Julius-Maximilians-Universitit Wiirzburg

Institut fir Informatik
Lehrstuhl fir Kommunikationsnetze
Prof. Dr.-Ing. P. Tran-Gia

An Assessment of Applications and
Performance Analysis of Software Defined
Networking

Michael Jarschel

Wirzburger Beitréage zur
Leistungsbewertung Verteilter Systeme

Bericht 03/14

Wiirzburger Beitrage zur
Leistungsbewertung Verteilter Systeme

Herausgeber

Prof. Dr.-Ing. P. Tran-Gia
Universitidt Wiirzburg

Institut fiir Informatik

Lehrstuhl fiir Kommunikationsnetze
Am Hubland

D-97074 Wiirzburg

Tel.: +49-931-31-86630
Fax.: +49-931-31-86632
email: trangia@informatik.uni-wuerzburg.de

Satz

Reproduktionsfihige Vorlage vom Autor.
Gesetzt in ISTEX Computer Modern 9pt.

ISSN 1432-8801

An Assessment of Applications and
Performance Analysis of Software Defined
Networking

Dissertation zur Erlangung des
naturwissenschaftlichen Doktorgrades
der Julius—Maximilians—Universitdt Wiirzburg

vorgelegt von

Michael Jarschel

aus

Aschaffenburg

Wiirzburg 2014

Eingereicht am: 12.03.2014

bei der Fakultit fiir Mathematik und Informatik
1. Gutachter: Prof. Dr.-Ing. P. Tran-Gia

2. Gutachter: Prof. Dr. Paul Miiller

Tag der miindlichen Priifung: 28.05.2014

Danksagung

Auf dem Weg zur Erstellung dieser Arbeit wurde ich von vielen Menschen auf
diverseste Weisen begleitet und unterstiitzt. Ich mochte diese Gelegenheit nutzen
und mich an dieser Stelle diesen Menschen bedanken. Zu allererst ist hier selb-
stverstiandlich mein Doktorvater Prof. Phuoc Tran-Gia zu nennen, der mir die
Moglichkeit erdffnet hat, eine Promotion am Lehrstuhl fiir Kommunikationsnetze
anzustreben. Wiéhrend dieser Zeit sorgte er stets dafiir, dass mir und meinen
Kollegen ein ausgezeichnetes Arbeitsumfeld geboten wurde, in dem es moglich
war neue Forschungsideen zu entwickeln und diese im Anschluss auf interna-
tionalen Fachkonferenzen der Wissenschaftsgemeinschaft zu priasentieren. Auf
diese Art und Weise war es mir moglich meine fachlichen und sozialen Kompe-
tenzen entscheidend zu erweitern.

Insbesondere im fachlichen Bereich profitierte ich auch von den Diskussio-
nen und gemeinsamen Verdffentlichungen mit den Forschungsgruppenleitern am
Lehrstuhl: Dr. Tobias HoBfeld, Dr. Rastin Pries und Dr. Thomas Zinner. Daher
mochte ich mich auch bei ihnen fiir deren Gespriche und Hinweise in vielen
Bereichen herzlichst bedanken.

Prof. Paul Miiller mochte ich fiir die Erstellen des Zweitgutachtens sowie die
wertvollen Kommentare zur Arbeit selbst danken. Ebenso gilt mein Dank den
Priifern in meiner Disputation Prof. Samuel Kounev sowie Prof. Reiner Kolla,
der als Priifungsvorsitzender fungierte.

In meinem Kernforschungsgebiet Software Defined Networking mochte ich
mich fiir den wertvollen Austausch mit Prof. Wolfgang Kellerer bedanken, der in
einer Journal-Veroffentlichung miindete.

Generell mochte ich mich fiir die Atmosphére am Lehrstuhl und gegenseitige

Danksagung

Unterstiitzung bei allen aktuellen und ehemaligen Mitarbeitern des Lehrstuhls
fiir Informatik III bedanken, die meine Zeit dort nicht nur zu einer angenehmen,
sondern auch prigenden Erfahrung gemacht haben. Dies sind insbesondere Prof.
Michael Menth, Dr. Michael Duelli, Dr. Robert Henjes, Dr. Dominik Klein, Dr.
Frank Lehrieder, Dr. Simon Oechsner, Dr. Daniel Schlosser, Dr. Barbara Staehle,
Dr. Dirk Staehle, Valentin Burger, Steffen Gebert, Matthias Hirth, David Hock,
Christian Schwartz, Michael Seufert und Florian Wamser.

Mein Dank gilt auch allen Studenten, die ich {iber die Jahre hin betreute habe
und die mich durch ihren Einsatz und ihr Engagement immer aufs Neue gefordert
haben. Ein besonderes Dankeschon geht an meine beiden langjdhrigen studentis-
chen Hilfskrifte Christopher Metter und Thomas Hohn, die mich stets tatkréftig
unterstiitzt haben.

Zu guter Letzt mochte ich mich bei meiner Familie bedanken ohne deren be-
dingungslose Unterstiitzung diese Arbeit nicht moglich gewesen wire.

ii

Contents

1

Introduction 1
1.1 Definition and Use Casesof SDN 3
1.1.1 Principles of Software Defined Networking 3
1.1.2 Definition and Significance of SDN Interfaces 6
1.1.3 Definition of Software Defined Networking (SDN) Features 8
1.1.4 Use-Cases for Software Defined Networking 10
1.2 Scientific Contribution 14
1.3 Outlineof This Thesis 15
Performance Analysis of Software Defined Networking 17
2.1 Background and Related Work 18
2.1.1 Works on Data Plane Performance 19
2.1.2 Works on Control Plane Performance 20
2.2 OpenFlow System Measurement 20
2.2.1 Data Plane Performance Experimental Setup 21
2.2.2 Data Plane Measurement Results 25
2.3 OpenFlow Controller Benchmark 31
2.3.1 Benchmark Architecture 32
232 ComparisonwithCbench 35
2.3.3 Controller Benchmarking Results 36
2.4 Analytical Modeling of OpenFlow 44
24.1 Model Input Parameters 44

2.4.2 A Simplified Model of an OpenFlow Architecture 45

iii

Contents

iv

2.4.3 Analytical Results for the Simplified Model 48
2.4.4 Generalizingthe Model 53
2.4.5 OpenFlow Controller Service Time Distribution 54
2.4.6 OpenFlow Architecture Model using Generalized Con-
troller Service Times 56
2.4.7 Analytical Results for the Generic Service Model 59
25 LessonsLearned 61
SDN Control Plane Applications 65
3.1 Previous Works on (SDN-based) Measurements 66
3.2 Accuracy of Leveraging SDN for Passive Network Measurements 66
3.2.1 Measurement Architecture 67
322 TestbedSetup L. 69
323 MeasurementResults 72
3.3 Proof of Concept for Novel Approaches to Networking enabled
bySDN 81
3.3.1 Interactive Proxy Management in Future Communication
Networks Using OpenFlow 82
3.3.2 ECDC: An OpenFlow-Based Energy-Efficient Data Cen-
ter Approach Lo L 85
34 LessonsLearned 88
Leveraging the
SDN Northbound-API for QoE-based Application-Aware Net-
working 91
4.1 Background and Related Work 92
4.1.1 Background and Works on Application-Aware SDN . . . 93
4.1.2 Works on QoE in Inter-active Video Applications 94
4.2 Obtaining Key Performance Indicators on the Example of Cloud
Gaming 95
4.2.1 Survey Parameters and Design 96

Contents

422 RaterReliability 102
4.2.3 Identification of Key Influence Factors for Cloud Gaming
QoE 105
424 Towards a Key Quality Indicator 112
4.3 SDN-based Application-Aware Networking 115
4.3.1 Scenario and Testbed Setup 116
432 MeasurementResults 0000 119
44 LessonsLearned 127
5 Conclusion 131
Bibliography and References 133
Index 145

1 Introduction

In 2008, the McKeown group out of Stanford University presented a new protocol
called ”OpenFlow” [11] to the scientific community. Its primary use case and
feature is to enable the removal of the local network control plane from a network
device to a central remote software entity.

While the concept of centralized control is far from a novel concept in com-
munication networks and previous attempts had largely been ignored by the sci-
entific community as well as the industry, OpenFlow soon created a hype. There
were two main reasons for this development. The first reason is that at the time
cloud service providers were facing enormous challenges in terms of network op-
eration within their data centers due to the increasing popularity of cloud-based
services. The way networks had been designed and operated for the previous
close to 30 years was no longer flexible enough to sustain a viable operation
of these new services. The second reason is the fact that OpenFlow was im-
plemented straight away, not only in software but in prototypical hardware as
well. This allowed potential adopters of this technology to experiment with it al-
most immediately. The most prominent example of this is Google. The network
research team at Google started to design new networks based on the SDN ap-
proach right from the start and has since rolled out a global backbone network
based on it [12].

However, as experimentation progressed it soon became clear that OpenFlow
in its initial form would not be sufficient to meet all of the requirements put
forth by the early adopters in the data center domain, let alone other networking
domains. Therefore, the idea of OpenFlow was generalized in the concept of
SDN.

1 Introduction

The discussion about what actually falls under the term SDN is still ongoing

and with it a large number of research questions are still unanswered. One of the
key issues is the performance of an SDN system. The solution to this problem
cannot be generalized. It depends on a variety of factors. First, there is the mode
of operation, i.e. the question when the control plane is actually involved. Does
it have to react to new traffic or is there a specific set of pre-defined rules and the
control plane only needs to act in case of changes in the network, e.g., because
of a failure? The second factor is the scenario in question. The main deciding
factor here is whether the network topology is likely to change often, e.g., due
to virtual machine migrations in a data center, or remain relatively constant as
inside a WAN backbone. Finally, the desired granularity plays an important role
as it determines the number of rules and the size of the network state the control
plane needs to handle as well as the size of the rule tables.
A second issue is the question of applicability. Are there areas that can benefit
from adopting the SDN concept and which areas are better suited to the classi-
cal fully distributed approach? While a central control entity may simplify and
improve the calculation of paths in a network, it also may not be as resilient.

Another open question is whether there are new approaches beyond classi-
cal networking that have now become feasible due to the flexibility gained from
an external software control plane. In particular, is the long desired vision of
an application-aware network with regard to the user’s experience finally within
reach and if so, what has to be done to get there?

The goal of this monograph is to widen the understanding of the SDN concept
and the issues that come with it. The first step towards this is to provide a thor-
ough definition of SDN and its interfaces in the following section as well as
introduce potential use cases. The second step is to provide an insight into the
performance of current SDN systems and deployments on the example of Open-
Flow in order to determine bottlenecks and pitfalls to avoid in the future. Beyond
the performance, this monograph takes a look at the benefits that can be gained
by applying the SDN approach to classical networking problem such as moni-
toring and what the potential trade-offs are. Finally, we show a way to enable a

1.1 Definition and Use Cases of SDN

QoE-aware network using SDN and highlight the necessary requirements for it

to become a reality.

1.1 Definition and Use Cases of SDN

The term Software Defined Networking is prevalent in the current discussion
about future communication networks. Like with any new term or paradigm,
however, no consistent definition regarding this technology has formed. The frag-
mented view on SDN results in legacy products being passed off by equipment
vendors as SDN, academics mixing up the attributes of SDN with those of net-
work virtualization, and users not fully understanding the benefits. Therefore, we
attempt to give a thorough definition of SDN and its interfaces as well as a list
of its key attributes. Furthermore, a mapping of interfaces and attributes to SDN
use cases is provided, highlighting the relevance of the interfaces and attributes
for each scenario. This section is mainly based on and taken from [1].

1.1.1 Principles of Software Defined Networking

How networks are currently structured and operated poses a significant financial
issue to internet service providers and, in fact, has become a handicap for progress
in the cloud and service provider space. SDN [13] enables a programmable net-
work control and offers a solution to a variety of use cases. The success stories
of these bottom-up SDN solutions have led to a shift in the way operators and
vendors perceive the network. In the following, we define four basic principles of
SDN. Each of these principles is mandatory for classifying a technology as SDN.

Separation of Control- and Data Plane

The physical separation of control- and forwarding- or data plane is the best-
known principle of SDN [13, 14]. It postulates the externalization of the con-
trol plane from a network device to an external control plane entity often called
the “controller”. In particular, this means that an internal software control plane,

1 Introduction

while it may still exist, is not enough to brand a device or technology as “Software
Defined Networking”. The external controller has to have the ability to change
the forwarding behavior of the network element directly. This enables several
key benefits of SDN. Control- and data plane can be developed separately from
each other, which lowers the entry-to-market hurdle, as a company no longer
has to have expert knowledge in both areas. Moreover, the externalization of a
software-based controller produces pressure on established hardware switch ven-
dors, which are reduced to providing forwarding hardware only. This has already
introduced new and disruptive start-ups to the market that have sped up inno-
vation in the network. Even the market leader Cisco has reacted to this trend
by introducing its own flavor of SDN with the Application Centric Infrastruc-
ture concept developed at the Spin-In company “Insieme” [15]. Customers are
also enabled to “mix-and-match” products of different vendors and thus increase
competition further. The switch vendors have reacted to that shift by forming the
OpenDaylight project for an open SDN software platform. Challenges in this area
are to find the appropriate control protocol for the specific scenario out of dif-
ferent protocols and protocol versions, and the appropriate forwarding elements
which support this protocol.

Logically Centralized Control

The controller of an SDN network is a logically centralized entity, i.e. it can con-
sist of multiple physical or virtual instances, but behaves like a single component.
The global network information such a central controller possesses enables it to
adapt its network policy with respect to routing and forwarding much better and
faster than a system of traditional routers could. The realization of a logically
centralized controller is challenging with respect to scalability depending on the
specific scenario and network or virtual network size. Scalability can be achieved
by implementing a centralized controller as a distributed system where the con-
tained information has to be maintained consistently.

1.1 Definition and Use Cases of SDN

Open Interfaces

For SDN to reach its full potential in terms of flexibility and adaptability, it is
fundamental that its interfaces are and remain open. A closed or proprietary in-
terface limits component exchangeability and innovation. This is especially true
for the interface between control- and data plane (Southbound Interface). In the
absence of a standard open interface, one of the main SDN advantages — the in-
terchangeability of network devices and control planes — would be taken away.
This is also true for the remaining interfaces, which are discussed in more detail
in Section 2.1. To maintain open interfaces might be challenging since vendors
try to introduce proprietary interfaces or to bypass proprietary information via the
open interface. This could generate additional value if entities of the same ven-
dor are used, but also lead to deadlocks and performance bottlenecks in mixed

operation.

Programmability

The fundamental paradigm shift in networking caused by SDN is represented
by the introduction of network programmability. This is enabled by the external
software controller and the open interfaces. The programmability principle is not
limited to introducing new network features to the control plane but rather repre-
sents the ability to treat the network as a single programmable entity instead of
an accumulation of devices that have to be configured individually. SDN can thus
be regarded as a very suitable complement to network virtualization providing
the control plane for an easy operation (‘programming’) of, e.g., virtual networks
in network substrates or to control specific flows within a virtual network as pos-
sible applications. Here it is essential to find the appropriate abstraction level,
which determines on the one hand the ease-of-use for network programmers, and
on the other hand the abstraction overhead and therewith a possible performance
degradation.

1 Introduction

1.1.2 Definition and Significance of SDN Interfaces

The four key interfaces of Software Defined Networking are illustrated in Fig-
ure 1.1 for a generic, example network, consisting of three autonomous systems
(AS): a conventional IP or legacy access network at the user end, an SDN-based
transit-WAN, and an SDN-enabled data center network (cloud). While the defini-
tion of the South- and Northbound-API is consistent with the one put forth by the
Open Networking Foundation [16], the definition of West- and Eastbound-API
corresponds to the view of the author.

&8 &6 B8

Northbound API.}
Module Module
DN Net::’:;: Conitrol --v- -—— SDN Network Control Plane -t——— L::iictyr::epﬁ::;k
h Westbound API Eastbound API
\

i
RARY

ke
LAY
1

Hypervisor
Hypervisor

Hypervisor

=

Southbound API

Figure 1.1: Interfaces of a Software Defined Network

Southbound-API

The Southbound-API represents the interface between control- and data plane. It
is the enabler for the externalization of the control plane and therefore key to the
corresponding SDN principle [14,17]. Its realization is a standardized instruction
set for the networking hardware. Implementation examples are the IETF ForCES
Protocol [18] and most notably the OpenFlow protocol [11].

1.1 Definition and Use Cases of SDN

Northbound-API

SDN enables the exchange of information with applications running on top of
the network. This information exchange is performed via the Northbound-API
between the SDN controller and an “application control plane” [14, 17]. A uni-
versal, standardized Northboud API does not exist. Further, as the kind of infor-
mation exchanged, its form and frequency depends on the targeted application
and network such universal API is not useful. Standardization of this interface
only makes sense for common scenarios, provided that all implementations are
kept open. While the SDN controller can directly adapt the behavior of the net-
work, the application controller adapts the behavior of the application using the
network. It can be implemented as part of a single application instance to a central
entity for the entire network responsible for all applications.

Westbound-API

The Westbound-API serves as an information conduit between SDN control
planes of different network domains [12]. It allows the exchange of network state
information to influence routing decisions of each controller but at the same time
enabling the seamless setup of network flow across multiple domains. For the in-
formation exchange, standard inter-domain routing protocols like BGP could be

used.

Eastbound-API

Communication with the control planes of non-SDN domains, e.g. a Multi-
Protocol Label Switching (MPLS) control plane, uses the Eastbound-API [19].
The implementation of this interface depends on the technology used in the non-
SDN domain. Essentially, a translation module between SDN and the legacy
technology is required. This way, both domains should ideally appear to be fully
compatible to each other. For example, the SDN domain should be able to use the
routing protocol deployed between non-SDN domains or be able to react to Path

1 Introduction

Computation Element Protocol (PCEP) messages requesting path setups from an
MPLS domain.

1.1.3 Definition of SDN Features

The combination of these four open interfaces together with the core features we
outline in the following makes SDN a very flexible and powerful tool for network
control and operation. Later we show how matching of SDN’s unique features to
use cases can help a potential adopter of SDN to determine, whether SDN is the

right technology for that use case.

Programmability

Programmability is not only a principle but also the key feature of SDN and
drives most SDN use cases. This opens the control plane to innovation using
conventional software development methods, in turn enabling the customization
of the network according to a specific setup or scenario.

Example: Based on one or more external information resources (e.g. cloud
orchestration) the routing in a network is adapted automatically to optimize the
resource utilization. Google uses such a mechanism to optimize the bandwidth
usage on links between the company’s data centers. It achieves this by leveraging
information from the traffic sources and grouping application traffic into flow
groups with different priorities [12].

Protocol Independence

Protocol independence enables SDN to control or run in conjunction with a large
variety of networking technologies and protocols on different network layers.
This feature enables migration strategies from old to new technologies and sup-
ports the possibility to even run a different network protocol stack tailored for
each application.

1.1 Definition and Use Cases of SDN

Example: In order to enable the migration from IPv4 to IPv6 a network op-
erator decides to run both versions of IP in parallel. This is usually done us-
ing tunnels and encapsulation. The authors of [20] propose to use SDN-enabled
forwarding elements with a centralized control plane to dynamically set up the
tunnels at the end points.

Ability to Dynamically Modify Network Parameters

The ability to actively modify network parameters in a dynamic manner that is
close to real time defines this SDN feature. Dynamic re-configuration is feasible
in different time-scales. This covers wide area networks where only a few change
operations are required per day, to data center networks where the constant in-
stantiation or migration of virtual machines and their network connectivity has to
happen in minutes or even seconds.

Example: In case of an overloaded link between two network elements with
multiple routes, priority traffic is identified through application information and
rerouted with minimal delay [3]. In this case the SDN controller receives in-
formation about individual flows from the application control plane to determine
whether a certain application actually needs more resources and allocates a higher
priority to its flows.

