load fra
tions other than even load distribution 
an beobtained by table-based link sele
tor fun
tions. They perform an indire
t mapping fromthe hash value h(id(f)) to an outgoing interfa
e l ∈ L(r, d) via so-
alled intermediatebins. The bins have pointers to the outgoing interfa
es. The entire bin set is denotedby B(r, d) and the bins are numbered 0, ..., (|B(r, d)| − 1). Now, the table-based linksele
tor fun
tion 
onsists of a bin sele
tor fun
tion (e.g. mod(h(id(f)), |B(r, d)|)) thatmaps a hash value to a spe
i�
 bin, and the pointer of the bin that further dire
ts the�ow f to an interfa
e. The data stru
ture of su
h a table-based link sele
tor fun
tion isillustrated in Figure 4. The link spe
i�
 bin set B(r, d, l) 
ontains all bins of B(r, d) withpointers to l.2.1.2 Dynami
 HashingFor stati
 link sele
tor fun
tions, the assignment between bins and links is �xed. Dy-nami
 algorithms adapt their link sele
tor fun
tions to the 
urrent load 
onditions duringruntime. In
reasing the link spe
i�
 bin set B(r, d, l) of a link l in
reases also the 
urrentload fra
tion of l. This is a
hieved by redire
ting pointers to l from bins with pointers4



to other links. The redu
tion of the 
urrent load fra
tion of a link l works analogously.Dynami
 algorithms 
he
k the 
urrent load di�eren
e
cLD(r, d, l)=cLF (r, d, l) − tLF (r, d, l) (1)for any link l∈L(r, d) from time to time, e.g. in periodi
 intervals of length tr =1 s, and re-assign the pointers of the bins if needed. Links with a positive cLD(r, d, l) are 
alled over-loaded and those with a negative cLD(r, d, l) are 
alled underloaded. In the example fromabove, link l0 is underloaded with a 
urrent load di�eren
e cLD(r, d, l0)=cLF (r, d, l0)−

tLF (r, d, l0) = 40% − 50% =−10%. Link l1 is overloaded with cLD(r, d, l1) = 10%. Alink l may be overloaded with regard to some �ow set F(r, d) and, simultaneously, it maybe underloaded with regard to some other �ow set towards other destinations.2.2 Hash-Based Load Balan
ing Algorithms under StudyIn [4℄ we introdu
ed a modular 
omposition of load balan
ing algorithms based on algo-rithms from literature and on new ones. The reassignment 
an be de
omposed into a bindis
onne
tion and a bin re
onne
tion step. We proposed various algorithms 
onsistingof a 
ombination of di�erent dis
onne
tion and re
onne
tion strategies and evaluatedtheir performan
e at a single node. Some of the algorithms are simple, others are rather
omplex � depending on the number of reassigned bins. For the performan
e analysisof multi-stage load balan
ing, we use the algorithms with the highest load balan
inga

ura
y from both 
ategories. Both algorithms are greedy. They are only heuristi
sand a
hieve 
ertainly not the optimal a

ura
y. However, simpli
ity and fast exe
ution
ounts more than optimality.In the following, the size of a bin b ∈B(r, d) is determined by its 
urrent tra�
 rate
cTR(r, d, b). It is the overall rate of the �ows f ∈F(r, d) whose IDs id(f) are mapped to bvia the hash and the modulo fun
tion. The 
urrent tra�
 load fra
tion of a bin is de�nedby cLF (r, d, b) = cTR(r,d,b)∑

b′∈B(r,d)
cTR(r,d,b′)