Granularity

Networking spans different protocol layers and also levels of data flow aggre-
gates. SDN allows to control traffic flows with a different granularity on both the
aggregate level and the protocol layers. This can range from large MPLS tunnels
in core networks to a single TCP connection in a home LAN. This is a necessary
feature to ensure scalability and enable the control plane to work on different
levels.

Example: In [3] the SDN controller operates on the granularity of individual
flows to optimize the user experience for the user of one particular session. This
high granularity is feasible in networks with a low total number of flows, e.g.

1 Introduction

home or access networks. In [19] SDN is used to interconnect a virtualized ac-
cess network to a legacy MPLS core operating on tunnels only. Each tunnel can
contain a multitude of flows.

Elasticity

The elasticity feature of SDN describes the ability of the SDN network control
plane to increase and decrease its resource consumption based on the required
capacity. As controllers run in software, they can be flexibly instantiated and
synchronized using a distributed or hierarchical approach on multiple physical or
virtual hosts. This enables the control plane to react to variations in traffic mix
and volume.

Example: Due to a temporarily increased amount of control traffic in a data
center network, the SDN controller can no longer be hosted by a single physical
device and has to be distributed among several machines. However, when the sit-
uation resolves itself, the control plane can again be relocated to its original host
in order to conserve resources. There are several approaches to achieve this kind
of distributed SDN control plane. The Onix [21] realization is based on synchro-
nizing the network information base, i.e. the global state of the network, across
a cluster of servers. Each server directly manages a subset of network elements
and exchanges information with the rest of the network controller instances via
the shared network state.

1.1.4 Use-Cases for Software Defined Networking
This section introduces several use cases that we have selected to derive and

to illustrate a method for classifying SDN in terms of the above features and
interfaces.

10

1.1 Definition and Use Cases of SDN

Cloud Orchestration

Over the last decade, cloud services have developed at a rapid pace. However,
the innovation in this field was mainly confined to server and data center tech-
nologies as well as distributed applications. This has led to networks becoming a
hindrance for cloud operations. A major reason for this is the fact that networks
and servers were traditionally managed separately. For cloud applications to be
provisioned and operated quickly and in an automated manner, the management
of both network and cloud framework needs to be integrated. SDN is a viable
way to achieve this integration, as the SDN controller as well as the cloud or-
chestration framework is software and a (standardized) interface between both
worlds is therefore easily attainable. This interface can then, for example, be
used to notify the network controller of an imminent virtual machine migration
or to notify the cloud orchestration that a link is overloaded and the server load
should be moved to a different location. In [9], the benefits of such an interface
are shown. The cloud orchestration software OpenNebula is used to orchestrate
virtual servers across multiple hosts and show that a short advance notification
from the cloud orchestration to the SDN controller before a virtual machine mi-
gration was sufficient to maintain the user sessions of a video streaming service

during the migration.

Load Balancing

Another service required for the successful operation of online services that are
hosted in data centers is load balancing. Online services, e.g., search engines
and web portals, are often replicated on multiple hosts in a data center for effi-
ciency and availability reasons. Here, a load balancer dispatches client requests
to a selected service replica based on certain metrics such as server load. In gen-
eral, a load balancer is typically a separately deployed function in a network
that distributes the load among network and data center elements in its scope ac-
cording to a certain optimization metric such as minimum average load or link

cost. Today’s solutions for load balancers are effective but have limited flexibility

11

1 Introduction

in terms of customization. Being a proprietary middlebox function, such solu-
tions also come at a high cost. When using SDN technologies, the load balancing
can be integrated within any forwarding element in the network, e.g., OpenFlow
switch, avoiding the need for separate devices. Furthermore, SDN allows load
balancing to operate on any flow granularity. In [9], a use case for a data cen-
ter load balancer is described and a solution based on OpenFlow is proposed.
Instead of using a traditional middlebox solution the functionality is realized at
the OpenFlow controller and enforced by setting aggregate flow rules using wild-
cards in the network elements. This way the need for a dedicated balancer device
is no longer existent. Current research tries to provide an abstract language which
allows programmers to directly control the network and mechanisms like load
balancing [22].

Routing

The API between data plane forwarding and a centralized control plane in SDN
provides ample opportunities for routing protocol adaptation, which is very dif-
ficult in existing decentralized routing schemes implemented on closed box net-
work elements. Routing services that can be realized by the SDN concept, e.g.
through programming modules on OpenFlow controllers directing OpenFlow
Switches, include path selection for traffic optimization, multi-homing, secure
routing, path protection, and migration between protocol versions, i.e. IPv6.
In [23] the authors propose a hybrid SDN/BGP control plane that on the one
hand leverages the new possibilities in a simplified centralized routing approach
and other hand benefits from the compatibility with legacy networks.

Monitoring and Measurement

SDN provides the network the ability to perform certain network monitoring op-
erations and measurements without any additional equipment or overhead. The
concept was introduced in [24] and is based on the fact that an SDN inherently
collects information about the network to maintain a global network state at the

12

1.1 Definition and Use Cases of SDN

logically centralized controller. This information can then be processed in soft-
ware to obtain a subset of monitoring parameters. Furthermore, active measure-
ments are enabled by selectively mirroring specific production traffic flows to the
control plane or an external measurement device without the need of introducing
artificial and potentially disruptive measurement probe traffic into the network.
For example, by mirroring the traffic for a phone call at ingress and egress point
of the network, the network administrator can determine the delay and quality of
service for a particular call at a certain time.

Network Management

Today’s network management policies are usually decided upon by the network
operator and then configured once in each network element by an administra-
tor. The larger the network, the higher the required configuration effort becomes.
Hence, a once set policy is seldom modified. This leads to an often very ineffi-
cient network operation. The fact that traffic patterns continually change cannot
be taken into account this way. In order to change this, the network needs to be
able to adapt policies dynamically and automatically based on a range of infor-
mation. This calls for a more general specification of network policies that are
subsequently translated into specific rules for each device in the network using
a policy engine. The logically centralized control plane of SDN offers itself as a
very suitable way to enable such an approach as it has all information about the
network available. For example, a high level network policy dictates the prioriti-
zation of VolIP traffic inside an Enterprise network. The SDN controller can then
identify corresponding network flows and assign them to a high priority level in
each device. This is dynamic on the one hand as VoIP flows are set up and termi-
nated with each phone call and on the other hand it is automated as the devices
are configured without the need for physical access and any human intervention.
In fact the administrator does not have to know the topology of the network or
the devices involved in order to achieve the policy’s goal. Such an approach has
been implemented prototypically in [25].

13

1 Introduction

Application-Awareness

Using network resources efficiently and optimizing traffic flows towards high
end-user Quality of Experience (Quality of Experience (QoE)) is an often cited
goal for next generation networks. However, it is difficult to realize when nothing
is known about the kind of applications, which are run on the network and their
state. Existing approaches in this direction often rely on Deep Packet Inspec-
tion to identify the applications. This, however, is not a very accurate technique
and does not take the application state or QoE into account at all [26]. With the
Northbound-API of the SDN controller, the application itself can inform the net-
work about its properties and state. This way, the network controller can direct
traffic flows to complement rather than disrupt each other [3,27]. Furthermore, a
once made forwarding decision can be revised in light of changing situations in
the network and a different application state. The other way around, if the net-
work can no longer sustain a certain service level for the application due to lack of
resources, it can notify the application to modify its behavior. For example, due
to its architecture, SDN easily allows cross-layer optimization between appli-
cations and their demands and the network capabilities. Thus, a better use of the
network resources with respect to more generic constraints like user-centrality [3]

or energy-efficiency [9] is possible.

1.2 Scientific Contribution

This section is meant to provide an overview of the scientific contribution of this
monograph and the studies it contains.

Figure 1.2 categorizes the referenced studies this monograph consists of ac-
cording to the applied methodology on the y-axis and the area of research in the
field of Software Defined Networks on the x-axis. There are three main areas of
study. These are performance evaluation, SDN applications and QoE. Both prac-
tical methods like measurements as well as conceptual approaches like analytical
models are applied.

14

1.3 Outline of This Thesis

The first contribution is the definition of SDN and its interfaces in the previ-
ous section [1]. It provides a framework in which to understand the remaining
contributions in terms of SDN and it determines the terminology used in this
monograph. The second contribution is a general performance model of an SDN
system based on OpenFlow [4]. This model is based on real-world measurements
and provides an excellent starting point for the investigation of SDN performance.
Moving on from there [5] offers details on the performance of SDN control plane,
which, as the model has shown, is the new key component essential to the perfor-
mance of SDN.

Going beyond the performance of the SDN system itself [6] takes a look at
how an SDN-based application for monitoring performs in relation to its classical
counter parts and shows that SDN applications are indeed a viable alternative.

In [10] and [9] further SDN solutions to problems of classical networking are
shown in the fields of test beds as well as data center operations, which are both
areas that have spearheaded SDN adoption.

Improving on classical networking, [3] highlights a way to leverage SDN to
achieve QoE-based application-aware networking by taking application informa-
tion into account. However, for this to work, the significance of influence factors
on the QoE for a specific application has to be known. Therefore, [2] and [7]
show how this knowledge can be obtained for the particularly challenging appli-
cation of cloud gaming.

1.3 Outline of This Thesis

The remainder of this theses is structured as follows. Chapter 2 investigates the
performance of SDN on the example of OpenFlow using measurements, simula-
tion, and analytic modeling to highlight key performance issues of current SDN
implementations as well as make general statements about the achievable per-
formance. In Chapter 3, SDN applications that can augment or replace classical
networking methods are introduced and evaluated towards their functionality and
feasibility of use. We then discuss a possible interplay between Quality of Expe-

15

1 Introduction

[61

()

Practical Methods

«@
- Measurements
- Proof of Concept
[
|
[3]
|
\/’

[4]

|

Theoretical Methods|
- Analysis
- Architecture

Performance SDN Quality of
Evaluation Applications Experience

Figure 1.2: Map of scientific contributions of the author included in this mono-
graph in the field of SDN according to methodology and area of re-
search. The numbers in brackets correspond to references.

rience and SDN as we introduce an SDN-based QoE-aware networking approach
as well as its requirements and ways to meet them in Chapter 4. Finally, this work
is summarized and concluded in Chapter 5.

16

2 Performance Analysis of
Software Defined Networking

The concept of Software Defined Networking represents a paradigm shift in net-
working, which is not yet fully understood. While SDN promises to have various
benefits in terms of flexible network operation and management, critics question
the performance of an SDN-based network. For SDN to become a viable alter-
native to conventional networking in production environments, these concerns
have to be addressed and a good understanding of the factors that impact SDN
performance has to be established. In this chapter, we take a step in that direc-
tion by investigating the performance of existing SDN components and create a
performance model based on queueing theory.

SDN introduces significant changes not only to the control plane, but also to
the data plane. Therefore, in this work we look at each of the planes individually.
The only technology available that meets all our criteria for SDN put forth in the
previous chapter is OpenFlow [11]. Thus, we have chosen OpenFlow to represent
an SDN system in our study.

In the OpenFlow data plane a novel challenge is presented by the way pack-
ets are matched against existing rules. Contrary to conventional L2/L.3 switching,
packet headers are not matched against a MAC or IP address but a set of (arbi-
trary) packet headers defined for a specific flow. The current generation of Open-
Flow switches leverages legacy switching boards to implement the SDN features.
We take a look at the performance of these devices in Section 2.2.

While the data plane impacts the forwarding performance, the control plane
is responsible for setting up new flows. There are several new impact factors to

17

2 Performance Analysis of Software Defined Networking

consider for the performance of an OpenFlow control plane compared to a con-
ventional one. The most significant is the relocation of the control plane to an
external device. Instructions sent to the data plane have to be transported via
a network themselves. Furthermore, a single control plane instance can be re-
sponsible for a multitude of forwarding elements. We investigate the impact of
these new elements using a self-developed controller software analysis tool in
Section 2.3.

In Section 2.4, we then introduce a performance model for an OpenFlow archi-
tecture, which allows us to leverage the results from the measurements to gauge
the scalability of the OpenFlow system.

This chapter is mainly based on and taken from [4] and [5].

2.1 Background and Related Work

To better understand the model for the OpenFlow performance evaluation, we
first give a brief overview of OpenFlow version 1.0, which was used in our ex-
periments. More details on OpenFlow can be found in the white paper [11] as
well as in the OpenFlow specification [28].

The OpenFlow switch itself holds a flow table which stores flow entries con-
sisting of three components. The first is a set of 12 fields with information found
in a packet header that is used to match incoming packets. The second is a list
of actions that dictates how to handle matched packets. The final component is
a collection of statistics for the particular flow, like number of bytes, number of
packets, and the time passed since the last match.

When a packet arrives at the OpenFlow switch, its header information is ex-
tracted and then matched against the header portion of the flow table entries. If
checking against entries in each of the flow tables of the switch does not result
in a match, the packet is forwarded to the controller, which determines how the
packet should be handled. In the case of a match, the switch applies the appro-
priate actions to the packet and updates statistics for the flow table entry. This
process is visualized in Figure 2.1.

18

1 Work

. Extract Table Yes | Apply Actions,
Packet Arrival | | Header Fields | Match? Update Statistics
No

Encapsulate and
Forward to
Controller

Figure 2.1: Handling of incoming packets in an OpenFlow switch.

Several papers have been published indicating possible uses for Open-
Flow [29-31]. All these papers demonstrate that the concept of splitting the con-
trol plane from the data plane is useful in a variety of fields, like data center
routing, energy saving, and network virtualization. However, none of these pa-
pers addresses performance issues of the OpenFlow concept.

2.1.1 Works on Data Plane Performance

Based on [32], Bianco et al. [33] give a basic performance analysis for an
OpenFlow software switch. They compare OpenFlow switching, layer-2 Ether-
net switching, and layer-3 IP routing performance on Linux-based PCs. As per-
formance indicators they use forwarding throughput and packet latency. We ex-
tend these measurements by also considering various hardware-based solutions.
Tanyingyong et al. [34] propose an architectural design to improve the look up
performance of OpenFlow switching in Linux using a standard commodity net-
work interface card. They show packet switching throughput increasing up to
25% compared to the throughput of regular software-based OpenFlow switch-
ing. Luo et al. [35] apply network processor based acceleration cards to perform
OpenFlow switching. They show a 20% reduction on packet delay compared to
conventional designs. We compare our results to their findings.

19

2 Performance Analysis of Software Defined Networking

2.1.2 Works on Control Plane Performance

Current deployments of OpenFlow mostly rely on conventional switches as for-
warding units. As these are usually not designed to function as flow switches,
they are often performance bottlenecks and thus the research focus in terms of
performance so far lay on the data plane. However, gradually the control plane
performance is shifting into focus.

Curtis et al. [36] propose changes to the OpenFlow protocol as they discovered
inherent performance bottlenecks with regard to high CPU load caused by control
plane interaction in current OpenFlow switch implementations.

In [8], Pries et al. evaluate the usability of OpenFlow in data centers. They
discovered that setting flow rules reactively already leads to an unacceptable per-
formance when only eight switches are handled by a single controller.

With OFlops [37] a framework for performance analysis of OpenFlow
switches exists. However, on the controller side only a relatively simple bench-
mark exists with Cbench [38]. Cbench was first developed by Robert Sherwood
and has since become the standard evaluation tool for controller performance.
In [39] Tootoonchian et al. use Cbench to highlight possible controller perfor-
mance improvements. Still, little can be derived from the results in terms of
controller behavior. Cbench is single-threaded, i.e. multiple instances have to be
started to utilize multiple CPUs. It also only uses one controller connection for
all emulated switches. Aggregated statistics are gathered for all switches but not
for each switch individually. As a result, it is for example not possible to tell
whether all controller responses are for a single switch and the others receive
nothing, or whether the controller capacity is shared fairly among the switches.
Our benchmark addresses these issues to obtain more granular results.

2.2 OpenFlow System Measurement

The initial implementations of OpenFlow network elements rely either on soft-
ware or generic experimental hardware boards like the NetFPGA [40]. However,

20

2.2 OpenFlow System Measurement

the technology also has potential apart from the research world, e.g., for flexible
network management in data centers [41]. This has lead to an increased interest in
the technology from internet service providers and subsequently hardware ven-
dors to provide commercial grade products, which are OpenFlow-enabled. This
in turn raises the question how these new OpenFlow products actually perform
in general and in comparison to their experimental, but cheaper predecessors. In
this section, we aim to provide a basic comparison between various OpenFlow
implementations from pure software solutions to commercial switches as a per-
formance indicator for the data plane.

2.2.1 Data Plane Performance Experimental Setup

This section outlines our experimental setup. We illustrate the composition of our
testbed and the involved hardware. Furthermore, we give a brief introduction to
the tested OpenFlow switches and describe the performed tests.

Testbed
Traffic Generator OpenFlow Controller Traffic Sink
;a \d ~
MLQ’MEE > EQMEJ >
il a B
Control
Channel
@ S
Wiretap ~ Wiretap

u , Measurement
"J@t Server

Figure 2.2: Data plane performance measurement setup

21

2 Performance Analysis of Software Defined Networking

Figure 2.2 shows the logical view of our test bed. To operate the 1 Gbps link
between sender an receiver at full capacity, we use the Raw Packet Generator
pktgen. The generator is part of all current Linux kernels. In our case, a Debian
6.0 "Squeeze" is used. We run the generator on an HP Proliant DL320 using
an Intel Xeon quad core processor clocked at 2.13 GHz and 10 GB of RAM.
As it might be necessary at one point to use multiple interfaces or machines for
traffic generation, we included an HP ProCurve 1810G-24 as aggregation switch,
which bundles all incoming streams to a single outgoing interface leading to the
OpenFlow switch to be tested. Figure 2.2 exemplary shows an OpenFlow switch.
The switch itself is directly connected to a server, which acts as the OpenFlow
controller. In our case this server is a Fujitsu Siemens Esprimo PC powered by
a Pentium 4 HT clocked at 3.4 GHz and using 2 GB of RAM. The OpenFlow
controller software running on top of the server is NOX 0.8 for all tests. The
OpenFlow version used is 1.0. Measuring throughput and forwarding delay of the
OpenFlow switch requires the test traffic to be captured once just before entering
the switch and once just after leaving it. For this purpose, we use two NetOptics
1000Mbps wire taps. These taps mitror the traffic and redirect it to a capture
machine. This machine is identical to the traffic generator, an HP Proliant DL.320
also using an Intel Xeon quad core processor clocked at 2.13 GHz and 10 GB of
RAM. However, in order to be able to capture the traffic from both wire taps and
at the same time provide accurate time stamps at very fast switching times, an
additional special Endace DAG 7.5 G2 capture card is needed. This card is able
to capture 2x1Gbps of traffic at a time resolution of 10 micro-seconds. The last
part of our testbed is the client PC at which the traffic flow terminates.

The following switches were examined in our experiments:

i) Open vSwitch Open vSwitch [42] is an open source software implemen-
tation of a multilayer virtual switch. OpenFlow functionality is one of
its features. The Open vSwitch can either be run in a distributed fash-
ion across several machines, inside a hypervisor or function as a control
stack for switching hardware. Open vSwitch is the only software imple-

22

2.2 OpenFlow System Measurement

ii)

iii)

mentation tested in our experiments.

NetFPGA The NetFPGA project aims to provide network researchers
with a comparatively cheap programmable hardware solution. The exper-
imental NetFPGA boards feature four 1 Gbps interfaces as well as a Field
Programmable Gate Array (Xilinx Virtex-II Pro 50), which allows the im-
plementation of basic network functions. There is a variety of sub-projects
implementing network features based on this card. Among these projects
is also an OpenFlow switch implementation [40] by the Stanford Univer-
sity. It allows the Stanford OpenFlow implementation to use the NetFPGA
memory as flow tables.

Pronto 3290 The Pronto 3290 is an experimental OpenFlow-only switch
based on a generic Broadcom board. At the time of the test, the OpenFlow
firmware was written and maintained by the University of Stanford under
the name "Indigo". The switch features 48 network ports with a speed of
1 Gbps each.

Test Design

In this subsection, we briefly describe the tests, which were performed for each

individual switch. All tests have been run at least six times for payload sizes of
18, 60, 200, 600, 1000, 1400, and 1472 bytes. In each run two million packets
were transmitted.

a)

b)

One Fully Specified Rule:In this test, one fully specified flow rule is in-
serted into the switch prior to any traffic being sent. This rule matches the
1 Gbps flow of traffic sent by the traffic generator. The idea here is to ob-
tain a baseline for the forwarding delay that can be expected from each
switch.

Maximum Number of Fully Specified Rules:In this test, also one fully
specified rule matches the generated traffic. However, here the flow table

23

2 Performance Analysis of Software Defined Networking

24

c)

d

e)

in the switch is filled with non-matching flow rules. This test is supposed
to gauge the influence of the look-up time in the flow table on the overall
forwarding delay of the switch.

One Wildcard Rule:Here, one rule matching the generated traffic con-
taining at least one wildcard is inserted into the flow table. This test is
designed to determine whether the type of rule (wildcard vs fully speci-
fied) has an influence on forwarding delay. Depending on the implementa-
tion, different types of rules could be handled differently, e.g. in separate
hardware tables.

Maximum Number of Wildcard Rules:Once again one rule matching
the generated traffic containing at least one wildcard is inserted into the
flow table. However, the maximum number of wildcard rules, which do
not match the flow, is inserted into the flow table. Identical to the fully
specified test, this test is designed to gauge the influence of look-up delay
for this type of rule.

Disruptive Traffic: This test is identical to test a). However, in addition to
the measurement probe, a new flow arrives at the switch every millisecond.
This flow spawns the creation of a new flow rule by the controller, which
is then written into the flow table of the switch. The aim of this test is
to determine whether this write operation does have any influence on the
look-up performance (i.e. forwarding delay) of the switch.

Forward to Controller:In this test, a rule is inserted into the flow table,
which causes all incoming packets to be sent to the controller. The purpose
of this test is two-fold. First, the forwarding delay is measured and second,
the amount of packets a controller can handle is determined.

2.2 OpenFlow System Measurement

2.2.2 Data Plane Measurement Results

In this section, we present and describe the results of the performance tests for

different OpenFlow switches.

a) One Fully Specified Rule

-2

10

10

10"

delay (s)

Pronto 3290 NetFPGA

10

_6)
0 250 500 750 1000 1250 1500
payload (Byte)

10

Figure 2.3: Delay measurements with one fully specified rule

Figure 2.3 shows the forwarding delay in relation to packet size for each of
the tested switches with only one single fully specified rule, which matches the
measurement probe, present in the flow table of the switch. The y-axis has a loga-
rithmic scale to visualize all results in one graphic. A gap between the forwarding
performance of the two investigated hardware solutions and the Open vSwitch
is clearly visible. The software implementation is always at least one order of
magnitude slower imposing a delay of between 0.2 and 1 ms on the packets. In
contrast to the hardware switches, the Open vSwitch shows its highest forward-

25

2 Performance Analysis of Software Defined Networking

ing delay when confronted with minimum sized packets then becomes faster up
to 250 Byte payload. Eventually the delay increases again with the higher packet
sizes up to the MTU. It also has to be noted here that the software implementation
drops one third of all packets on average, while the hardware solutions lose next
to nothing for the applied traffic of 1 Gbps.

The Pronto 3290 shows a delay of about 0.004 ms for minimum size packets.
At MTU has increased to about 0.01 ms on average. The NetFPGA is slightly
faster for minimum size packets with about 0.002 ms, but converges towards the

Pronto graph for payloads near MTU size.

b) Maximum Number of Fully Specified Rules

107

10

1074 NetFPGA Pronto 3290

delay (s)

10

10 0 250 500 750 1000 1250 1500
payload (Byte)

Figure 2.4: Delay measurements with the maximum number of fully specified
rules

In Figure 2.4 the results for a full flow table with only one matching rule
are given. For the Open vSwitch and the Pronto 3290 the results are identical

26

2.2 OpenFlow System Measurement

to those shown in Figure 2.3 with only one rule in the flow table. This means
that the look-up operation in the flow table was efficiently implemented for these
switches and scales with the number of rules. Therefore, it does not impact the
overall performance. By contrast the NetFPGA OpenFlow Switch performance is
impacted by an increasing number of rules in the flow table. While it performed
best for all packet sizes in 2.2.2, the forwarding delay increases steeply from
about 0.002 ms at the minimum packet size to about 0.015 ms for 250 Byte
packets. For larger packet sizes the NetFPGA constantly performs about 0.03 ms
slower than the Pronto. This result is due to the fact that the NetFPGA OpenFlow
switch is an experimental implementation with only space for 24 rules in the
TCAM compared to a dedicated implementation with about 1300 rules for the
Pronto.

c) One Wild Card Rule

107

10

-4

10

delay (s)

Pronto 3290 NetFPGA

10

10 0250 500 750 1000 1250 1500
payload (Byte)

Figure 2.5: Delay measurements with one wildcard rule

27

2 Performance Analysis of Software Defined Networking

Figure 2.5 shows the results for one matching wild card rule in the flow ta-
ble. The measured delays do not differ from those in Figure 2.3 with one fully
specified rule. This suggests, that rules with wild cards are not matched faster or
slower than fully specified ones in all of the switches.

d) Maximum Number of Wild Card Rules

delay (s)
6\I

Pronto 3290 NetFGPA

0 250 500 750 1000 1250 1500
payload (Byte)

Figure 2.6: Delay measurements with the maximum number of wild card rules

The results for a flow table filled with wild card rules and only one matching
are shown in Figure 2.6. The results barely differ from those for one wild card
rule in Figure 2.5. This suggests that the flow table look-up has also been im-
plemented to scale for wild card rules. However, this means that the NetFPGA
implementation can match wild card rules more efficiently than fully specified
rules. The results for a table filled with wild cards are identical to those with only
one rule. However, we noted a difference for fully specified rules in the NetF-

28

2.2 OpenFlow System Measurement

PGA, cf. Figure 2.3 and Figure 2.4. This suggests that the look-up operation in
the NetFPGA for wild card rules is more efficient than that for fully specified
ones.

e) Forward to Controller

10
Pronto 3290
@40
&
° NetFPGA
©
10_1 r \-I.\H,

0 250 500 750 1000 1250 1500
payload (Byte)

Figure 2.7: Delay measurements with packets forwarded to the controller

Figure 2.7 depicts the results for the forwarding delay, when all packets are for-
warded to the controller. All tests are subject to massive packet loss of between
95% and 99% as the controller can not handle the necessary amount of data.
The packets that are forwarded experience a delay at least one order of magni-
tude longer than that of the Open vSwitch in the previous tests, which is also a
software implementation. All switches show similar behaviors. The forwarding
performance is worst for minimum size packets at about 1 s for the NetFPGA and
1.8 s for the Pronto 3290. The Open vSwitch lost too many packets here as to es-

29

2 Performance Analysis of Software Defined Networking

tablish a stable mean value. The forwarding delay decreases for all switches with
larger packets with the Open vSwitch at about 5 ms, the NetFPGA at about 10 ms,
and the Pronto 3290 being the slowest at about 35 ms for MTU size packets.

f) Disruptive Traffic

The following figures illustrate the influence on the forwarding delay caused by
writing operations on the flow table created through disruptive traffic. This test is
performed for the Open vSwitch and the Pronto 3290. In each case just one fully
specified rule is located in the flow table and matches. The same test is repeated
and disruptive traffic is introduced.

Figure 2.8a shows the results for the Open vSwitch. For small packets up to
about 250 byte the introduction of disruptive traffic does not impact the forward-
ing delay as the switch is already under heavy load. However, for larger packets
the influence of the write operations on the flow table becomes apparent. The
larger the packet, the higher the mean forwarding time and also the variance is
steadily increasing. Starting at values of 0.3 ms delay, the mean forwarding delay
increases up to about 2.8 ms, while remaining almost constant without disruptive
traffic.

5% 10 3.5% 10
3|
4
2.5
a3 s 2
g z
3 ol Without Disruptive Traffic 8 1.5f Without Disruptive Traffic
1
1R
.\ 0.5
— . . —
0 0
0 500 1000 1500 0 500 1000 1500
payload (Byte) payload (Byte)
(a) Open vSwitch (b) Pronto 3290

Figure 2.8: Delay measurements with disruptive traffic present

30

2.3 OpenFlow Controller Benchmark

The Pronto 3290 shows the greatest susceptibility to disruptive traffic as is
shown in Figure 2.8b. Without disruptive traffic, the forwarding delay lies con-
stantly below 10us as can be seen in Figure 2.4. However, with disruptive traffic
this delay increases steadily from the ps-range for minimum-sized packets to
about 2ms for MTU-sized packets. Here, the variance is also greatly increased.

2.3 OpenFlow Controller Benchmark

OpenFlow controllers are the key components in the OpenFlow architecture.
They are often marketed as “networking operating system” in a software defined
network. However, this designation is slightly misleading. While the OpenFlow
controller certainly fills the role of an operating system, bridging the gap between
physical hardware and applications, many controllers lack the stability and per-
formance we would expect a modern operating system to have in the computing
domain.

OpenFlow controllers can not be configured, but have to be programmed,
which makes them more akin to operational frameworks than an actual operating
system. Since the OpenFlow standard does not dictate how a controller should
be implemented or even which elements it should possess beyond the OpenFlow
secure channel, a variety of different implementations has been developed, each
with its own behavior and performance characteristics. These differences make
specific controllers better suited for certain scenarios than others. To choose an
implementation over another and to analyze the system behavior for a particular
deployment, these differences have to be understood.

In this section we introduce a flexible OpenFlow controller benchmark as a
tool to obtain this insight. Unlike conventional benchmarks that focus on over-
all throughput and latency, our benchmark allows the emulation of scenarios and
topologies and can evaluate the controller performance on a per-switch basis.
This way, a more detailed analysis of controller performance bottlenecks as well
as obscure behavior is possible. The purpose of this is to underline the neces-
sity of tools like this for analyzing and understanding controller and, as a conse-

31

2 Performance Analysis of Software Defined Networking

quence, OpenFlow network performance.

2.3.1 Benchmark Architecture

In this section we present our OFCBenchmark tool. First, we explain the design

goals that guided our development process. Then, we present the architecture of

the software and describe the implementation.

Design Goals

The architecture and the implementation of OFCBenchmark are guided by the

following main design goals.

32

e Scalability: The software should be designed in a way so that multiple
instances can run in a coordinated way on different CPU cores, CPUs, and
hosts. This achieves that the load generated to test an OpenFlow controller
is not limited by a single core of the CPU or the memory of the machine
that runs the software.

e Ability to provide detailed performance statistics: Our benchmarking soft-
ware should provide performance metrics such as round trip times, sent
or received packets per second, or the number of outstanding packets, in
time series and on a per switch basis. This feature permits to investigate
whether an OpenFlow controller treats switches differently or changes its
behavior over time.

e Modularity: The controller development process progresses rapidly and
therefore, the benchmark should be adaptable to new scenarios, which is
easier in a modularized software. In addition, measurements of further
performance metrics and further parameters to control the load generation
should be easy to add to the benchmarking software.

nark

Control Center G} Control Virtual Switch .
Socket @
Configuration Packet Generator - 4
Controller
Flow Tables [Socket
— Communication
Statistics 4

Figure 2.9: Structure of a virtual switch.

Architecture Design

The architecture of our OpenFlow controller benchmark consists of three main
components - the OFCBenchmark Control Center (OCC), the OFCBenchmark
Client (OC), and the Virtual Switch (VS). The OFCBenchmark uses a distributed
approach, i.e. the benchmark can be spread over multiple hosts. Each of these
hosts runs an instance of the OC. The OC itself is already a full benchmarking
system. It executes the performance tests using the configured number of VS
objects. However, it is limited in scale as the number of VSs is restricted by the
amount of memory and computing capacity of a single host. In the distributed
mode, multiple OCs connect to the OCC, which then controls the experiment.

The key component of the OFCBenchmark is the virtual switch. Figure 2.9
shows a schematic illustration of the VS structure. The virtual switch holds a sim-
plified flow table to be able to respond to controller requests. It also has a statis-
tics store where the benchmarking results are kept and updated. Furthermore,
each virtual switch has two socket connections and three threads encapsulated
in the virtual switch object. The connections serve as communication channels
to the OCC and the OpenFlow Controller and are managed using the threads.
This allows us to treat a VS as a true individual entity, which gives us the desired
modularity, scalability, and the ability to provide detailed performance statistics.

33

2 Performance Analysis of Software Defined Networking

Implementation

The OC and its VSs are written in C++ using the Boost library for thread-
handling. Experiments can either be configured directly via the OCC communi-
cations channel in distributed mode or through a configuration file in standalone
mode. Configuration options include number of switches, per switch packet-inter-
transmission times, packet sizes, as well as the option to specify a pcap file con-
taining OpenFlow messages for each switch to play-out. Furthermore, the OC
allows the creation of a switch topology specified in a separate configuration file.
This is achieved by allowing the virtual switches to seemingly forward controller
generated LLDP or OFLDP packets and sending them back to the controller as
Packet-In messages according to the configured topology.

At creation time the VS reads the same configuration file as the OC and con-
nects itself to the OCC waiting for further instructions or requests. In Figure 2.9
we can see the control thread connected with the OCC through a socket. This
thread executes the commands of the OCC in the VS. If the connection to the
OCC is not configured in the configuration file, the switches are operated in stand-
alone mode by the OC. The two remaining threads are using the same TCP socket

and are the workers of the virtual switch.

The choice of TCP as transmission protocol reflects the OpenFlow specifica-
tion. The communication-thread is responsible for handling the communication
with the currently benchmarked controller using the OpenFlow protocol in ver-
sion 1.0. It performs the OpenFlow handshake process and answers other con-
troller requests. The packet-generator thread creates and sends Packet-In mes-
sages to the controller for benchmarking. The time between two sent packets can
be configured. By default the time is set to zero, which results in as many packets
being sent as the TCP stream allows. The Packet-In messages contain the packet
header of the first packet of a new IP flow the controller has not yet encountered.
Every Packet-In message is identifiable through its buffer-id. The controller re-
sponds to those packets with Packet-Out and/or FlowMod messages using the
same buffer-id to identify the corresponding packet. Receiving the response, the

34

2.3 OpenFlow Controller Benchmark

communication thread parses the id, calculates the round trip time for this request
and updates the statistics. As both threads are using the same socket, a semaphore
was included to coordinate the output and avoid data corruption. This is a mutual
exclusion that prevents the usage of socket output from different threads at the
same time. Before sending a datagram the “user” of the socket output has to lock
the semaphore and release it after transmission. To be able to use multiple CPUs
and thus to keep accurate statistics for the round trip time, the virtual switches
use blocking I/O, i.e. a thread is only “woken” by the operating system once a
packet arrives. This way we avoid having to check frequently whether a packet
has arrived using a single thread.

The OCC is a graphical user interface written in Delphi, so experimenters can
see the current configuration at a glance and modify the test settings according to

their requirements.

2.3.2 Comparison with Cbench

To verify the results of our benchmark we run a comparative test with Cbench.
The test was run on a testbed consisting of two PCs directly connected through a
100 Mbps Link. Both systems share the same hardware and software configura-
tion with a Pentium IV 3.4GHz CPU, 1 GB RAM, and Ubuntu 10.04 as operating
system. One PC runs the controller — in this case Nox Classic [43] as learning
switch — and the other PC runs the benchmarking tools. The benchmark is set not
to introduce artificial delay between packet departures. We compare our bench-
mark to two versions of Cbench — the current repository version and the original
version used for reference.

Figure 2.10 shows the achieved throughput in packets per second with respect
to the number of connected virtual switches. The error-bars attached to the graphs
give the 95% confidence intervals, which were obtained through five repetitions
of each test.

All curves increase from about 10,000 pps with just one virtual switch un-
til they reach a stable level of saturation with about 15 connected switches. The

35

2 Performance Analysis of Software Defined Networking

legacy Cbench version reaches its saturation at about 14,300 pps. The current
Cbench as well as our OFCBenchmark achieve a higher throughput and reach
their saturation at about 16,900 pps. From about 50 connected switches we see a
slight decrease to about 16,000 pps in throughput and larger confidence intervals
for our benchmark. This is likely due to the larger overhead caused by manag-
ing and keeping statistics for each virtual switch independently. However, the
difference to Cbench is still quite small and partially still within the confidence
intervals. Therefore, we can assume that our benchmark produces comparable
results to the Cbench tool.

18X1QOO ‘ B :
I,z‘::-/&«?%'-’i-%’;‘f‘{‘r bedrs
16+ F

;ﬁ

—
o

N
N

} cbench (current)

—_
o

Nox throughput (PPS)

cbench (original)

80 10 20 30 40 50 60 70 80 90 100
number of switches

Figure 2.10: Comparison of our benchmark with Cbench using the Nox-Classic
controller.

2.3.3 Controller Benchmarking Results

In this section we discuss some initial results we have obtained with our bench-

mark. These results are produced with a software in development. This is nei-

36

2.3 OpenFlow Controller Benchmark

ther an exhaustive and/or representative comparison between the benchmarked
controllers, nor can or should a general statement about the quality of the con-
trollers be derived from this simple scenario. This is intended to showcase the
features of our benchmark and a discussion of the results and their consequences.
The testbed used here is identical to the one described in the previous section.
The controllers measured are Nox Classic [43] ("Zaku” release), Floodlight [44]
(version 0.82), and Maestro [45] (version 0.2). These controllers were chosen
arbitrarily with the only requirement being that they are freely available. All
controllers were set to use their respective learning switch applications. As Nox
Classic has no multi-threading, the other controllers were also limited to a single
thread to obtain comparable results. Nagle’s algorithm was deactivated on all test
systems to avoid the influence of artificial TCP buffering. All tests were repeated
5 times to obtain the confidence intervals shown in the figures.

Mean Round Trip Time

The first feature test is for the round trip time (RTT), i.e. the interval from the
moment a Packet-In message is dispatched from the virtual switch to the con-
troller until the corresponding Packet-Out or FlowMod message is received by
the switch. This test can also be performed with Cbench. Our benchmark extends
this feature by allowing to obtain these statistics for each switch individually and
as a time series as well.

Figure 2.11a illustrates the mean round trip time in milliseconds for different
numbers of simultaneously connected switches to the controller. Note that the
y-axis is scaled logarithmically. We observe that the Floodlight and Nox Clas-
sic controller behave in a similar way. The response time of these controllers
increases rapidly from about 200 ms for one switch until the value stabilizes at
about 6 s for 30 switches. Both controllers are obviously under heavy load at this
point due to the relatively low performance of the hardware. However, the RTT
for Floodlight continues to increase up to about 8 s for 80 switches. Maestro be-
haves differently. For this scenario Maestro starts at a RTT of only about 6 ms

37

2 Performance Analysis of Software Defined Networking

1000

S

m Floodlight NOX
3 N N £
o X3
£ 100 5
a s
é] 2 NOX
3 10 s Floodlight
c g1 /
3 3 —
£ o;?/
0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90 100
number of switches number of switches
(a) Mean (b) Coefficient of variation

Figure 2.11: Response time for an OpenFlow Packet-In message.

— two orders of magnitude faster than the other controllers. With an increasing
number of switches the RTT increases steadily, but far slower compared to the
others, until for 100 switches a RTT of just below 1 s is reached. The largest
increase in RTT can be observed between 40 and 50 connected switches. We sus-
pect this behavior is the result of a different processing strategy for Maestro that
is advantageous in this scenario as we will see indicated by the results shown in
Figure 2.12.