. This de�nition is analogous to the de�nitions forlinks.2.2.1 Single Bin Dis
onne
tion (SBD+)The single bin dis
onne
tion strategy (SBD) is illustrated in Fig. 5. It dis
onne
tsfrom the link with the largest overload the largest bin b that does not turn the link intounderload. Then, it re
onne
ts the bin to the link l′∈L(r, d) with the largest underload.If su
h a bin b does not exist, nothing is done. SBD+ avoids to bring any link intounderload and is therefore 
alled 
onservative (+). This avoids heavy os
illations whenbig bins that turn links into underload are moved ba
k and forth between a few links atsu

essive reassignment steps.2.2.2 Multiple Bin Dis
onne
tion (MBD−)The multiple bin dis
onne
tion strategy (MBD) is illustrated in Fig. 6. In 
ontrast to
SBD+, the multiple bin dis
onne
tion strategy (MBD) dis
onne
ts so many bins from5
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Figure 5: The single bin dis
onne
tion
SBD+ relo
ates only one bin inea
h step to a
hieve equal loadfor the three links l0,l1, and l2.
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Figure 6: The multiple bin dis
onne
tion
MBD− relo
ates several bins inea
h step to a
hieve equal loadfor the three links l0,l1, and l2.all overloaded links until any further bin removal turns them into underload. The binsare 
he
ked in the order of de
reasing size for removal (step 1). Afterwards, ea
h link isturned into underload intentionally by removing its smallest bin from its link spe
i�
 binset B(r, d, l) (step 2). Therefore, we 
all this strategy progressive (-). The dis
onne
tedbins are 
olle
ted in a so-
alled bin pool BP(r, d). Then, these bins are reassigned againin the order of de
reasing size. Although MBD− turns all links into underload, theproblem of heavy os
illations is avoided sin
e MBD− 
an dis
onne
t several small binsinstead of a big one to a
hieve that goal.3 A

ura
y and Dynami
s of Single-Stage Hash-Based Load Balan
ingWe �rst explain our simulation model and, then, review the problems of single-stage loadbalan
ing with stati
 and dynami
 algorithms.3.1 Simulation ModelThe interarrival time of �ows on Internet links are exponentially distributed with rate

λIAT [12�14℄. Therefore, we apply the Poisson model for �ow arrivals in our simulation.The holding times are identi
ally and independently distributed with a mean value of
E[B] = 90 s. The resulting o�ered load 
an be 
al
ulated by a = λIAT ·E[B] measured bythe pseudo unit Erlang (Erl) and re�e
ts the average number of simultaneous �ows. Weuse syntheti
ally generated �ow IDs 
onsisting of the four-tuple sour
e and destinationIP address and sour
e and destination port.In the single-stage performan
e evaluation, we study the load balan
ing behavior for6



a �ow set F(r, d) at router r destined for d and, thus, simulate the tra�
 distributionto a given number of interfa
es at a single node a

ording to a given target load fra
tion
tLF (r, d, l). In the multi-stage analysis, we extend this study to networks and simulatethe tra�
 distribution to a number of paths at multiple inter
onne
ted routers a

ordingto the respe
tive target load fun
tions.Standard simulation te
hniques were applied to obtain 
on�den
e intervals and a highsimulation 
redibility. We simulated so long that the 99% 
on�den
e intervals deviate atmost 1% from the respe
tive mean values. As they are hardly visible, we do not showthem in the following �gures.3.2 Impa
t of Tra�
 Properties on the A

ura
y of Stati
 Load Balan
ingBoth the �ow rate variability and the number of simultaneous �ows in�uen
e the loadbalan
ing a

ura
y. If all �ows have the same size, the task of load balan
ing redu
es tothe problem of distributing the a
tive �ows over the paths just a

ording to their numberand not to their rate. Heterogenous �ow rates 
ompli
ate this task with an in
reasingvariability. In our study we work with �ows with heterogeneous rates of 64 kbit/s and
2048 kbit/s and a mean of 256 kbit/s, whi
h yields a relatively high 
oe�
ient of variationof 2.29 [15℄. In fa
t, measurements with real Internet tra�
 found that a few large �ows(elephants) produ
e 50% to 60% of the total tra�
 while the rest is due to many small�ows (mi
e) [16, 17℄.We �rst study the impa
t of the number of simultaneous �ows in a very simplisti
s
enario. The load of a �ow aggregate F(r, d) is balan
ed equally between two links bya stati
 load balan
er without �ow reassignments. We measure the 
urrent load fra
tion
cLF (r, d, l) for ea
h link and 
apture a time-weighted histogram to assess the behaviorover time. Figure 7 shows the resulting distribution fun
tions. The x-axis shows theload fra
tion on one link l with a granularity of 1%, and the y-axis shows the probabilitythat the observed load fra
tions are smaller than or equal to a value x on this link l atan arbitrary time instant. The results for the se
ond link are symmetri
 as we 
onsiderload balan
ing over two links here. The load balan
ing a