However, the average RTT of all switches and over the whole experiment du-
ration is neither sufficient to judge whether this value changed over time nor
whether some switches experienced larger or smaller RTTs, i.e., whether some
switches received a preferred treatment. To answer such questions, our tool pro-
vides time series of the RTTs on a per switch basis. As an example evaluation
of this data, we calculate the average RTT over time for every switch and an-
alyze the variability of this value among the different switches by showing the
coefficient of variation (cy) of these values, cf. Figure 2.11b.

As suggested by the small confidence intervals in Figure 2.11a, the cy for
the RTT is small for all controllers. For Nox Classic and Floodlight we see an
increase from about 0.2 with one switch to a stable value of about 0.5 at 30

38

2.3 OpenFlow Controller Benchmark

switches for Nox Classic and 50 switches for Floodlight. Initially Maestro dis-
plays a higher cy at about one with outliers up to 3 and large confidence intervals.
This can be explained with the much smaller mean RTT, as small derivations from
small mean values have a far larger impact on the ¢y than small derivations from
larger ones. Mirroring the observations from Figure 2.11b, the cy decreases be-
tween 40 and 50 connected switches to a value of about 0.3 — below that of the
other two controllers.

Send- and Response Rates

Apart from determining the throughput and latency of an OpenFlow controller, it
might also be interesting or even important to look at the rate it accepts packets.
This can provide insights into rate control mechanisms and/or polling strategies
of the controllers. Therefore, we have included this feature in our benchmark.

In Figure 2.12 the result for the number of packets per second (pps) sent from
the switches to the controller through the OpenFlow secure channel is given. As
our benchmark uses TCP to send the Packet-In messages to the controller in-
stead of writing the packets raw on the wire, the send rate is determined by the
TCP connection. We observe that the packet send rate for the Floodlight con-
troller does not increase significantly with the number of switches. It starts at a
rate of about 10,000 pps for one switch and increases to about 38,000 pps. For
Nox Classic the increase is slightly steeper, but stalls at about 70,000 ps for 70
switches. However, for Maestro we see a far higher increase in packet send rate
with the number of switches. It increases linearly from about 5000 pps to about
140,000 pps for 35 switches and then continues to increase to 150,000 pps for 50
switches. This suggests the implementation of a rate-control mechanism for Nox
Classic and Floodlight, whereas Maestro accepts packets in a best effort manner.

The complement to the send rate is given in Figure 2.13 — the packet reception
rate. It describes the number of responses the switches receive from the controller
per second. The figure shows that the reception rate for all controllers is similar to

39

2 Performance Analysis of Software Defined Networking

x1000
200

150

1001

NOX
50 t FIoodIight*]

sent packets per second

o
0 0 10 20 30 40 50 60 70 80 90100
number of switches

Figure 2.12: Virtual switch Packet-In send-rate.

the send rate of the switches shown in the previous figure. However, we do not see
an increase in reception rate with an increasing number of switches for Floodlight
and Nox as we observed for the rate of sent packets in Figure 2.12. The reception
rate is basically stable at about 10,000 pps. The curve for Maestro displays a
steep rate increase identical to the corresponding send rate. The initial rate of
about 5000 pps for one switch steadily grows up to about 135,000 pps for 35
switches. As before we see the following flatter rate growth up to about 145,000
pps for 50 switches, where it remains stable. This means for Meastro there is a
discrepancy of about 5000 pps between send and reception rate at this point. We
call this discrepancy the “outstanding packets”, i.e. the number of unanswered
Packet-In messages by the controller. We take a look at these in the following
results using the per switch analysis option of our benchmark.

40

2.3 OpenFlow Controller Benchmark

1000
T 150 -

@]

O

()

N

g 100}

o)

J .

&) Floodlight

@®

2 30 NOX
©

2 /
=

8 74

o

0 010 20 30 40 50 60 70 80 90100
number of switches

Figure 2.13: Virtual switch Packet-Out reception-rate.

Outstanding Packets

Figure 2.14 shows the evolution of the number of outstanding packets per virtual
switch for a test run with 20 connected switches over time for a test run of 15 s.
The values are presented for time intervals of 0.25 s and the time axis in the plots
shows the interval number instead of the time value.

Figure 2.14a gives the number of outstanding packets for the Maestro con-
troller. As we can see from the comparison of Figures 2.12 and 2.13, the num-
ber of outstanding packets is very small for 20 switches. All packets have been
processed shortly after the 15 s sending period is over. However, we see some
”spikes” in the graph, i.e. samples with a large number of outstanding packets
from about 2000 to 6000 packets.

The number of outstanding packets for the Floodlight controller is given in
Figure 2.14b. Floodlight shows a different behavior compared to Maestro. All
switches have quite a large number of outstanding packets. Switches 1-4 show

41

2 Performance Analysis of Software Defined Networking

switch 100 100
20 50 20 50
0 sample (length 0.25 s) 0 sample (length 0.25 s)

(a) Maestro (b) Floodlight

outstanding packets

switch 100
20 50
0 sample (length 0.25 s)
(c) Nox

Figure 2.14: Response time for an OpenFlow Packet-In message.

42

2.3 OpenFlow Controller Benchmark

a particularly high number of 15,000-20,000 outstanding packets and maintain
this level over the course of the experiment. The remaining switches hold a level
of about 10,000 outstanding packets. This is interesting for two reasons. For one
the level of outstanding packets remains constant, i.e. there is no overload in the
system. This suggests the presence of a packet buffer in the Floodlight controller.
Second, while most switches are treated equally, the first four switches seem to
have a larger number of buffered packets. Prior to the experiment, the virtual
switches are connected sequentially to the controller. Therefore, it appears that
the order in which the switches are connected has an influence on the buffer
size. After the end of the sending period, the buffer is gradually processed as can
be seen from the decrease in outstanding packets after 60 samples. It takes an
additional 5 s after the end of the 15 s experiment until all packets have been

answered.

With Nox Classic the influence of the connection order on the number of out-
standing packets per switch is even more significant, cf. Figure 2.14c. Apparently,
Nox Classic does not treat switches equally. The first connected switch experi-
ences a build-up of up to 100,000 outstanding packet. For each subsequent switch
the average number of outstanding packets is slightly reduced. The 20th and last
connected switch only experiences 10,000-15,000 outstanding packets on aver-
age. As a result, all packets of the later connected switches have finished pro-
cessing only 1-2 s after the sending period ends, whereas for the first connected
switch the processing takes an additional 10 s to complete. In a real network a
behavior like this would lead to unfairness. Devices attached to one of the first
switches would experience far larger flow setup times. Using only aggregates and
mean values, we would not be able to determine the cause of the issue. While the
obtained results may not be 100% accurate as the software is still in development,
the fact that the results are repeatable and differ between controllers on the same
test systems highlights that there are indeed notable differences between con-
troller behaviors. This circumstance and its consequences should be investigated
and this is what our approach is aimed at.

43

2 Performance Analysis of Software Defined Networking

2.4 Analytical Modeling of OpenFlow

Having established a baseline for the performance of the OpenFlow system com-
ponents, we are interested to determine how the performance of such a system
scales with changing parameters.

Understanding the performance and limitations of the basic OpenFlow concept
is a prerequisite for using it for experiments with new protocols and mechanisms.
We aim to provide a performance model of an OpenFlow system. The model is
based on results from queuing theory and is verified by simulations and measure-
ment experiments with a real OpenFlow switch and controller. The advantage of
this analytical model over the simulation is the fact that it can provide results in
a few seconds’ time whereas the simulation may require several hours to com-
plete depending on the computing hardware. Additionally, the M/M/1-S feedback
queue is already a good approximation of the actual controller performance. The
model captures the delay experienced by packets that have to be processed by
the controller in contrast to be processed just by the switch, as well as the prob-
ability to drop packets if the controller is under high load. Using this model, we
derive conclusions about the impact of the performance of the OpenFlow con-
troller in different realistic scenarios, and its effect on the traffic flowing through

the OpenFlow-enabled switch.

2.4.1 Model Input Parameters

Based on the results from the previous section we decided to use the performance
values of the Pronto 3290 as input parameters for our model as the difference
between Pronto and NetFPGA is marginal and the technical specifications of the
Pronto are much closer to those of commercial hardware switches than those of
the NetFPGA.

The measurements which provided the data for the response times of the Open-
Flow controller Nox 0.9 were performed in a different scenario. Rather than our

own tool, we used Cbench [38] for the controller measurements as we were not

44

2.4 Analytical Modeling of OpenFlow

interested in the controller behavior per se, but only in the raw throughput of the
controller. The Cbench [38] tool was installed on the measurement server and the
controller attached directly. The Cbench tool measures the rate with which flow
requests are handled by the controller. Unfortunately, we were not able to match
requests and responses to the OpenFlow controller. Hence, we need to rely on the
number of answers per second the Cbench tool measured. These showed a mean
value of 4175 responses per second with a standard deviation of 101.43. From
this value, we calculated the mean values of the controllers sojourn times and use
these in our analytical model and in the simulation.

Finally, we also require the inter-arrival times of new packets and flows. These
are based on the measurements published in [46], where we analyzed the traffic of
aresidential wireless Internet access for over 30 days. The packet size distribution
and the probability of new flows used in our performance evaluation have been
extracted from this study.

2.4.2 A Simplified Model of an OpenFlow Architecture

We abstract the OpenFlow architecture as a feedback-oriented queuing system
model, divided into a forward queuing system of the type M/GI/1 and a feed-
back queuing system of the delay-loss type M/GI/1 — S. We deliberately start
by assuming Markov servers for both systems, i.e. an M /M/1 for the forward
model and an M /M /1 — S for the feedback model, to test the robustness of the
modeling approach. The forward queue has an average service time of 9.8 mi-
croseconds. The queue size of the forward system is assumed to be infinite. In
contrast, the buffer for the packets waiting on a controller response is assumed
to have a finite capacity of 512, which models the queue of the feedback system.
The arrival process at the switch, i.e. of the forward system, is a combination of
the arrival process of packets received from the line cards with rate A and of pack-
ets being forwarded from the switch buffer after the controller has determined the
appropriate action and the corresponding entry in the flow table was created.
The OpenFlow controller is thus modeled by the feedback M/M/1 — S

45

2 Performance Analysis of Software Defined Networking

Controller

Figure 2.15: A simple model of an OpenFlow switch.

queuing system with an exponential service time with a mean value E[Bc¢] €
{31ps,240us,5.2ms}. The high as well as the low mean service time were
chosen arbitrarily one order of magnitude larger respectively smaller than the
measured mean service time of 240us. We assume that all merging traffic flows
again form Poisson streams. The smallest value for E[B¢] is taken from our
controller benchmark, the other values have been chosen arbitrarily to reflect the
impact of controller applications one or two order of magnitudes slower. The
queue length S of the controller system is limited in order to model the possibil-
ity of dropped packets under high load conditions. The arrival rate in this system
is a fraction of the arrival rate of packets from line cards in the switch, governed
by the probability p, s of a flow being seen by the switch which has no flow table
entry yet.

The two main performance indicators of interest for an evaluation are the total
sojourn time of a packet through the system and the probability of dropping a
packet. A packet has to traverse the switch system at least once. With a probability

46

2.4 Analytical Modeling of OpenFlow

of pny, the switch has no entry in its flow table for that packet and forwards it
to the controller. A packet can be blocked at the controller with probability py.
After the controller sojourn time, it is again queued in the switch and traverses
it for a second time. The complete model of the forward and feedback queuing
systems with both components and all traffic flows is shown in Figure 2.15.

It is important to note that a single packet cannot be forwarded to the controller
twice, i.e., pny is only applied to the initial packet flow with rate Ao. In our
analysis, we ensure that a packet does not experience more than the sojourn time
of the controller plus twice the sojourn time of the switch. Figure 2.16 illustrates
the way a packet takes through the system in a more sequential manner. Ws and
We r tively,
where

Figure 2.16: Phase diagram of the packet sojourn time.

Assumptions

In the forward queuing system, we take the simplifying assumption that the over-
all arrival process at the switch (forward), as well as the arrival process at the
controller (feedback) are Poisson. This can be justified as the state processes on
the forward and the feedback paths are on very different time scales, which allows
the decomposition of the two queuing systems. Moreover, we queue all packet ar-
rivals in a single queue at the switch, instead of a separate queue per line card.
The feedback queue used to model the controller actually comprises out of the
line-out card of the switch towards the controller, the buffer, and processing at

47

2 Performance Analysis of Software Defined Networking

the controller itself. However, the Nox controller we used as a reference for this
model controls the traffic rate it receives from the switch in order to prevent over-
load. Therefore, no additional queuing happens at the controller itself, and the
line-out buffer at the switch is the only place where packet loss may happen. The
transmission time of packets from the switch to the controller is encapsulated in
the service time of the controller.

Limitations of the Model

In its current form, the model does not capture the fact that incoming traffic at
the switch is queued first per line card, i.e., one queue per port. As well, it is
currently limited to a single switch per controller, whereas OpenFlow allows the
same controller to be responsible for a number of different switches. Furthermore,
the model assumes TCP traffic as opposed to UDP traffic. For TCP traffic only
the first packet header of a new flow is sent to the controller, while for UDP
all packets are relayed until a flow rule is in place. These limitations will be
addressed in future work by refining the model described here. Refinements may
contain replacing the forward input queue by a polling system or replacing the
M/M /1 — S system of the controller with a more general M /G1/1 — S system
that allows the use of a measured service time distribution as an input for the
model.

Although it might be desirable to have the complete distribution for the model,
we focus on the first two moments only as they provide us the most important per-

formance indicators required by a service provider for dimensioning the network.

2.4.3 Analytical Results for the Simplified Model

In this section, we discuss the output of our model and validate them by means
of a simulation. We use a set of scenarios depicting different use-cases for an
OpenFlow-enabled switch. This is mainly reflected in the forwarding probabil-
ity pns. A value of p,,y = 0.04 represents a normal productive network carrying
end user traffic, where [46] showed that this is the probability for new flows being

48

2.4 Analytical Modeling of OpenFlow

observed at the switch. Values of p,; = 0.2 or 0.5 model a network where a part
of the traffic is routed via the controller, e.g., if a portion of the traffic is using a
virtualized network. Finally, p,y = 1 depicts the case where the controller han-
dles the complete traffic going through the switch, e.g., in an experiment testing
new protocols, such as described in [11].

We also vary the mean service time of the controller. The slowest value is
two orders of magnitude larger than the service time of the switch, which may
be the case if commodity hardware is used to run the controller. We provide
results for faster controller systems as well to allow to predict the system behavior
if dedicated hardware is used. The buffer size at the controller queue is set to
S = 512 packets in all experiments, which was chosen arbitrarily as a middle
ground between experimental and commercial switches.

To be able to validate the results from the analytical model, we implemented
a packet based simulation in OMNeT++. The simulation model also reflects the
structure of the analytical model, cf. Figure 2.15. Verification through simulation
was chosen over measurements as simulations results are faster to obtain and do
not require as many repetitions to stabilize. The process time of the controller
in the simulation uses the same distribution as the analytical model. In contrast,
we are able to study the feedback generated by packets looping back over the
controller in the simulation, which we are not able to fully reflect in the analytical
model. The assumptions about the arrival and departure process of the controller
are also relaxed in the simulation, i.e., no Poisson process is assumed. Instead,
the actual inter-departure times of packets after traversing the switch and the
controller, respectively, are used.

The simulation results shown in this section are based on six simulation runs
per parameter and different seeds. The 95% confidence intervals are given for the
simulation results in all figures, but are only represented by dashes as they are
very small compared to the scale.

Figure 2.17a illustrates the modeled as well as the simulated mean sojourn
time of a packet depending on the controller load for an expected controller ser-
vice time value of E[B¢c| = 5.3ms. Graphs are shown for several p,y, i.e.,

49

2 Performance Analysis of Software Defined Networking

60

-
- Simulation -
p.=0.04

—Model
- Simulation

(a) Mean (b) Coefficient of variation

Figure 2.17: Impact of the forwarding probability on the packet sojourn time for
E[B¢] =5.3ms

the probability that a received packet at the switch represents a new flow and
subsequently causes the switch to send an OpenFlow packet, which needs to be
answered by the controller. Values are given for controller loads from 5% to 95%

in 5% steps.

As a first general observation, we see an increase in the mean sojourn time
which is caused by the influence of the controller. The more packets need to wait
for a controller response, the more packets have a longer sojourn time caused by
the controller service time and additional waiting time imposed by queuing. Since
the controller reaches a high utilization sooner than the switch with an increasing
Ao, 1.e., an increasing raw traffic rate, it contributes a much longer waiting time
to the total packet sojourn time.

In case of p,; = 0.04, the mean sojourn time of the system barely deviates
from that of the switch, since only a small fraction of traffic has to be handled by
the controller. Only at a controller load of 75% and above we observe the start of
an exponentially rising gradient. If we increase p,, s to 0.2, we see this increase at
a controller load of about 45%. For p,,; = 0.5 it already starts at a load of 30%
and at the maximum value p,, ; = 1.0 we detect the increase already at 10% con-

50

2.4 Analytical Modeling of OpenFlow

troller load. In all cases, the simulation curve is located slightly above the curve
for the model. For low values of p,, ; this deviation appears to be marginal. Here,
simulation and model show a nearly identical progression. With an increasing
DPnys, we see a deviation increase except for very high controller loads. However,
the deviation remains small.

In Figure 2.17b, the coefficients of variation for the sojourn times are shown
also dependent on the controller load. We observe an increasing coefficient of
variation with a decreasing p,, y. This is caused by the fact that with a smaller
Pny less packets are subject to the delay imposed by the controller and therefore,
the deviation from the mean value for these packets is much higher. Again, we can
also see a small discrepancy between simulation and model for medium controller
loads. This discrepancy increases with smaller values for p, s complementary to
what we see in Figure 2.17a. However, simulation and model seem to be a good
fit.

Pc Pc

(a) Mean (b) Coefficient of variation
Figure 2.18: Impact of the forwarding probability on the packet sojourn time for
E[Bc¢] = 240us

Figure 2.18a depicts the simulated as well as modeled mean sojourn times
dependent on the controller load for an expected controller service time value
of E[Bc] = 240pus, corresponding to Figure 2.17a. For p,y = 0.04 and a

51

2 Performance Analysis of Software Defined Networking

controller load of 95% no value is given as this would violate our assumption of
an offer a < 1. Overall, we observe the same effects as discussed for Figure 2.17a
albeit for mean sojourn times two orders of magnitude smaller. The point where
the gradient starts to increase exponentially is shifted to lower controller loads,
e.g., for p,y = 0.04 we see an increase already at 45% load as opposed to 75%
in Figure 2.17a.

Corresponding to Figure 2.17b, Figure 2.18b shows the coefficients of varia-
tion for the sojourn times for F[Bc] = 240us. While the progressions of the
coefficients are very similar here to those in Figure 2.17b for p,y = 0.5 and
pns = 1.0, they differ for p,y = 0.2 and p,y = 0.04. Contrary to Figure 2.17b,
the model curve for these two values of p,, y now underestimates the simulation
for small controller loads. We also note an increasing gradient for p,y = 0.2.
For p,y = 0.04 we see an exponential decrease in the coefficient of variation
at controller load above 70%. Furthermore, the model curve now underestimates
the simulation for all observed controller loads. In this scenario, not only the de-
lay imposed by the controller is relevant, but we also observe a non-zero waiting
time at the switch. This is caused by the now much smaller difference between
the service time of the switch and that of the controller. A high utilization of the
controller also leads to a non-negligible utilization of the switch, resulting in a
non-empty queue.

Finally, Figure 2.19 displays the simulated as well as modeled mean sojourn
times dependent on the controller service time for p,; = 1.0. We can observe
the influence of the controller performance relative to the switch performance
on the total system. As we have seen in Figure 2.17a and Figure 2.18a, the
mean sojourn time increases exponentially with increasing load. However, for an
E[B¢] = 5.3ms the gradient already shows a much higher increase at smaller
controller loads than that for E[Bc] = 240pus. With an E[Bc| = 31us, the
curve is governed by the switch delay and therefore, the mean sojourn time is
barely distinguishable from the service time of the switch and does not show an

increase at all.

In all cases, the observed blocking probabilities (pg) for packets at the con-

52

2.4 Analytical Modeling of OpenFlow

—Model
""""" Simulation

\g/ 40 -4
= E[B,] = 2.4 g
— E[B.] =5.340
0 -
0 0.5 1

Figure 2.19: Impact of the controller service time on the mean packet sojourn
time.

troller queue were zero for the simulation and infinitesimal small in the model.

This indicates that the OpenFlow architecture is stable for our input values.

2.4.4 Generalizing the Model

The model we have introduced helps to predict the mean sojourn time and packet
loss by using mean values as input to estimate the service times of both switch
and controller. However, we wanted to improve the prediction for the mean ser-
vice time by generalizing our model to use arbitrarily distributed service times in
the controller model and arbitrarily distributed arrival times in the switch. This
enables us to exploit the characteristics of measurement data as a basis for our so-
journ time estimation. This is especially important since controller performance
can vary greatly depending on the network application running on top of it. An-
other difference to our previous model is the removal of the packet loss calcula-

53

2 Performance Analysis of Software Defined Networking

tion at the controller as our previous results have shown that this is only an issue

when the controller is overloaded.

2.4.5 OpenFlow Controller Service Time Distribution

In this section, we describe how to obtain a realistic service time distribution for
the controller and discuss the results.

OpenFlow Controller

ifa
-
Control kk Measurement
Channel Server
Wiretap "J [[S'kmm
Traffic Generator Traffic Sink

< Test Traffic
9“[”1 ~

[

7

Figure 2.20: Testbed set up to controller delay

In the previous section, we used a measurement testbed to obtain the mean
values for the service time of an OpenFlow switch and the Cbench [38] bench-
mark to perform the same task for the controller. This was sufficient as our initial
model required only mean service times to estimate the mean sojourn time of a
packet. However, for a generalized controller queue as we propose, it is neces-
sary to have a complete service time distribution as input parameter. Therefore,
we decided to adapt our existing testbed to accurately measure the delay imposed
by the controller instead of relying on a software-based measurment. The testbed
is depicted in Figure 2.20. For traffic generation, we use an HP Proliant DL320
server system with a 2.13 GHz quad core CPU and 10 GB of RAM. Traffic is
generated by the Linux tool “pktgen” in such a way that every packet represents

54

2.4 Analytical Modeling of OpenFlow

anew flow. The traffic generator is connected to an OpenFlow switch, in our case
an NEC IP8800, via a 1 Gbps Ethernet link. However, the link is not saturated to
prevent overloading the controller. When a packet reaches the OpenFlow switch,
it triggers the creation of an OpenFlow “packet-in” message to the controller,
which is then transmitted via a dedicated 1 Gbps Ethernet link to the controller.
The traffic on the link is mirrored bidirectionally using a Net Optics Wiretap and
sent to the measurement server, which is also an HP Proliant DL320 server with
a 2.13 GHz quad core CPU and 12 GB of RAM. The system utilizes an Endace
DAG 7.5 G2 card, which allows time-stamping of packets with a precision of
less than 9 nanoseconds according to the manufacturer [47]. The controller used
is NOX 0.9 running the pyswitch module on top of a standard Fujitsu Esprimo
P7935 PC with an Intel Core 2 quad core CPU and 8 GB of RAM. Any other
controller and application could have been used as the goal of this measurement
was to obtain a sample as input for our model. However, we chose this combi-
nation as in our opinion it is the most easily reproducible. Once the OpenFlow
message has been processed by the controller, a reply message is sent back to
the switch. This message packet is also mirrored to the measurement server. With
the message arriving at the switch, the original packet, which was stored in the
buffer, is then transmitted to the traffic sink. Therefore, the delay measured is the
time from the moment the OpenFlow “packet-in” message passes the Wiretap’s
upstream interface until the corresponding reply is recorded on the downstream

interface.

Figure 2.21 shows the CDF of the controller delay for five individual measure-
ment runs, each using a sample of 10000 packets. The mean value of all samples
is 0.366 ms with a coefficient of variation (cg) of 0.149. We observe distinct
“steps” in the graph, i.e. large percentages of packets possess similar processing
times. We see an increase of about 12%-15% at 0.28 ms delay, an increase of
about 28%-35% at 0.31 ms delay, an increase of about 20%-30% at 0.38 ms de-
lay, and an increase of about 28%-30% at about 0.4 ms delay. It is likely these
steps are the result of differences in processing time for packets that are destined
for hosts as of yet unknown to the switch resulting in flooding and those already

55

2 Performance Analysis of Software Defined Networking

known resulting in the creation of a flow rule. We use this input for our controller
model.

CDF

8.2 0.3 0.4 0.5
delay (ms)

Figure 2.21: CDF of the measured controller delays

2.4.6 OpenFlow Architecture Model using Generalized
Controller Service Times

The generalized model we introduce is an adaptation of our model presented
in Section 2.4.2. Therefore, we put an emphasis on the differences between the
two models in this section. The architecture model as shown in Figure 2.22 is
composed out of two independent queuing systems for the switch- and control
path respectively. The goal of the model is to predict the mean of the system’s
sojourn time E[Ts], i.e., the time a packet takes on average to pass through the

system, as well as its coefficient of variation cr.

56

2.4 Analytical Modeling of OpenFlow

Controller

Switch

Figure 2.22: OpenFlow system model with generalized controller service times.

The Switch Queue

Packets arrive at the the OpenFlow switch, according to an arbitrary distribu-
tion Ag(t). However, the arrival process should not result in a rate exceeding
the offered service as this would produce invalid results. The switch is modeled
as a GI/GI/1 system. This generalizes our previous model, which assumed ex-
ponentially distributed arrival and service times. The queue length is assumed
to be infinite as the switch buffer is relatively large and should not be a bottle-
neck in non-overload scenarios. As a full empirical switch delay distribution is
not available to us, we use an exponential distribution for the switch service time
resulting de facto in a GI/M/1 system as depicted in Figure 2.22. We numerically
calculate the results for the switch queue using a time-discrete analysis based on
the algorithm described by Tran-Gia in [48]. It iteratively calculates the waiting
time distribution by solving the general form of the Lindley equation. To gain
the sojourn time distribution for the switch, the resulting waiting time distribu-
tion is then convoluted with the service time distribution. The possibility that the

57

2 Performance Analysis of Software Defined Networking

packet is the first of a new flow unknown to the switch is modeled through the
probability p,, ;. In this case, additional processing by the controller is required.
All packets belonging to known flows leave the system after processing with the
probability 1-pys.

The Controller Queue

The controller chain is modeled independently as an M/GI/1 system with the
packet arrival rate Ac. Herein lies a major difference to our previous model. The
controller service time for each new flow packet is now determined by an arbi-
trarily chosen distribution, which can reflect actual performance measurements
and thus improves the accuracy of the model. Additionally, the controller queue
is now assumed to be infinite to maintain a fast computing time as packet loss
did not appear to be a factor in Section 2.4.3. The mean waiting time of the con-
troller queue is calculated using the Pollaczek-Khintchine formula and its higher
moments using the Takacs formula as described in [48]. The mean sojourn time
of the controller queue can then be calculated as the sum of the switch’s mean
waiting and service time. After controller processing is complete, the reply once
again has to be examined by the switch. This is modeled as a secondary pass
through the switching chain after which the packet leaves the system.

Model Assumptions and Limitations

Some of the basic assumptions and limitations of our original model still apply.
The switch is assumed to have a single queue. However, as we use a single pro-
cessing unit and queuing rarely occurs in the switch when the controller is not
overloaded, the use of a single queue should not result in significantly different
results from a model using multiple queues without prioritization. Furthermore,
the model only reflects TCP traffic as for UDP flows all of their packets would
be sent to the controller until a forwarding rule was in place.

58

2.4 Analytical Modeling of OpenFlow

2.4.7 Analytical Results for the Generic Service Model

In this section, we discuss the results of the generalized model and compare them
to our original M/M/1 switch queue in conjunction with the generalized con-
troller queue as well as to our simulation results. By using a sampled exponential
distribution as arrival process for our generalized queue, we ensure comparability
with our original model. The arrival rate is calculated depending on the desired
controller load pc. For this analysis, the probability for a new flow p, s as well
as the mean service time for switch pg and the controller E[B¢] are left fixed.
Reflecting findings from [46], p, ¢ is set to 4% and according to our measure-
ments, us is set to 9.8 microseconds. While the mean service time E[Bc¢] is
left fixed at 0.366 ms as determined by our measurements in Section 2.4.5, we
are looking at different service time distributions at the controller with varying
coefficients of variation cp to emulate the behavior of network applications and
their impact on the mean sojourn time of the system. The starting point is the em-
pirical service time distribution yielded by our measurements, cf. Section 2.4.5,
with a coefficient of variation of cg 0.149. Additionally, we choose a log-normal
distribution with a ¢ of 0.7, an exponential distribution with cg of 1.0, and two
hyper-exponential distributions with a ¢g 1.3, and 1.5 respectively for our anal-
ysis. A coefficient of variation of 1.0 corresponds to the behavior of our previous
model with exponentially distributed service times.

Figure 2.23a shows the mean sojourn time in relation to the controller load
pc for the different controller service time distributions. Analytical results are
displayed by a solid line, whereas simulation results are represented by a dashed
line. The simulation is an adapted version of our OMNeT++ simulator. The ana-
lytical results obtained using the original switch queue are almost identical for the
mean sojourn time. Hence, we omitted them for clarity in this graph. We observe
a tendency for distributions with a higher coefficient of variation to cause a gen-
erally higher mean sojourn time. As expected, we also see an upturn in sojourn
times with increasing controller load for all distributions due to packet queuing.
What is interesting, however, is at which load we can observe the upturn and its

59

2 Performance Analysis of Software Defined Networking

—Gl o M---Sim

E[T] (ms)

20
pe (%)
(a) Mean E[Ts] (b) Coefficient of variation crg

Figure 2.23: Impact of the controller service time volatility cp

steepness. For our measured distribution with the lowest cp in the comparison,
it starts at a controller load of about 50% with a small gradient. With increasing
¢, this point moves left towards lower controller loads and also the gradient be-
comes more steep. At the highest cg of 1.5, we see the start of the upturn already
at about 20% load and the gradient is significantly higher than that for a cg of
0.149. Another important observation is that model and simulation seem to fit
quite well for all distributions, which validates our analytical model. Confidence
intervals are very small and have also been omitted from the graph.

Figure 2.23b illustrates the impact of different controller service time distri-
butions on the coefficient of variation of the sojourn time (cry) in relation to the
controller load. Analytical results obtained through our generalized model are
given by a solid line, those obtained using our original M/M/1 queue are rep-
resented by circles, and simulation results are shown using a dashed line. The
overall tendency here is that systems with a lower coefficient of variation at the
controller service time also have a lower overall coefficient of variation. In gen-
eral, the coefficient of variation increases with higher controller loads. This is
due to the effects of queuing at the controller. The controller queue is inherently
slower than the switch queue and with additional queuing occurring, this effect is

60

2.5 Lessons Learned

amplified. For our measured distribution this means an increase in the coefficient
of variation of the sojourn time from 3 at about 5% load to about 5.5 at 95%
load, whereas the service time distribution with a ¢g of 1.5 increases from 5.5 to
roughly 6.5. The increase is disproportional as a high cg at the controller already
causes a significant amount of queuing without the impact of additional load. The
very different processing speed between controller and switch also explains the
high impact of an increased cp at the controller on the overall coefficient of vari-
ation. We observe that an increase of just 1.351 in the cp at the controller causes
the overall system cry to increase by about 2.4. While the analytical results us-
ing the M/M/1 queue fit the simulation quite well, the generalized queue slightly
overestimates the coefficient of variation by 0.1-0.3. This is the result of numeric
inaccuracies, scaling, and sampling in the computation. However, the benefit of a
generalized model far outweighs the introduced error as it allows us to analyze a
larger variety of scenarios by far. Furthermore, the discrepancy is quite small and
as we are interested in a worst case approximation of the coefficient of variation

a small overestimation is acceptable.

2.5 Lessons Learned

In this chapter, we have taken the first step to understand the performance of SDN
on the example of OpenFlow. To this end we have investigated the performance
of OpenFlow data plane and control plane separately.

Though all tested OpenFlow switches performed their tasks and were stable
during the data plane measurements, there are huge differences in their real world
applicability. The performance of the Open vSwitch as a free and flexible soft-
ware implementation makes it very attractive for functional testbeds and scenar-
ios where a relatively low OpenFlow forwarding performance is required. This
is also true for the NetFPGA card. While being at least one order of magnitude
faster than the Open vSwitch, this is only true in scenarios with 24 or less flow
rules. Otherwise the card runs out of fast memory and also has to rely on the soft-
ware path making it unsuitable for large scale scenarios. While the Open vSwitch

61

2 Performance Analysis of Software Defined Networking

can run distributed over several machines, the NetFPGA is also limited to its
only four on board interfaces, which also limits its usability outside of a lab. The
Pronto 3290 is built on a generic Broadcom network processor board. With its 48
interfaces and relatively cheap price, it is very attractive for experimental cam-
pus deployments. While the flow forwarding performance is adequate, the heavy
influence of disruptive traffic casts its usability in high performance scenarios in
doubt. In general, all tested switches do not appear to be ready to be used in a
production environment. There appear to be too many unforeseen effects when
load is applied. Of course, with the exception of the Pronto 3290, the switches are
not intended for high-load situations and the Pronto appears to be a stop gap so-
lution. Furthermore, the traversal of packets from the data plane to the OpenFlow
control plane presents a significant performance challenge and should be avoided
as much as possible, which limits the areas of application for these switches in
an SDN deployment.

Given the importance of the OpenFlow controller for the software defined net-
work it directs, it is key to understand the performance and behavior of this im-
portant software component for experimenters as well as for operators of produc-
tive networks. To this end we introduced our approach to a flexible and granular
benchmarking and analysis system for OpenFlow controllers to gain this insight
and understanding. We show that the results for conventional throughput tests are
comparable to the results of the current reference benchmark Cbench and that it
is possible to run the benchmark on conventional hardware. Our benchmark re-
sults, especially those in terms of outstanding packets, underline the importance
of a more granular view on the system to detect performance bottlenecks and
similar issues that can not be grasped from an aggregated perspective. Without
this granular view and the resulting insight into the behavior of the controller, the
performance of the network can not be guaranteed and in the worst case a node-
or even network-wide failure may be the result.

In order to gauge the performance an scalability of the entire OpenFlow sys-
tem in the planning phase, we proposed a basic model to analyze the forward-
ing speed and blocking probabilities of an OpenFlow architecture. Blocking can

62

2.5 Lessons Learned

thereby only occur in the forwarding queue to the controller. The results show
that the sojourn time can be greatly influenced by the processing speed of the
OpenFlow controller. Our measurements have shown that the processing time of
the controller lies between 220 ps and 245 ps. The impact of the controller pro-
cessing time can be best seen in the variation of the sojourn time. The higher
the probability of new flows arriving at the switch, the lower is the coefficient of
variation, but the longer is the sojourn time.

The presented model once more underlines the importance of the controller
performance for installing new flows. When using OpenFlow in high speed net-
works with 10 Gbps links, several controller implementations are not able to han-
dle the huge number of new flows.

In light of this, we extended the OpenFlow performance model to better reflect
the controller performance. The extension allows the use of generalized service
time distributions at the controller as well as generalized arrival time distributions
at the switch. The comparison of results between analytical and simulation model
allows us to conclude that the assumptions made in our model are reasonable for
our measured values as the difference between analytical and simulated results is
negligible. This is an improvement over the previous model due to the possibil-
ity to use real measurement data. Therefore, it is the next important step towards
building an accurate OpenFlow abstraction model, which allows researchers, de-
velopers, as well as engineers to appraise the performance of their network soft-
ware and deployments. The results also show that a high variability in processing
delay has a significant impact on the overall forwarding delay.

While current efforts to improve and quantify OpenFlow performance are
rightly focused on the data path as our measurement results have shown, in our
opinion, the controller performance is of the same importance and will shift more
into view once the second generation of OpenFlow-enabled devices will have
remedied some of the first generation’s shortcomings.

The main contribution of this chapter is two-fold. First, it provides the con-
clusive statement that SDN does work as a concept even when used in reactive
mode. Second, it shows that in spite of this there are still significant challenges

63

2 Performance Analysis of Software Defined Networking

ahead in order to raise the existing implementations to a level of performance that

is required for production networks.

64

3 SDN Control Plane Applications

The main selling points of SDN beyond the potential cost reduction are an in-
creased flexibility and simplification of existing network services and the cre-
ation of novel network applications. In this chapter, we investigate whether this
is a realistic prospect.

As a representative of an existing network service, we choose the monitoring
domain. We begin by highlighting some select contributions in the area of (SDN-
based) network measurements in Section 3.1. We then investigate how accurately
a purely SDN-based approach can measure network parameters compared to a
full reference packet trace in Section 3.2. Furthermore, we highlight the potential
cost and implementation difficulties of the method. We do this by performing
measurements using the SDN-based approach in an OpenFlow test bed, while
simultaneously mirroring and capturing the measurement and control traffic.

We proceed to implement two novel solutions to challenges in the research test
bed and data center domains in Section 3.3. These new approaches use SDN to
change the way current network tasks are performed and show that the operation
of these networks becomes more simple and at the same time more flexible using
SDN.

This chapter is mainly based on and taken from [6], [9], and [10].

65

3 SDN Control Plane Applications

3.1 Previous Works on (SDN-based)
Measurements

In [49] Zseby evaluates sampling methods for passive Quality of Service (QoS)
measurements in conventional networks and highlights the challenges when im-
plementing such an approach. An SDN-based approach appears suitable to levy
these challenges.

In recent years there have been several works that investigate ways on how to
leverage SDN and specifically OpenFlow for network measurements and moni-
toring. Tootoonchian et al. [S0] propose an OpenFlow-based approach for traffic
matrix estimation by intelligently querying flow table counters. We evaluate the
accuracy of these kind of queries for bandwidth measurements.

In [51] Jose et al. investigate the possibility to measure large traffic aggre-
gates in commodity switches, which leads to Yu et al. [52] introducing the mea-
surement architecture OpenSketch, which, similarly to the OpenFlow concept,
separates the measurement data plane from the control plane. While this is an
interesting approach, we focus on the SDN control plan itself represented by an
OpenFlow controller.

Yu et al. [24] introduce the FlowSense concept, an OpenFlow-based approach
to network measurements with minimal measurement costs. We extend this ap-
proach by also taking latency measurements into account, which we discuss in
the following Section 3.2.1.

3.2 Accuracy of Leveraging SDN for Passive
Network Measurements

In today’s networks the monitoring of QoS parameters like bandwidth, packet

loss, and delay is essential to ensure the smooth operation of multimedia applica-

tions as well as the control of service-level agreements and fault detection. This is
often done using a measurement setup that actively sends traffic through the net-

66

3.2 Accuracy of Leveraging SDN for Passive Network Measurements

work. However, this approach requires expensive special-purpose measurement
equipment. Furthermore, such a measurement often can only be performed in
off-peak hours as an active measurement probe could disrupt critical production
traffic. Thus, only limited statements are possible for the QoS experienced during
business hours from inside the network. While today the application itself can ac-
tively monitor a subset of its own QoS parameters, it can not directly influence
the network.

The introduction of SDN gives the network the ability to passively perform
network-wide QoS measurements relying on the actual production traffic. This is
possible using other techniques, but the SDN approach essentially turns network
measurements into a primitive function of the network itself, eliminating the need
for additional devices and allowing for a more representative view of the network
state by increasing deployment flexibility. This in turn can be used as direct input
for SDN network control.