ura
y is high if the 
urvein
reases around the target load fra
tion tLF (r, d, l) = 50% with a steep slope. The
urves 
orrespond to an o�ered load of a = 10{2,3,4} Erl. It is 
learly visible that theload balan
ing a

ura
y in
reases with the number of simultaneous �ows. An o�eredload of 10 Erl is de�nitely too small for load balan
ing sin
e we observed almost anyload fra
tions between 0% and 100% and, thus, is not shown here. In the followingexperiments, we 
onsider an o�ered load of 100 Erl be
ause it is a moderate aggregationdegree and, thereby, more 
hallenging for the load balan
ing a

ura
y.3.3 A

ura
y In
rease through Dynami
 Load Balan
ingIn 
ase of moderate aggregation level, stati
 load balan
ing is not a

urate enough.Dynami
 load balan
ing algorithms are needed. To study their a

ura
y, we distributethe tra�
 over four links with target load fra
tions of 10%, 20%, 30%, and 40% sin
ethis is more demanding for the algorithms. The bin reassignment interval length is set7
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t of dynami
 algorithmson the load balan
ing ina
-
ura
y I (target distribution:
10%, 20%, 30%, 40%).to tr = 1 s. We use the average values of the 
urrent load di�eren
e cLD(r, d, l) (
f.Equation 1) of all links l∈L(r, d) to measure the load balan
ing ina

ura
y

I =
1

|L(r, d)|

∑

l∈L(r,d)

|cLD(r, d, l)|. (2)Its mean E[I] 
aptures the ina

ura
y over time by a single number. The ina

ura
y I isa very intuitive measure, but it only helps 
ompare the algorithms in the same s
enario.Load balan
ing a

ura
y of s
enarios with other target distribution values or even adi�erent number of links 
annot be 
ompared by that approa
h. Figure 8 illustrates the
omplementary distribution fun
tion of I for stati
 hashing, SBD+, and MBD−. Thefaster the 
urves de
ay, the higher is the load balan
ing a

ura
y. The SBD+ algorithm(E[I] = 2.27%) is signi�
antly more a

urate than stati
 hashing (E[I] = 8.42%) butits a

ura
y is further improved by the MBD− algorithm (E[I] = 0.81%). This 
learlyshows the bene�t of dynami
 load balan
ing.3.4 Drawba
k of Dynami
 Load Balan
ingDynami
 load balan
ing algorithms 
ause �ow reassignments that may lead to pa
ketreordering. Not ne
essarily every �ow reassignment results in pa
ket reordering, butthe pa
ket reordering probability s
ales with the �ow reassignment rate λFR(r, d). The�ow reassignment rate λFR(r, d) is de�ned as the average number of reassignments of a�ow per se
ond. For a bin reassignment interval length tr = 1 s and MBD−, the �owreassignment rate is about 0.041s whi
h means that a �ow is reassigned on average every
25 s and that a �ow with a duration of 90 s is reassigned 3.6 times on average. This is8



still well a

eptable. For SBW+ it is even lower with a value of about 0.0231s sin
e onlyone bin is relo
ated per reassignment step.3.5 Impa
t of Algorithm Parameters on the A

ura
y of Load Balan
ingThe experiments in the pre
eding paragraph were 
ondu
ted with 100 intermediate bins.The number of applied bins is a 
ru
ial fa
tor for dynami
 table-based load balan
ing al-gorithms. It dire
tly in�uen
es the load balan
ing granularity. Our performan
e analysisin [4℄ showed that a smaller number of bins (10) with dynami
 adaptation is 
ounterpro-du
tive and large values (500, 1000) do not lead to any further signi�
ant improvement.We work with 100 bins be
ause they lead to a su�
iently high a

ura
y and imposestill moderate 
omplexity. Our investigation of the reassignment interval tr showed thatfor tr ∈ {10, 100} s the ina

ura
y in
reases to una

eptably high values and good loadbalan
ing results are only a
hieved for tr ∈ {0.1, 1} s. However, only for tr = 1 s the �owreassignment rate is a

eptable.3.6 Comparison to other studiesMany related studies (e.g. [18, 19℄) perform a fully detailed network simulation on thepa
ket level to measure the pa
ket reordering probability. However, the obtained resultsdepend signi�
antly on the network topology and the routing, on the laten
y of di�erentpaths, and on the queueing delay 
aused by 
ross tra�
. Thus, there are many otherfa
tors but load balan
ing that in�uen
e the pa
ket reordering probability. Therefore, werather use a �ow level simulation and fo
us on the �ow reassignment rate λFR whi
h isa�e
ted only by dynami
 load balan
ing. The pa
ket reordering probability s
ales withthe �ow reassignment rate λFR. Besides, real tra�
 tra
es are often used to emphasizethat the results are realisti
. The quality of hash fun
tions has been examined in [10℄ withreal tra�
 tra
es. The 16-bit CRC fun
tion that we use in our study spreads the �owsmost evenly. We study the general potential of di�erent load balan
ing s
hemes undervarious 
onditions and not the quality of hash fun
tions. Thus, we use syntheti
allygenerated �ow IDs to avoid any 
orrelation e�e
ts within a spe
i�
 tra
e.4 A

ura
y and Dynami
s of Multi-Stage Load Balan
ingWe extend the single-stage performan
e evaluation at a single node to multi-stage innetworks where polarization e�e
ts and interdependen
ies between de
isions made atdi�erent stages o

ur.4.1 The Tra�
 Polarization E�e
tWith ECMP every node allowing another forking of the multi-path performs load distri-bution. Thus, tra�
 undergoes load balan
ing possibly more than on
e. This 
ompli
atesthe 
ontrol over the load balan
ing result signi�
antly.In Fig. 9 both router 11 and 21 use the same stati
 load balan
ing algorithm without�ow reassignments. Router 11 ideally splits the �ows in half. Sin
e the stati
 load9
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Figure 9: The tra�
 polarization e�e
t.balan
ing depends only on the 
hara
teristi
 �ow ID, the algorithms at both routersmake the same de
isions based on this ID. Every �ow that is sent over the left interfa
eby 11 is sent over the left interfa
e by 21 as well sin
e their IDs produ
e again the samehash values. Thus, the load balan
ing algorithm at router 21 is without e�e
t. Thisphenomenon is 
alled polarization e�e
t similar to light passing through polarization�lters [9℄. Dynami
 hashing alleviates this e�e
t as it reassigns �ows grouped in bins toother links. However, some bins remain empty and this leads to de
reased load balan
inggranularity and to worse a

ura
y.To heal the polarization e�e
t, a randomly generated ID 
an be assigned to every nodein the network. Ideally, this ID is unique for every node and 
hanges the output of thehash fun
tion su
h that the polarization e�e
t vanishes 
ompletely. This modi�
ation ofthe input values to the hash fun
tion must be fast and retain the original potential of theload balan
ing me
hanisms. We suggest a 32-bit random ID. There are many di�erentpossible operations to 
ombine the random ID and the �ow ID to a modi�ed input value:APP Append random and �ow IDXOR Combine last 32 bits of random and �ow ID by bitwise-XORAND Combine last 32 bits of random and �ow ID by bitwise-ANDADD Perform integer addition between both IDs as binary numbersSo far anti-polarization me
hanisms are proprietary and no information about in�uen
ingthe hash fun
tion input values with the random ID are publi
ly available. In [9℄ Cis
osuggests the use of algorithmi
ally generated ID whi
h is not further spe
i�ed.4.2 A

ura
y of Hash-Based Multi-Stage Load Balan
ingWe use the simple test s
enario illustrated in Fig. 10 to e�
iently test the e�e
t ofthe proposed modi�
ations against polarization and to evaluate the a

ura
y of hash-based multi-stage load balan
ing. To assess the e�e
tiveness of the modi�
ations against10