3.2.1 Measurement Architecture

In addition to bandwidth measurements, our extended SDN measurement archi-
tecture based on FlowSense [24] also takes one-way delay measurements into
account. Figure 3.1 illustrates the concept on the example of a connection in
an intermediary SDN network from switch A to switch B. All switches in the
network are each connected to the SDN controller via a control channel. This
connection is used for switch control on the one hand and on the other for the
polling of statistics information from the switches’ flow tables.

The flow tables contain packet and byte counters for each entry. By retrieving
their current values the controller can calculate the current bandwidth consumed
by a traffic flow matching an individual rule. In this case, that is the bandwidth
consumption of our flow on all highlighted links between switches from A to B.
No additional components are required in the network to measure bandwidth con-
sumption and the information about it can be directly used to influence the con-
troller’s policy for the network or to optimize the placement of the controller(s)

67

3 SDN Control Plane Applications

SDN Controller

Control Traffic
& Queries

Monitored Connection

Figure 3.1: Measurement Architecture

within the network [53]. However, this method requires frequent queries to the
individual devices in order to be accurate for a desired interval.

For the purpose of delay measurements, the methodology is different. Suppose
the goal is to measure the delay on the connection from A to B in our example
network. In traditional networking, a mirror port would have to be configured on
the ingress and egress device that would then send all the traffic to a measurement
station, which would than have to filter the data for the desired flow information
and calculate the delay between the packets received from A and B. With the SDN
approach, the controller can simply insert a temporary flow rule into switches A
and B to send all or a sample of the packets to the controller parallel to forwarding
them through the network. This way the controller again becomes the measure-
ment device and can directly react on the network information without additional

equipment.

This approach has several difficulties. We do not know how accurately the
software controller can measure and calculate bandwidth and delay without the
support of special-purpose hardware. Furthermore, the load on the control chan-
nel may be significant using this approach and it is in general unknown how this
impacts network control. It is the goal of this chapter to answer some of the ques-

68

3.2 Accuracy of Leveraging SDN for Passive Network Measurements

tions regarding accuracy.

As an alternative to the above described methods, a hybrid approach between
conventional an purely SDN-based measurements is possible. In this approach,
the flexibility of SDN is used to selectively mirror network flows to a dedicated
measurement device instead of the controller. However, this method requires an
additional special-purpose device and the accuracy is determined by the imple-
mentation that device itself. Therefore, the focus of this chapter lies on the purely
SDN-based approach.

3.2.2 Testbed Setup

We use an OpenFlow-based testbed to evaluate the accuracy and overhead of
the purely SDN-based measurement approach described in Section 3.2.1. The
testbed is shown in Figure 3.2. It realizes a simplified version of the scenario in
Figure 3.1. Iperf [54] is used to send a 1 Mbps UDP flow from the traffic generator
to the traffic sink representing the production traffic that should be measured. The
flow passes through two Pica8 Pronto 3290 switches, which represent the ingress
and egress nodes of our intermediary network. Bandwidth and delay variations
experienced in the network are emulated using NetEm [55] on a Linux PC. We
use Floodlight [44] with a custom measurement module as OpenFlow controller
running on a Dell Poweredge 860 server. The SDN-based measurements are per-
formed using this controller. For the delay measurements, the OpenFlow switches
send the traffic to the controller as well as to its destination using two OpenFlow
output actions. Bandwidth is measured by regularly sending OpenFlow statistics
requests to the switches. The reference measurements are performed in paral-
lel on a separate HP Proliant DL320 server using either an Endace DAG 7.5G2
capture card or a conventional network card in conjunction with TCPdump. The
traffic is mirrored to this server using two Netoptics wire taps.

69

3 SDN Control Plane Applications

Traffic Generator

M Traffic Sink
‘Fl.oodLing
Control
Channels
¢ \: 4 L/ \\)
eretap \\ tEm \ l/eretap

Measurement
Server

Figure 3.2: Testbed Setup

Technical Considerations

As the traffic for the SDN as well as the reference measurement is mirrored at
different locations, a discrepancy in the measured delay is expected. This dis-
crepancy is caused by the processing delay of the two OpenFlow switches. Fur-
thermore, the measurement probe cannot exceed bandwidths of much more than
1 Mbps as the OpenFlow implementation on both OpenFlow switches handles the
implementation of an OpenFlow send-to-controller action in software, i.e. on the
slow path, which is limited by the relatively slow switch CPU. Future OpenFlow
switch implementations will likely not be constrained by this issue. We discuss
the impact of this in the following section.

Another influence factor on the accuracy of the measurements is the la-
tency on the links of the control channels between the OpenFlow switches
and the controller (cf. Figure 3.2). Before a packet arriving at the controller
from one of the two switches can be timestamped, it has already experienced
additional delay from processing at the switch and the transmission via the

70

3.2 Accuracy of Leveraging SDN for Passive Network Measurements

control channel. This is also true in the conventional measurement approach
we have chosen as reference and can only be avoided, if the packets are
timestamped at the switches and the internal clocks of the switches are pre-
cisely synchronized. Therefore, in our case an additional requirement has to be
met. The term |(Atprocess; + Atpropagate;) — (Atprocessy + Atpropagates)|s
where Atprocess, reflects the processing time in the switch and Atpropagate, 18
the propagation delay on the control channel, has to be smaller than the desired
measurement accuracy. We meet this requirement in our testbed by using identi-
cal OpenFlow switches and control channel cabling. In a real world deployment,
it is also likely that identical hardware would be used and the impact of latency
could be kept small by using a distributed controller and placing an instance close
to the measurement point.

For the bandwidth measurements, the frequency of updates is limited to one
second intervals as the OpenFlow switches only update the statistics counters in
their flow tables once every second.

In an SDN deployment, it is likely that the controller would be run on a virtual
machine inside the cloud. Therefore, we have performed our tests with the con-
troller running either on the aforementioned server or in a virtual machine hosted
on an identical server using the free version of the VMware ESXi 5.1 hypervi-
sor. Particularly delay measurements require precise timekeeping in order to be
accurate. As the SDN controller is run in software relying on the system hard-
ware clock, this can not always be guaranteed. We expect this to be even more
of an issue in a virtual environment with not only different processes but virtual
machines competing for processing time.

The scalability of the SDN measurement approach is limited by two factors.
These are the processing capacity of the controller and the control channel band-
width. As the controller would likely be run in a cloud environment for large
setups, the processing capacity can be scaled up dynamically to the required
level. However, when a distributed controller approach with different switches
connected to different controller instances is used to achieve this, the clocks of
these instances need to be synchronized. The control channel bandwidth required

71

3 SDN Control Plane Applications

for the measurements can be reduced using sampling techniques. However, the
number of flows that can be monitored simultaneously will still have an upper

limit.
1.5 1.5
@ o
g £ S - g 1 N
=] 5 |
Qo o
< < |
g05 Sosl |
e DagCard e .: DagCard
: |/
0 0 'l
0 20 40 60 80 0 20 40 60 80
time [s] time [s]
(a) Non-Virtual Controller (b) Virtual Controller

Figure 3.3: Used Bandwidth

3.2.3 Measurement Results

In this section, we discuss the results of our measurements. All measurement runs

were repeated at least five times in order to ensure consistency.

Measuring Bandwidth

As a base test for our setup we chose a bandwidth measurement using the already
mentioned statistics requests. This test is very similar to those performed with
FlowSense. Therefore, we use it to verify our method and setup. Figure 3.3 shows
the measured bandwidth consumed by the measurement flow over the duration of
a 60-second test run for both the virtual and non-virtual controller. For compari-
son, all packets were captured using the DAG card in the measurement server. As
can be seen in the figure, in both cases the measured throughput reaches the con-
figured 1 Mbps of the measurement probe and subsides after the traffic generator

72

3.2 Accuracy of Leveraging SDN for Passive Network Measurements

has stopped sending packets.

The SDN measurements behave nearly identical to the capture trace of the test
run. While this is true for the mean of all runs performed, we can observe some
inaccuracies in the particular run shown in Figure 3.3b. At around the 55 second
mark, the bandwidth measurement at the virtual controller varies for several kbps
around the reference value. There are two possible explanations for this behavior.
It could be caused by time drift of the virtual machine clock, which is only syn-
chronized with the server’s hardware clock at specific intervals. Therefore, the
controller could no longer reliably schedule its statistics requests and the query
interval varies slightly leading to inaccurate bandwidth calculations.

The second explanation is that either the query or response packets for the statis-
tics in question were delayed by either the virtual switch in the hypervisor or
by the management plane of the OpenFlow switch. However, since we do not
have accurate timestamps for the control channel messages, it is not possible
for us to determine which is the case. Still, the variation appears marginal and
thus the approach appears to be usable at least for bandwidth measurements at
this frequency. A more granular resolution would require the switches to support
more frequent counter updates and would involve significantly more queries to
the switches’ minimal control plane. This would require a much more powerful
switch CPU to handle these more frequent requests and sufficient bandwidth on

the control channel.

Measuring Latency

In this section, we discuss the delay measurements. Figure 3.4 shows the cumula-
tive distribution functions (CDFs) of the delay measurements performed without
the introduction of any artificial delay between the two measurement points. Fig-
ure 3.4a shows the results for the non-virtual controller and the DAG card with
95% confidence intervals for five individual runs. We observe a measured delay
of 4-5 ms for about 86% of packets with the controller, whereas we see almost
double that delay on the capture trace for 78% of the packets.

73

3 SDN Control Plane Applications

08 0.8
0.6
& 06 Controller &
o O
0.4 0.4
0.2 0.2 Controller
% 50 100 " 50 100
delay [ms] delay [ms]
(a) With Confidence Intervals, Non-Virtual Con- (b) Non-Virtual Controller
troller
1
0.8
L 06
8
0.4
0.2 Controller
0 50 100
delay [ms]

(c) Virtual Controller

Figure 3.4: Latency Cumulative Distribution Functions (No Artificial Delay)

74

3.2 Accuracy of Leveraging SDN for Passive Network Measurements

As can be seen, the confidence intervals are small, indicating a good estimation
of the probability for a certain delay. The exception is the ratio of packets with 4-5
ms delay as measured by the non-virtual controller. Here, the confidence interval
is in a range of about 10% difference for the runs. However, this shows that our
results are statistically stable. Therefore, we only use one exemplary test run for
each test in the remainder of the figures in order to enhance readability.

[T
8 Without Send-to-Controller|

50 100
delay [ms]

Figure 3.5: Latency Cumulative Distribution Functions (With and without Send-
to-Controller)

As described in Section 3.2.2, our OpenFlow switches handle packets with a
send-to-controller action in software, which explains this considerable delay im-
posed on the packets. The discrepancy between controller and capture trace is
caused by the difference in measurement points in our testbed. While the mea-
sured delay at the controller is only imposed by the sending process in the first
switch and the receiving process in the second switch, the capture trace sees the
delay imposed by the sending and receiving processes of both switches. This
means that the delay measured using the capture trace is twice as long than the
delay measured using the controller. For confirmation of this circumstance, we
perform measurements with the hybrid approach described in Section 3.2.1, using
the OpenFlow switches to mirror traffic to the DAG card. Measuring at the same
locations in the network, we can determine the impact of the send-to-controller
action by running the tests with the action enabled and without. Figure 3.5 shows

75

3 SDN Control Plane Applications

the cumulative distribution functions of the results. As expected, a clear discrep-
ancy between the two curves is visible. Whereas almost all packets from the mea-
surement without the send-to-controller action experience a delay of less than 1
ms, the packets with the send-to-controller action enabled show a delay of 6-7 ms
and above. The additional latency of the value measured here to that in Figure 3.4
can be explained by the fact, that the switch now has to perform three actions in
software instead of two, i.e., forward packet, forward to controller, and forward
packet to the DAG card.

Figure 3.4b shows the results of a single test run for the non-virtual controller.
In addition to the capture trace of the DAG card, a trace using just TCPdump is
also shown. The behavior is very similar to the one observed in Figure 3.4a. We
can see that with this amount of switching delay, the high time resolution of the
DAG capture card does not present a significant advantage over a conventional
TCPdump trace.

As expected, the results for DAG card and TCPdump do not differ greatly from
these in the test using the virtual controller as shown in Figure 3.4c. However, we
observe that the increase in the CDF graph for the delay measured with the virtual
controller is not as steep as with the non-virtual controller. There is a visible gra-
dient. About 84% of the packets are measured with a switching delay of 1-5 ms,
which is a significantly greater value range than the 4-5 ms measured for the non-
virtual controller. Furthermore, if we look at the lower end of the CDF plot, we
see that the CDF does not start at O ms as can be seen in more detail in Figure 3.6.
A small but visible percentage of packets appears to have experienced a negative
delay. This cannot happen in reality and must be caused by a measurement error.
This result seems to confirm our theory from Section 3.2.3 that inaccurate time
keeping in the virtual machine causes irregularities in the results. If processing
issues at either the virtual hypervisor switch or the OpenFlow switches were re-
sponsible, the delay would have to remain positive at all times even if it varied
greatly.

In order to understand these results better, we compare two 10 seconds long
time series of samples measured with both controllers and the DAG card. Fig-

76

3.2 Accuracy of Leveraging SDN for Passive Network Measurements

0.1

Controller

-10 -5 0 5 10
delay [ms]

Figure 3.6: Latency CDF Zoomed (Virtual Controller)

ure 3.7a shows the results for the non-virtual controller. Three distinct lines of
often occurring delays are clearly visible. One at about 8 ms for the DAG Card
and two at 4 and respective 5 ms for the non-virtual controller. Additionally, there
is a similar number of outliers for both measurement methods. For the virtual
controller the samples shown in Figure 3.7b show a different behavior. While the
samples of the DAG card remain similar at around 8 ms with outliers, the sam-
ples for the virtual controller show more frequent occurring delays at 1,2,3, and 6
ms. However, while the virtual controller appears to regularly measure a broader
range of delays, the coefficient of variation for both controllers is next to identi-
cal at around 1.5, whereas the DAG card has a coefficient of variation of 1. The
same is true for the mean and the median at 6.3 ms and 4-5 ms respectively. This
tells us that even though the virtual controller appears to be more volatile and
does have occasional time keeping issues, statistically those shortcomings carry
no weight.

Based on these results, it appears feasible to obtain mean delay values us-
ing the purely SDN-based approach. However, for a production deployment, the
switches again would have to improve their performance for applying the send-
to-controller action to a packet. As our results have shown, this could be cir-
cumvented by giving the controller a secondary network interface and using a

77

3 SDN Control Plane Applications

conventional output action. However, this can only serve as a temporary fix, if at
all.

20 20
« Controller . « Controller
DagCard DagCard

15 t . 15 . .
E E
> 10 -‘ > 10} - o
K K
a, .- . o a,
° P T o eee °

00 2 4 6 8 10 00 2 4 6 8 10
packet-in time [s] packet-in time [s]
(a) Non-Virtual Controller (b) Virtual Controller

Figure 3.7: Latency Samples

Up to this point, we have not introduced any artificial delay into our mea-
surements. Therefore, we set our network emulator between the two switches to
impose a delay of 500 ms on the measurement probe to verify the accuracy of
the measurements at a higher latency level. The CDFs of the measured delays are
displayed in Figure 3.8. The results mirror those shown in Figure 3.4 for both the
non-virtual and virtual controllers, albeit with an offset of the configured 500 ms
delay. Therefore, we can conclude that the introduction of artificial delay has had
no impact on the accuracy of the results as well as on the discrepancy between
controller- and server-based measurements.

Now that we have established that the SDN-based measurement approach can
indeed deliver delay measurement results statistically comparable to those of spe-
cial purpose equipment in a stable environment, we take a look at what happens
when the delay in the network changes. Therefore, we program a series of delay
changes into our network emulator and observe whether the changes in delay are
noticed on time by the controller and whether accuracy is impacted. Figure 3.9
shows a 60 seconds time series of a test run with five changes to different values

78

3.2 Accuracy of Leveraging SDN for Passive Network Measurements

0.8 0.8
L 06 . 06
8 8
0.4 0.4
0.2 \ 0.2 Controller
Controller
0 0
500 550 600 500 550 600
delay [ms] delay [ms]
(a) Non-Virtual Controller (b) Virtual Controller

Figure 3.8: Latency Cumulative Distribution Functions (500 ms Delay)

of delay. We observe that both controllers are able to closely mirror the delay
present in the captured packet trace.

Sampling

As it is likely not very prudent to redirect all measurement traffic to the controller
across the SDN control channel, which is also needed for network operation, the
option of only redirecting a sample of packets to the controller seems viable.
Therefore, we take a look at how closely the full reference delay value can be
estimated using only a sample. Figure 3.10 shows the relative error for the mean
delay in relation to the sampling ratio. The relative error has been obtained by
repeatedly selecting random samples from the full reference measurement. It can
be seen that in order to limit the relative error to 5%, the DAG card only requires
about 5% of the packets, whereas virtual and non-virtual controller alike require
about 10% of the sample due to the higher volatility of the measurement re-
sults. This means, that for a 95% accurate result using the SDN-based approach
a sample twice the size of the e.g. the hybrid approach is required, which is a
considerable overhead. This again emphasizes the importance of control channel
bandwidth for the SDN-based approach.

79

3 SDN Control Plane Applications

600 600
Controller Controller
500 —'-—" 500 =
7 P \ 7 [
E.400 | ' A= £ 400 ' ' ~
z P i z oo |
RS B s S A T C N A e O
c T] c] ']
§a00f 1 1 1 e R e
€ ! v € | o
100 H —— 100 ; e
et 0
0 20 40 60 0 20 40 60
packet-in time [s] packet-in time [s]
(a) Non-Virtual Controller (b) Virtual Controller

Figure 3.9: Mean Latency (Variable Delays)

N
o

-
[$))

DagCard

Relative Error{%)]
S

)]

50 100
Sampling Ratio[%]

Figure 3.10: Relative Error through Sampling

80

3.3 Proof of Concept for Novel Approaches to Networking enabled by SDN

3.3 Proof of Concept for Novel Approaches to
Networking enabled by SDN

In this section, we introduce two novel SDN-based approaches to challenges in
networking. The first novel SDN approach we introduce remedies the fact that
the network structure of current experimental facilities is often determined by
sites participating in the test bed. At each site, there are many nodes, typically
connected by a simple switched network, and the connection between the sites is
predefined by the topology of the connecting IP network. The advantages of this
architecture is the low acquisition cost and the simple extensibility. The major
drawback is that the topology is fixed and does not reflect the structures found in
most large-scale networks and the Internet itself. In Section 3.3.1, we propose an
Interactive PrOxy Management (IPOM) tool which enables us to define and em-
ulate networks of arbitrary complexity on top of existing experimental facilities
by means of OpenFlow and network emulating proxy nodes. This architecture
does not require any physical changes to the experimental facility and switching

between different network topology setups is performed within seconds.

The second SDN approach applies to the cloud business model of Infrastructure
as a service (IaaS). IaaS is one of the prevalent business models in cloud comput-
ing and has generated much customer interest over the past few years. An laaS
provider offers the temporary deployment and maintenance of a custom virtual
host and network infrastructure to its customers on which arbitrary applications
can be run and/or hosted. Providers of such a service face several challenges in
their data centers. One of the main issues is the inherent heterogeneity of sys-
tems and applications from different customers. As a result, a variety of different
load and traffic patterns has to be handled by the same data center infrastruc-
ture. An IaaS provider has to find a good balance between the various customer
application requirements and the efficient use of the available resources in the
data center. The ECDC (Energy effiCient Data Center) approach we describe in
Section 3.3.2 is such a smart mechanism for finding this balance. It leverages

81

3 SDN Control Plane Applications

monitoring information from machines as well as network devices and environ-
mental data to create a coherent view of the current situation in a data center.

3.3.1 Interactive Proxy Management in Future
Communication Networks Using OpenFlow

In this section, we describe the IPOM tool, which allows us to leverage SDN
as a means to create arbitrary logical topologies in fixed physical test beds. It is
split into two parts, the topology editor for creating a network topology and the
topology management tool for controlling the flows in the network.