polarization, we use it as a worst 
ase s
enario. All routers perform stati
 hashing sin
e itis most sensitive to tra�
 polarization. All routers at the lower stages obtain input fromone link only with tra�
 that is possibly polarized. Finally, the link sele
tor fun
tionsimply de
ides to map even hash values to one link and odd hash values to the otherlink. Thus, there are no me
hanisms to 
ompensate for polarization.
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Figure 11: A

ura
y of hash-based loadbalan
ing algorithms with anti-polarization me
hanisms innetworks (target distribution:
50%, 50%).Ideally, the load is split in half at every router. As seen in Se
tion 3.2, the o�ered loadhas a severe impa
t on the load balan
ing a

ura
y. For a fair 
omparison we requirean o�ered load of a = 102 Erl at all stages where we observe the load balan
ing results.We a
hieve this by simulations where we feed the router at the �rst stage with 100, 200,or 400 Erl when we evaluate the load balan
ing a

ura
y on the �rst, se
ond, or thirdstage.Figure 11 shows the 
omplementary distribution fun
tion of the load balan
ing ina

u-ra
y for the bitwise AND and the integer addition on the three di�erent stages togetherwith the mean ina

ura
y E[I] = 10%. We omit the results for appending the randomID (APP) and the XOR-operator as they have no e�e
t against polarization. With bothAPP and XOR one link 
arries 100% of the tra�
 at stages 2 and 3. This 
an be ex-plained by the mathemati
al properties of the used hash fun
tion CRC16. Basi
ally,CRC16 interprets the �ow ID as a polynomial over the �eld 
onsisting of {0, 1}. Thehash value is the residual of the polynomial division of the �ow ID by a standardizedgenerator polynomial. Thus, the hash is an element of the ve
tor spa
e of all polynomi-als of degree at most 16 over {0, 1}. It 
an be shown that both modi�
ations are linearfun
tions in this ve
tor spa
e and therefore have no e�e
t on polarization.The bitwise AND-operator and the integer addition, in 
ontrast, 
an
el the polarization11



e�e
t 
ompletely and retain the full load balan
ing potential of stati
 hashing with E[I] =
10% at all stages as seen in Fig. 11. These modi�
ations 
an be interpreted as non-linear fun
tions. Bitwise operations should be preferred as they 
an be easily 
omputedin hardware. Thus, we 
hoose the bitwise-AND operation to eliminate the polarizatione�e
t and use the modi�ed input values in the following experiments if not mentionedotherwise.Figure 11 also shows the ina

ura
y at ea
h stage if we use the dynami
 algorithms
SBD+ and MBD− instead. The load balan
ing ina

ura
y for both algorithms in
reasesslightly at ea
h stage. Thus, even though the polarization vanishes 
ompletely as shownabove, the dynami
 algorithms su�er slightly from the reassignments made at otherrouters to whi
h they 
an rea
t after some delay only. However, the loss in a

ura
y iswell a

eptable.4.3 Dynami
s of Hash-Based Multi-Stage Load Balan
ingTo evaluate the dynami
s of multi-stage load balan
ing in terms of �ow reassignments,we use the more 
omplex s
enario shown in Fig. 12. Flows arrive at the lower stages fromtwo mutually disjoint paths. This models the dynami
s 
aused by multiple independentload balan
ing entities as nodes in real networks re
eive tra�
 from multiple interfa
es.At the same time, the symmetry of the s
enario still keeps the 
omplexity su�
ientlylow and we 
an observe the multi-stage dynami
s without bothering with undesirableside e�e
ts. Besides, we 
on�gure the target load fra
tion tLF (r, d, l) = 50% for allrouters r and their links l ∈ L(r, d). Hen
e, the routers are expe
ted to re
eive ano�ered load of a = 102 Erl at all stages whi
h does not require di�erent simulation runsfor the assessment of the load balan
ing a

ura
y at ea
h stage as before. The �owreassignment rates λFR(r, d) are measured lo
ally for ea
h router r. If � for instan
e �router 11 relo
ates a �ow from the interfa
e to node 21 to the interfa
e to node 22, router
21 per
eives this as the termination of the �ow. If router 11 
hanges this assignmentlater and reroutes the �ow to node 21, router 21 per
eives this as the start of a new �ow.Figure 13 summarizes the results. The ina