IPOM Topology Editor

Before running experiments in a testbed environment, the physical network topol-
ogy can be mapped using the IPOM topology editor. The GUI of this editor is
shown in Figure 3.11. With the topology editor, nodes and switches can be added
and the connection between them can be configured. When the physical topology
is represented in the topology editor, it can be saved and loaded to the [IPOM

management tool to create virtual topologies and emulate multi-AS networks.

5] PO Topoisy Gitr T [P
[—
5
£
= n
; 5 by \\ N
L &
I e
[coso Component 7] | =l ponnt 2]~ EE T =]

Figure 3.11: IPOM topology editor.

82

3.3 Proof of Concept for Novel Approaches to Networking enabled by SDN

IPOM Management Tool

The management tool is the core functionality of IPOM and it provides the possi-
bility to add and remove proxies. Figure 3.12 shows the GUI of the management
tool. Besides the proxy management, arbitrary OpenFlow actions can be installed
for any flows. This includes flow redirections and editing of the different fields
such as MAC address and IP address. The direction of the flows can easily be
identified as they are marked in the IPOM GUI. For the installation of rules on
the OpenFlow switch, the BEACON controller [56] can be used together with
I[POM. The communication between IPOM and the controller is thereby realized
via a TCP connection. Beyond IPOM, consoles for each created virtual network
node are provided either by emulating these nodes using mininet [57] or using
physical hosts or KVM virtual machines provided by ToMaTo [58]. Thus, this
tool provides an easy-to-use and flexible way of configuring network topologies
and performing dynamic flow switching.

(2] 1Pov - Vemmgemet ———— e

Figure 3.12: IPOM GUI with a graphical representation of the network.

IPOM Proof of Concept

As a proof of concept for IPOM, we set up a network with four nodes and an
OpenFlow switch using mininet, see Figure 3.13. This can however also be set

83

3 SDN Control Plane Applications

up with a hardware OpenFlow switch. For each of the nodes, a console is shown
which allows us to start arbitrary programs. A packet generator at client 1 is
started which sends a single UDP packet flow to client 4. Starting with the func-
tionality of a standard switch, the packets of this flow generated by client 1 are
normally forwarded to client 4. Using IPOM, we are now able to modify the flow
rules in such a way that clients 2 and 3 introduced as proxies. Thus, we are able to
change the star topology into a bus topology. To verify the newly created topol-
ogy, we modify the packets at client 2 and client 3. In addition, we show how to
duplicate flows with IPOM in such a way that client 3 and client 4 will receive
the packets generated by client 1. For instance, this option can used for network

monitoring or data replication in data centers.

TCP | C
o SSh >/>

v
OpenFlow switch Controller IPOM

m—
-

] - - -

Client1 Client2 Client3 Client4
10.0.0.1 10.0.0.2 10.0.0.3 10.0.0.4

Figure 3.13: IPOM Proof of Concept.

84

3.3 Proof of Concept for Novel Approaches to Networking enabled by SDN

3.3.2 ECDC: An OpenFlow-Based Energy-Efficient Data
Center Approach

This section describes our approach to leverage SDN for energy-efficient data

center operation (ECDC).

Architecture

DC Operator DC Management Network

Management Station

Customer Type A

Datacenter Network

@

Figure 3.14: ECDC Architecture

Figure 3.14 shows the ECDC architecture in a simple data center scenario. On
the right the servers hosting the customers’ virtual infrastructures are depicted.
They are organized in racks with a top of the rack switch each. The entry point
into the network from the service side are the virtual switches integrated into the
hypervisor of each server. On the left we see two types of customers that are
connecting to the data center network from the customer side, i.e., the Internet.
A type A customer is a private home user who wants to use an entertainment
service, e.g., video streaming, hosted by a service provider as a virtual infras-
tructure in rack B and C in the data center. A type B customer is a business user
who uses a business application set up by his company in the data center, e.g., a

85

3 SDN Control Plane Applications

virtual desktop infrastructure (VDI). As both types of customers have different
demands and requirements, their traffic is kept in separate VLANS in the data
center network to be able to manage them independently. The connectivity for
type A customers is represented by red lines, for type B green lines are used.
Packets are tagged at the entry switch into the data center network. The net-
work itself is OpenFlow-enabled. Forwarding decisions for all network elements,
i.e., access, edge, and hypervisor switches are handled by a central entity - the
OpenFlow controller (OFC). The control connection for each network element
is established via a physically isolated management network. This network also
connects the controller, OpenFlow switches, physical servers, and environmental
sensors to the central data center management entity - the management station.

The management station queries monitoring information on CPU-, network-, and
memory-load, as well as power consumption from the connected devices via
SNMP. Armed with this host of information, the management station generates
the appropriate network policy for the OFC, distributes virtual machines across
the servers, and powers down unused devices in order to ensure an efficient uti-
lization of all resources while maintaining a good service quality for the customer
at all times. The management station achieves this by observing a number of con-
figured thresholds and timeouts for each service class. If a monitored parameter,
e.g., CPU load, falls below or rises above a threshold for a certain amount of time
as defined by a timeout, the management station will take action, e.g., by consol-
idating multiple virtual machines to one host or in the opposite case by spreading
them over multiple hosts. Once such an action is triggered, the network, i.e., the
OpenFlow controller, is immediately notified and can adapt the flow rules in the
switches according to the new situation with little delay, minimizing the impact
on the service. The gathered information is also presented to the data center op-
erator through a graphical user interface as illustrated in Figure 3.15, which dis-
plays the current topology of the network and a time series of monitored values
as configured by the operator. The operator is then able to facilitate changes in
the operation of the data center, if this is necessary, e.g., through the introduction

of a new service class.

86

3.3 Proof of Concept for Novel Approaches to Networking enabled by SDN

Figure 3.15: ECDC Operator GUI

Proof of Concept

The proof-of-concept testbed is hosted on the German-Lab [59] (G-Lab) facility
in Wuerzburg, Germany. Four rack servers are used as computing nodes running
OpenNebula [60] and KVM [61] as hypervisor using the Open vSwitch [42] as
virtual switch. The management station is hosted on a fifth server running the
OpenNebula management software as well as our Java-based data center man-
agement software. The management network is a legacy IP network realized by
the Cisco top of rack switch of the G-Lab facility. As OpenFlow controller, we
use BigSwitch’s Floodlight hosted in a G-Lab virtual machine. The OpenFlow
data center network is represented by a Pronto 3290 OpenFlow switch [62]. The
proof of concept implementation shows the operation of the ECDC-enabled data
center over the course of a business day. Using our own traffic generator, we em-
ulate the behavior of the two types of users introduced in the previous section.
We condensed the emulated “day” to a short cycle. During the progression of this
cycle, we show the changes in the system as an operator would perceive them
using our ECDC GUI as our software adapts the resource allocation according
to the demand. In the topology section of the GUI (cf. Figure 3.15) topology

87

3 SDN Control Plane Applications

changes caused by the migration of virtual machines as well as the powering up
and down of physical hosts will be displayed. In the monitoring section the col-
lected information reflecting load changes in servers is illustrated by line graphs.
If an OpenFlow switch is selected in the topology display, the monitoring section
changes to show the switch’s flow table entries. By selecting an entry, the path of
the corresponding flow through the network is displayed in the topology section.

3.4 Lessons Learned

In this chapter, we have compared the accuracy of purely SDN-based network
measurements to that of a full reference packet capture trace using special pur-
pose hardware. The results show that, while the accuracy for an individual delay
does not reach the 7.5 ns accuracy of the reference measurement, the mean delay
and especially mean bandwidth are on par with the capture card in the range of
1 ms. Therefore, if the mean value of the packet delay within this level of ac-
curacy is sufficient input for the operation of a particular network, SDN-based
measurements appear to be a viable and cost-efficient alternative. The inherent
flexibility of SDN to mirror and redirect traffic on a per-flow basis greatly sim-
plifies the measurement setup and in combination with virtualization can enable
rapid deployments and tear downs on-demand. However, this is only possible if
the SDN-enabled hardware is further developed to support this kind of function,
sufficient control channel bandwidth is available, and the latency imposed by
switch processing and control channel transmission is sufficiently even for both
measurement points. Our results show that otherwise the measurements would
become inaccurate and, more significantly, could disrupt the operation of the net-
work. Our experience with the used OpenFlow 1.0 switches suggests that the
improvement of SDN hardware is still a challenge. However, our results also in-
dicate that the described SDN hybrid approach may serve as a working stepping
stone towards pure SDN measurements.

Further investigating possible applications for SDN, we introduced two tools
for network management that leverage SDN in two different scenarios. The first

88

3.4 Lessons Learned

tool is IPOM, a topology configurator, that leverages the feature of OpenFlow
switches to arbitrarily redirect flow at run time. Using this tool network re-
searchers can easily create desired network topologies and to dynamically re-
route traffic flows via proxies , e.g., to enable the modification of packets. An
otherwise fixed network substrate in a test bed becomes a lot more useful by pro-
viding it with SDN functionality. Experiments can be conducted using a range of
configurations while still running in a controlled environment yielding repeatable
results. The usefulness of [POM can be further enhanced by using it in conjunc-
tion with provisioning tools for virtual test environments such as ToMaTo.

The second tool we introduced is our smart data center management software
ECDC. It allows for an integrated adaption of computing and network resources
according to the required capacity to ensure a smooth operation of services in
an laaS scenario. At the same time the software aims to minimize the carbon
footprint of the data center in question by consolidating capacities and powering
down those not needed. To achieve this, we leverage the SDN approach imple-
mented in the Open vSwitch in conjunction with the Floodlight controller as well
as the proven open-source cloud management software OpenNebula. The auto-
mated approach we implemented as a proof of concept by providing a notification
interface between the controllers shows that such an autonomous data center op-
eration is possible. Together, the data center and network controllers can react
to changing situations faster than they could individually and much faster than a
human operator could. However, human interaction is still required in setting the
appropriate thresholds that trigger an action either to save energy by shutting off
devices and consolidating virtual machines or doing the opposite to improve the
performance.

The main contribution of this chapter lies in showing how three common net-
working problems from different domains can be solved using SDN in a much
simpler way than in conventional networking and that these solutions, especially

in the case of network monitoringg, are indeed feasible in real-world scenarios.

89

4 Leveraging the SDN
Northbound-API for QoE-based
Application-Aware Networking

With the introduction of fast and reliable core networks and wide-spread avail-
ability of broadband internet access, a trend towards moving more and more ser-
vices away from the end devices to remote data centers has established itself. This
is the well known concept of Cloud Computing. While initially only services
with few requirements towards the delivery network, e.g., email, were moved
into the cloud, today a wide variety of much more complex applications and ser-
vices is available to users remotely. This has resulted in significantly increased
requirements on network QoS as users expect the same service standard from
the remote service as they would have with a local setup. In many cases simple
over-provisioning is no longer cost effective. Furthermore, the performance of a
specific application cannot be determined by simply relying on QoS metrics [63].
Instead, a good application quality, e.g., the video quality or short waiting times,
is the metric by which a user quantifies his or her Quality of Experience. There-
fore, a major challenge for future networks is to dynamically adapt to QoE de-
mands of the applications in the network. This is especially true for networks with
limited resources, like today’s access networks. Application-Aware Networking
is a way to provide a good application quality to users of these networks.

The introduction of Software Defined Networking opens a path towards the
realization of this approach. By introducing an external and programmable net-

91

4 Leveraging the SDN Northbound-API for QoE-based Application-Aware Networking

work control plane, SDN creates a flexible, adaptable, and open interface to the
network, the "Northbound-API”. It enables the exchange of application infor-
mation with the network. This in turn can be leveraged to augment the network
management to improve the user QoE. The challenge here is to determine which
kind of information should be how often exchanged.

In this chapter, we investigate how we can obtain and leverage application
information in the context of the SDN Northbound-API. We begin by analyzing
the subjective user quality of a resource-intensive cloud application, i.e. cloud
gaming, in Section 4.2. We abstract performance indicators, which can be used
as input for an SDN controller. We then proceed by investigating how effectively
an SDN controller can use different types of information to improve or maintain
the QOE of an application in a multi-path scenario in Section 4.3.

This chapter is mainly based on and taken from [2], [7], and [3].

4.1 Background and Related Work

Currently, the prevalent idea in networking for improving the quality of a service
for the end-user is to differentiate traffic flows using QoS levels. For this purpose,
different QoS classes are defined according to the expected type of traffic in the
network and applications with similar needs are assigned to them. These classes
ensure a minimum reserved traffic rate according to the QoS parameters of the
application type.

However, a QoS-based provisioning alone is often not sufficient to provide
an acceptable application quality. This is especially the case for applications
with time-dynamic QoS requirements. For example, according to video encod-
ing, download patterns, or user behavior an application may not have a fixed de-
mand for bandwidth. Instead, bandwidth is required depending on the application
state. SDN provides an interface to convey this application state to the network.
This allows the network control plane to optimize the flow of traffic according to
the information available.

92

4.1 Background and Related Work

4.1.1 Background and Works on Application-Aware
SDN

In an SDN-enabled world, new open interfaces exist between the application, the
data-plane, and the control-plane. The interface between data- and control-plane
is called the ”Southbound-API”. It enables the externalization of the control plane
from the forwarding device to a logically-centralized network control plane, often
simply called “controller”. As a software entity, the controller can be freely pro-
grammed and adapted to the network according to the operator’s requirements.
Currently, the most popular realization of this interface is OpenFlow [11], which
we use for our experiments.

While the Southbound-API is an important component of SDN, from our point
of view, the significant additional value of SDN lies within the “Northbound-
API” interface between the network control plane and what we call “application
control plane”, i.e. applications running on top of or interacting with the net-
work itself. This enables the exchange of information about the application and
network state, respectively. Curtis et al. [64] suggest an optimized data center
flow scheduling by notifying an OpenFlow-like controller about elephant flows
detected at the hosts’ socket buffers. In [65] Das et al. demonstrate how SDN-
based aggregate routing can be adapted with the QoS parameters of applications
in mind. The author [9] shows how a pre-notification of the network control plane
in case of a virtual machine migration can serve to maintain service. We are going
one step further by also taking the actual application quality and state over time
into account to maintain a good service quality for customers.

Technical Details on YouTube Streaming

YouTube, one of the most important VoD platforms, provides mainly small to
medium sized video clips in different qualities. The default video compression
format is H.264/MPEG-4 Advanced Video Coding (AVC). To watch a video, the
user opens the YouTube web page where an HTML-5 or Adobe Flash player
is embedded for video playback. The video player requests the video data from

93

4 Leveraging the SDN Northbound-API for QoE-based Application-Aware Networking

a YouTube streaming server in the Internet using the HTTP protocol. YouTube
uses progressive video streaming which means that the video is already played
out, while the client downloads the content into a buffer or a temporary file in the
background. If the buffer is sufficiently filled, a smooth video playback can be
guaranteed. If the buffer is empty, the video playback is interrupted and stalling
occurs. According to [66, 67], stalling is the dominating factor of the QoE for
online video streaming, clearly exceeding the significance of video resolution.
Hence, a simple mapping of a QoS parameter such as throughput to YouTube
QoE is difficult, as the QoE depends on the buffer level and video encoding.
This complexity makes YouTube streaming a good candidate for the Application-
Aware SDN approach.

4.1.2 Works on QoE in Inter-active Video Applications

Nave et al. [68] describe an architecture for cloud gaming as developed in the Eu-
ropean FP6 Integrated Project Games @Large. Pigora et al. [69] discuss the bene-
fits of applying a cloud gaming approach to training and education by introducing
their solution called "Nexus Web’ as an example. They describe implementation
challenges and give a rough estimate of the QoS. Quality of Experience, however,
is not mentioned. We overcame the implementation challenges by procuring spe-
cial purpose hardware. Chan [70] simulates the impact of a wireless environment
on cloud gaming using Opnet and draws conclusions regarding the QoS and its
scalability. Additionally, Chan found that a moving user will experience a signif-
icant drop in the QoS. However, he also does not discuss user-based QoE. Chang
etal. [71] propose a methodology for quantifying the performance of several VDI
solutions in a gaming scenario. To this end they use a classic 2d game and cap-
ture the graphics output at server and client for a comparison of quality. However,
they do not incorporate actual user feedback and current 3d video games.

Szigeti et al. [72] recommended guidelines to setting QoS parameters for inter-
active video or video conferencing traffic. As interactive video is related to cloud

gaming, we have taken their recommendations into account when designing our

94

4.2 Obtaining Key Performance Indicators on the Example of Cloud Gaming

tests. However, cloud gaming has different QoE characteristics from interactive
video and therefore these values do not exactly apply.

Three classes of games with different behavior towards QoE are identified by
Claypool et al. [73]. These are “Omnipresent” (e.g. real-time strategy games),
“Third-Person Avatar” (e.g. role-play games), and “First Person Avatar” (e.g.
First Person Shooters). We adopt these classes and chose one game from each
for the purpose of our tests in order to account for the effects of varying content.
Additionally, Claypool et al. [73] also give a latency range in which each type
of game performs well. We have based the choice of latency values for our tests
based on these results.

4.2 Obtaining Key Performance Indicators on the
Example of Cloud Gaming

Recently, a new type of cloud service has been introduced, which combines in-
ternet video and online gaming and may have the most stringent demands on
network QoS to date: cloud gaming. This new service has been subject of a case
study by Ojala et al. [74] underlining its potential from a business point of view.
Yet, business is not the only field from which cloud gaming has received atten-
tion. As early as 2009, Ross [75] identified gaming as the "Killer-App” for cloud
computing and Chang [76] even believes that ”gaming will save us all”.

The service essentially moves the processing power required to render a game
away from the user into a data center and streams the entire game experience
to the user as a high definition video. Traditionally, only multi-player games re-
quired network connectivity. For each player a game client is connected remotely
to a server, which hosts and controls the game environment, receives input com-
mands and sends out status updates. The amount of data exchanged is usually
quite small as the user experience is created at the client device. However, in
cloud gaming the entire user experience is generated on the server and has to be
delivered through the network. This is where cloud gaming is significantly differ-

95

4 Leveraging the SDN Northbound-API for QoE-based Application-Aware Networking

ent from conventional online gaming in terms of network QoE. While in conven-
tional online gaming the user experience is generated at the client and therefore
the network does not have any influence on the presentation, it may greatly affect
the quality in Cloud Gaming.

From a network point of view there are several challenges to overcome to oper-
ate such a service in the quality expected by the users. Unlike conventional video
streaming or web applications Cloud Gaming does not require either a relatively
high constant down-link bandwidth or low latency, but both. We determine these
parameters based on actual user perceptions to identify key influence factors for
QoE in cloud gaming, which in turn determine which information has to be ex-
changed between an SDN controller and the application to ensure a good service
quality. To achieve this goal, subjective user surveys are required. Therefore, we
have designed a local testbed at the University of Wiirzburg that emulates a cloud
gaming service. This testbed is used to provide a test person with a game expe-
rience similar to that of a cloud service. We have developed a series of tests to
gauge a user’s reactions to varying settings of propagation delay and packet loss.
Based on this setup we performed a survey with test persons and derive gen-
eral conclusions on the impact of certain QoS parameters on QoE and identify

influences of content and perception from the results.

4.2.1 Survey Parameters and Design

In Subsection 4.2.1 we select the range of the QoS parameters loss and delay
whose influence on QoE is tested in our user tests. In Subsection 4.2.2 we dis-
cuss the attributes of the test group our survey is based on. Our testbed is ex-
plained in subsection 4.2.1. Finally, we characterize the actual survey process in
Subsection 4.2.1.