ura
y rises slightly from stage to stage forboth dynami
 algorithms. The gap between stage 1 and 2 is larger than in the previousexperiment. This is due to the in
reased dynami
s 
aused by the input tra�
 from twoindependent dynami
 load balan
ing entities. The reassignment rates for SBD+ remain
onstant at 0.0321s be
ause the SBD+ bin reassignment potential is limited sin
e onlyone bin is relo
ated in ea
h reassignment step. For MBD− the rates in
rease slightlyfrom stage 1 (0.0311s ) to stage 3 (0.0421s ) due to its larger potential to reassign bins.The in
rease is still well a

eptable. However, for both 
on
epts the overall end-to-endreassignment rate λe2e

FR for the �ows routed over the three stages is the sum of the ratesat the three stages. Thus, the end-to-end reassignment rate λe2e
FR in
reases linearly withthe number of load balan
ing stages. Therefore, performing load balan
ing at too manystages is not re
ommended.In addition to the results shown in Fig. 13, we investigated the a

ura
y and dynami
sof SBD+ and MBD− in the s
enario of Fig. 12 without anti-polarization me
hanisms.The polarization e�e
t leads to larger variations among the four di�erent routers at the12
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Figure 13: Dynami
s of hash-based loadbalan
ing algorithms withanti-polarization me
hanism innetworks (target distribution:
50%, 50%).same stage than with anti-polarization me
hanisms. For instan
e, the ina

ura
y at stage

3 is in the range from E[I] = 0.72% to E[I] = 0.94% for the four di�erent routers andthe �ow reassignment rate in the range from λFR = 0.0431s to λFR = 0.0501s . Thus,polarization leads to performan
e degradation also in 
ase of dynami
 algorithms andthe modi�
ations against polarization should be used.5 Summary and Con
lusionMultipath Internet routing requires load balan
ing on the �ow level to avoid pa
ketreordering. This 
an be done by hash-based load balan
ing algorithms. We reviewed thebasi
 ar
hite
ture of su
h algorithms and, in parti
ular, explained a simple and a 
omplexload balan
er that we identi�ed as espe
ially well performing at single nodes in [4℄. Theywere the 
andidates for our study. We showed that there is a di�eren
e between thetarget load distribution and the load balan
ed result due to sto
hasti
 e�e
ts. Dynami
load balan
ing me
hanisms redu
e the ina

ura
y by reassigning �ows to other pathsand 
ause thereby another potential for pa
ket reordering. We identi�ed tra�
 propertiesthat in�uen
e their a

ura
y and proposed appropriate parameters for the load balan
ingalgorithms to 
ontrol it.In this paper we 
onsidered load balan
ing in networks, i.e. the impa
t of severalload balan
ing steps in series on the load balan
ing a

ura
y and the �ow reassignmentrate. We explained why simple appli
ation of the same load balan
ing algorithm in 
aseof stati
 load balan
ers 
annot balan
e the tra�
 and why this in
reases the load bal-an
ing ina

ura
y for dynami
 load balan
ers. We sele
ted an e�
ient anti-polarization13



me
hanism among some intuitive 
andidates and showed that suitable methods providea general improvement of load balan
ing methods for their appli
ation in networks interms of a

ura
y. Then, we investigated the �ow reassignment rate in a 
omplex multi-stage network ar
hite
ture where load balan
ed tra�
 from di�erent origins provides theinput for the next load balan
er. This does not degrade the load balan
ing a

ura
y ifanti-polarization me
hanisms are used, but the overall �ow reassignment rate in
reasesapproximately linearly with the number of load balan
ing steps.After all, load balan
ing me
hanisms should be 
arefully 
hosen to minimize the loadbalan
ing ina

ura
y. Their ina

ura
y should be taken into a

ount by the network'sresour
e management, espe
ially if the tra�
 load is low or moderate. If �ows undergoload balan
ing several times during transportation, anti-polarization me
hanisms shouldbe used to get an e�e
tive tra�
 distribution. Finally, load balan
ing should not beapplied too often to the same set of �ows sin
e this in
reases the probability for route�aps and pa
ket reordering.A
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