QoS Parameters of the Survey

An IP network connection maybe influenced by numerous factors: delay, jitter,
packet loss, packet re-ordering or packet duplication to mention only a few. How-

96

4.2 Obtaining Key Performance Indicators on the Example of Cloud Gaming

ever, to Cloud Gaming in its current form only two parameters are relevant for
the QoE - packet delay and loss. Delay affects the time a user’s action is exe-
cuted and the results are perceived. In Cloud Gaming this would be the time from
the pressing of a controller button to the intended action. All other influence fac-
tors result in the application not being able to display a video frame or execute
an input command in time. These effects are handled by the network encoding
or treated by the application identical to packet loss. To meet the real-time con-
straint the software cannot wait for one packet to be delivered for an arbitrary
amount of time or in an arbitrary order. As a consequence the program will have
no choice, but to drop the data resulting in loss. From the user’s point of view,
lost or late packets lead to the same quality degradation independent from the
underlying cause e.g. network congestion or jitter. Therefore, all of these effects
can be investigated by just examining the influence of packet loss.

Pantel et al. propose in [77] that a delay greater than 100 ms should be avoided
based on study of two racing games. We take this value as a starting point for
designing our own initial subjective tests. The next QoS parameter we consider
in our tests is loss. Since there is no reference value for loss in Cloud Gaming, we
take a look at [72] by Szigeti et al., which gives guidelines for the related field of
video conferencing. It states that loss should be no more than 1 percent, one-way
latency should be no more than 150 ms, and jitter should be no more than 30 ms.
In [78] by Henderson et al. the authors describe the effect that degraded QoS can
dissuade players from joining a networked game, but those already connected to
a server are more tolerant towards bad QoS. We consider this effect in relation to
Cloud Gaming, but it affects only the usage of the service, i.e. users might quit
the service or not subscribe to it. In this chapter, we focus on influences occurring

while using the service.

As mentioned before, we investigate the three classes of games defined by
Claypool et al. [73]. Table 4.1 gives an overview of the specific scenarios we
define. The table gives the scenario id as well as the specific settings for delay
and loss. Finally, it also gives the direction - client to server or server to client
- to which the parameters are applied. The first scenario (B) we introduce is the

97

4 Leveraging the SDN Northbound-API for QoE-based Application-Aware Networking

Scenario ID Delay Packet Loss Direction
B 0 ms 0.0% both
D1 80 ms 0.0% both
D2 200 ms 0.0% both
D3 300 ms 0.0% both
L1 0 ms 0.3% both
L2 0 ms 1.0% both
Ml 40 ms 1.5% both
M2 180 ms 0.3% both
Al 120 ms 1.0% client to server
A2 120 ms 1.0% server to client

Table 4.1: Test Scenarios and Applied Parameters

baseline, which is essentially a setting in which all parameters are set to zero.
We do so in order to check for the placebo effect, i.e. some of the test subjects
could imagine a distortion where there is actually none, simply because they find
themselves in a test situation. Additionally, we define three delay-only scenarios
(D1-3). These are our subjective perception threshold for delay at 160 ms round-
trip time (RTT), a noticeable disturbance of play at 400 ms RTT and 600 ms RTT
where players should no longer be able to play. Here the delay is identical on
up- and down-link. This results in the input commands being received late by the
game service and the feedback video being delayed also.

Having considered delay, we then introduce two scenarios with symmetric packet
loss of 0.3 and 1 percent per link (scenarios L1,L.2) being the only source of dis-
turbance. The effect of packet loss on the down-link are a notable fragmentation
of the video as well as lost keystrokes on the up-link. After looking into delay
and packet loss individually we are interested in the question, which parameter is
dominant and has a larger influence on the QoE. To determine this, we create two
mixed scenarios combining delay and packet loss (scenarios M1,M2). Finally, we
introduce two scenarios with asymmetric settings to investigate whether applying
the same parameters on either the up or the down-link changes the outcome of

98

4.2 Obtaining Key Performance Indicators on the Example of Cloud Gaming

the QoE perception (scenarios A1,A2).

Emulation of Cloud Gaming

Figure 4.1 depicts our testbed setup from a logical point of view. The idea of this
setup is to replicate the basic infrastructure of OnLive and its competitors intend
to use to deliver the game experience to their customers. Hence, three individual
components have to be reproduced. The hardware shown on the right hand side
of the Figure replaces the data centers. To replace the servers which would usu-
ally render the game we use a conventional PlayStation 3 gaming console. This
device is optimized for gaming and the games running on it are optimized for
its hardware. Therefore, the risk of false results caused by erratic behavior of the
rendering hardware is minimal. The images created by the Playstation are then
streamed to the client via a special purpose hardware, called Spawn Box. The
Spawn HD-720 is capable of streaming the output produced by many modern
consoles over an IP network to its client software (Spawn Player). This software
is a modified version of the well-known VLC media player. It displays the video
and transmits the client input to the Spawn box, which in turn relays it to the game
console. The Spawn Player is configured for smooth replay at the best possible
quality i.e. a video resolution at three quarters of 720p and a video codec bit-rate
at 3 MBit/s. The box uses HaiVision’s MAKO-HD hardware, which was origi-
nally designed for the purpose of high definition video conferencing and hence
uses progressive H.264 video encoding. Both video and user input are transmitted
through the network via a RTP/UDP connection.

In the center of Figure 4.1 the component emulating an IP WAN, e.g. the Inter-
net, is represented by a cloud. In fact this is a computer running the Linux-based
network emulator NetEM on Debian Lenny. The NetEM software is capable of
producing a variety of effects a wide area network could have on a packet stream.
However, we only use it to introduce fixed delay as well as random loss as ex-
plained in 4.2.1. A client is represented by an Intel Pentium I'V personal computer

in our experiment running the Spawn Player software on Windows XP as seen on

99

4 Leveraging the SDN Northbound-API for QoE-based Application-Aware Networking

the left of the Figure.

For the purposes of conducting the survey, we introduce a fourth component.
A web-server that controls the simulation by remotely configuring the WAN-
simulator and displaying the front-end of the QoE poll as well as storing its re-
sults.

Data Center

|

Web-Server

PlayStation 3

2
A Client @ 7 NetEM Spawn Box
replays gaming streams gaming
Customer experlence experience

WAN-Simulator

Figure 4.1: Logical View of the Testbed Setup

Survey Process

The test participant is asked to use the client PC. The client PC is equipped with
two monitors, that serve two different purposes. While on the first monitor the
researcher conducts the opinion poll and could control the test, the subject is to
play the game on the second display. First we create a unique identifier for each
participant and store his age. Next the player can pick one of our three games
according to the three classes defined in [73]. We chose Pro Evolution Soccer
for the omnipresent perspective (slow-pace game-play), Final Fantasy XIII for

100

4.2 Obtaining Key Performance Indicators on the Example of Cloud Gaming

the 3rd person perspective (medium-paced game-play) and Gran Turismo HD
Concept for the 1st person perspective (fast-paced game-play) (cf. 4.2.1). The
participants are allowed to repeat the test using another game. Subsequently we
interview the test person on whether or not they favor games of that particular
genre in order to determine if the test participant is potentially biased by their
preference. We then ask the participant to estimate his/her skill in gaming as
explained in Subsection 4.2.2.

Following these initial questions the subject is allowed to explore the game

and its controls in 10 minutes of free play time. During this period the game is
intentionally not affected by any distortions, so that the player can use this expe-
rience as a reference point (perfect experience) to the scenarios introduced in the
testing phase. Every test subject is supposed to experience every scenario we in-
troduce exactly once during the test. To avoid biased results caused by a specific
sequence of scenarios, we decided this sequence to be randomly generated with
the exception of always starting with the baseline.
Each scenario lasts for about 1 minute. At the end of a scenario the researcher
asks the participant for his current game experience, i.e. the quality of experience
perceived by the player. This rating is expressed by the so called Mean Opin-
ion Score (MOS) [79] for perceived quality of experience. Each experience was
mapped to a value ranging from 1 to 5 with increasing values implying increas-
ing quality ranging from bad to excellent. We left it to our participants to decide,
which aspect of their experience image quality or responsiveness they weighted
the most in their rating, since we intend to express the entire game experience by
this value. With all ten scenarios being completed we then ask the test participant
whether or not they are willing to pay a monthly fee for the overall experience
they just made on the understanding that they can play any game they wanted to.
We do this in order to get an overall impression of how the tests are perceived.
Finally, we informally interview our participants on their general attitude towards
the idea of Cloud Gaming and the potential they attribute to the concept.

101

4 Leveraging the SDN Northbound-API for QoE-based Application-Aware Networking

4.2.2 Rater Reliability

In this section we have a look at the demographics of our survey participants and

subsequently determine the reliability of their ratings.

Demographics of the Test User Group

A study performed for Electronic Arts [80] in 2005 polled 3000 people in Ger-
many aged 14 and above for the purposes of in-game advertising. It argues that
only 5% of all gamers actually play often and are so called “intense gamers”.
By contrast the major percentage encompasses two groups: 24% are what Elec-
tronic Arts calls “casual gamers” and 54% of the interviewees are considered to
be “leisure gamers”. The study implies that most gamers and therefore most po-
tential users of cloud gaming in Germany play on an occasional basis. Hence, the
sample we took was aimed at getting a representative share of the target popu-
lation defined by playing on a regular or occasional rather than an intense basis.
Our sample is made up of 58 participants. Participants were often unsure whether
they played on a regular or occasional basis. Therefore, we changed the question
and asked the participants how they perceived their skill at gaming, which seems
to be a less vague indicator. 15.2% of the participants consider themselves to
be skilled gamers, while 44.6% think that their gaming skill is “medium”, and
39.2% even judge themselves as “low”. These percentages can be mapped to the
groups of “casual gamers” and “leisure gamers”. We can conclude that most of
our test subjects do not play on an intense basis and thus our sample should lie

within the target audience of Cloud Gaming.

Rater Reliability and Diversity

In order to determine the reliability of our rater, we use two measures - intra-
and inter-rater reliability as described by Hof3feld et al. [67]. Intra-rater reliabil-
ity determines the consistency of ratings made by one single individual. We use
the Spearman rank correlation coefficient to quantify both measures. This coeffi-
cient determines whether the relationship between two variables can be described

102

4.2 Obtaining Key Performance Indicators on the Example of Cloud Gaming

with a monotone function. Here this would be the ranking given by the person
and the value of the network parameter in question. Ideally, the ranking should
change proportionally with the value of the network parameter resulting in dif-
ferent results for each setting. No repetition of values in the ranking would result
in a Spearman rank correlation coefficient with an absolute value of one. In Fig-
ure 4.2 a CDF for the intra-rater reliability of our users is given. We consider
users with a Spearman rank correlation of greater than an absolute value of 0.60
to be reliable and thus consistent in their ratings. The Figure shows that roughly
80% of our users fall into this category.

| ‘ ’_r,_r'_'_'_'_’
0.8+ 1
0.61 1
[T
a
O
0.4 1
0.2r 1
Reliable Users: |p|>0.60
O ‘— L L L
-1 -0.8 -0.6 -0.4 -0.2

Intra—Rater Reliability p

Figure 4.2: Intra-Rater Reliability

Inter-rater reliability on the other hand describes the degree of agreement be-
tween multiple users given the same test. Figure 4.3 gives the inter-rater reliabil-
ity of our users in different scenarios. For Scenarios in which only packet loss is
applied, we see a high absolute value of the Spearman rank correlation between
users between about 0.75 and 0.9, which clearly indicates loss as an important

103

4 Leveraging the SDN Northbound-API for QoE-based Application-Aware Networking

factor. However, in delay-only scenarios the picture is not so clear. Especially for
the fast-paced game the ratings are very diverse. Based on the parameter weights
in Table 4.2.4 the overall inter-rater reliability lies just around our cut-off point
of 0.6. This indicates a significant difference in perception dependent on the user.
This is underlined by the standard deviation of the opinion score (SOS) for reli-
able and overall users as shown in Figure 4.4 and a relatively high SOS parameter
a of about 0.3-0.35. This shows that the assessment of QoE in cloud computing
is not trivial as even with a larger number of test participants this deviation will
not be significantly lower.

-0.8

Inter—Rater Reliablity
I
(o]

I Overall L
—1 || I Slow
[Medium
[JFast

Overall Delay Loss
Considered Scenarios

Figure 4.3: Inter-Rater Reliability

104

4.2 Obtaining Key Performance Indicators on the Example of Cloud Gaming

1.5
*
L]
c
£ 1y
8
>
Jol
[a
e
a L]
©
c
S 0.5¢
@ o Al User Ratings
SOS par. a=0.3036 \
Reliable User Ratings |
SOS par. a=0.3506 ‘
0 I I I

1 2 3 4 5
Mean Opinion Score

Figure 4.4: SOS

4.2.3 ldentification of Key Influence Factors for Cloud
Gaming QoE

Figure 4.5 illustrates the surveyed MOS value for each game in each of our sce-
narios. The plot is based on the data of 79 test runs, respectively 790 user votes.
The y-axis indicates the MOS for a particular scenario, denoted by its scenario ID
on the x-axis. At first glance it is apparent that the MOS values of each scenario
differ from game to game. This variation is most remarkable in the bi-directional
delay scenarios (D1-3). It seems the slower the game-play gets the better the
ratings become. For instance, scenario D2 is rated at 1.2143 MOS (bad) in com-
bination with the racing simulation (fast), while it is rated at a value of 2.2308
MOS (poor) using the role play game (medium) and with the soccer simulation
(slow) even scores a MOS value of 2.96 (fair). We therefore suspect that faster
games are more delay-sensitive than slower ones. This agrees with the classifi-
cation of Claypool et al.. It is reasonable that the influence of delay on Cloud

105

4 Leveraging the SDN Northbound-API for QoE-based Application-Aware Networking

. Il Game - Fast
Baseline [l Game - Medium
F []Game - Slow

Mixed

Packet

MOS Value

_B_ILD1_.D2__D3L L1 __L2: M1__M2. Al __A2.
Scenario ID

Figure 4.5: MOS Ratings per Scenario/Game

Gaming is similar to its influence on conventional games.

Impact of Symmetric Delay and Loss on QoE

Figure 4.6 illustrates the measured MOS values for the bi-directional delay sce-
narios. The delay values are shown on the x-axis and the y-axis gives the cor-
responding MOS values. The values for the x-ticks are taken from scenarios B
and D1-3. The results for each game are plotted as two graphs - one for all raters
and one for reliable raters only. Confidence intervals are given for each MOS
value. The intervals are small, hence we can conclude, that the MOS values are
stable and enough ratings were collected. The difference between all users and
the reliable group appears to be marginal. We observe that all graphs decrease
with increasing delay. As suspected, there is a decline of MOS values with in-
creasing delay. Furthermore, the plot confirms that the racing simulation appears
to be most delay-sensitive for its graph runs below the others. Up to a delay of
80 ms the user experience has the same quality for role play game (medium) and
soccer simulation (slow). The delay value of 80 ms was chosen to lie in the area

106

4.2 Obtaining Key Performance Indicators on the Example of Cloud Gaming

Game - Slow
Sres —— Game - Medium]
—— Game - Fast

MO

All Users

15} Reliable Users

1 I I I I I I I
0 50 100 150 200 250 300
delay (ms)

Figure 4.6: MOS for Scenarios with Applied Delay

of threshold where players start to notice the delay. While the delay is recognized
in the racing simulation and rated with a MOS value of 3, only some people de-
tected it in the role play game and the soccer game resulting in a MOS value
of 4 for both. At a delay of 200 ms, however, the graph of the soccer game is
clearly above the role play game graph which allows us to draw the conclusion

that indeed the slower the game is, the less delay influences the user rating.

Figure 4.7 visualizes the surveyed MOS values for packet loss. MOS values
are shown on the y-axis, while the values for packet loss are on the x-axis. We
used the packet loss values of scenarios B,L.1 and L2 for the x-ticks. Again, the
results for each game are plotted as two graphs - one for all raters and one for
reliable raters only. Also, the confidence intervals are for each MOS value are
again small, indicated a stable value. Same as before, the gap between all users
and the reliable group is very small. It becomes obvious that all graphs drop with
increasing packet loss. Consequently, we also conclude that there is a decay in

107

4 Leveraging the SDN Northbound-API for QoE-based Application-Aware Networking

5 . . ‘ ‘ .
3 Game - Slow
45K\ —— Game - Medium]
\ —— Game - Fast
4t
0 3.5¢
=
3,
2.5
2t All Users \‘~\\ —
Reliable Users \
15 1 L L L L L
0 0.2 0.4 0.6 0.8 1
packet loss (%)

Figure 4.7: MOS for Scenarios with Applied Packet Loss

MOS with increasing packet loss. We assume this is due to the fact, that with
increasing packet loss the video quality degrades more and more. We note that in
essence the racing simulation, the most upper graph, appears to be most resilient
towards packet loss. This might be a result of the circumstance that in fast paced
games the player never really focuses on his environment as it is changing rapidly
and thus degraded video quality becomes less important. Furthermore, fast paced
games have a much higher command input rate than slower games. Here a lost
keystroke is often subconsciously repeated. These facts seem to confirm our as-

sumption.

User Perception of Delay vs Loss

In Figure 4.8 we used a two-dimensional surface-plot to identify a user tendency
on what is perceived worse for each game: packet loss or delay. On the x-axis the
reader can observe the MOS values of scenario M1, while on the y-axis the MOS

108

4.2 Obtaining Key Performance Indicators on the Example of Cloud Gaming

4

3
MOS of Test: 40 ms Delay, 1.5% Packet Loss

n <
is07 J9)0Rd %E0 ‘Ae|

™

N -

2Q sw 08l :3S3L J0 SO isoT 3@

n < ©
¥oed %¢°0 ‘Aejag sw

~
08} :

-

3 4
MOS of Test: 40 ms Delay, 1.5% Packet Loss

2

1

1S91 Jo SON

Figure 4.8: Mixed Scenarios

109

4 Leveraging the SDN Northbound-API for QoE-based Application-Aware Networking

values of scenario M2 are denoted. Each point displayed as a square represents
the rating for both scenarios. The z-axis, i.e. the color of a square indicates the
frequency of a rating combination. The darker a square is, the more participants
voted for this combination of MOS scores. For instance, the black square in the
upper left plot (game - fast) at the coordinates (2,1) implies that 36% of all users
that judged the racing simulation rated scenario M1 with a MOS value of 2 and
scenario M2 with a MOS value of 1.

Additionally we delineated the angle bisector in each plot. Squares that are lo-
cated left or above this line indicate a preference towards scenario M2, while
squares that are located right or below the bisector indicate a favor for scenario
M1. Squares that lie exactly on the angle bisector express neutrality, i.e. the MOS
value for scenario M1 equals that given to scenario M2. In Figure 4.8 we observe
that about 50% of all people that rated the racing simulation considered scenario
M1 and M2 equally bad. The remaining 50%, however, show a clear tendency
towards scenario M 1. This further reinforces the assumption made when looking
at loss only, that fast games seem to be more tolerant towards loss than oth-
ers. Furthermore, we see that the delay-intensive test is perceived worse. This
fits with our results so far. Delay appears to be the decisive factor in fast paced
games. Players of fast games would rather accept higher packet loss rates than
they would tolerate high delays, for the game-play and the players’ success in the
game very strong depend on their ability to react swiftly.

The plot for the medium-paced game (rpg) shows quite an opposite trend. Here
most of the participants lean towards scenario M2. In the role play game over
50% of the users prefer the delay-intensive scenario over the loss-intensive, while
about 40% remain neutral. This game therefore appears delay-resilient, but loss-
intolerant. Players of medium-paced games would prefer high delay over high
packet loss rates, since they are more interested in what they see (i.e. video qual-
ity) than in responsiveness. The reason for this is two-fold. On the one hand
responsiveness is not that decisive for the game-play and the players’ success in
the game. On the other hand the ability to immerse in the simulated world is far
more important in games like this. For the slow-paced game we could not derive

110

4.2 Obtaining Key Performance Indicators on the Example of Cloud Gaming

any clear tendency. We observe a content-dependency and as we have seen, the

question which parameter is perceived worse cannot be answered globally.

Evaluation of Asymmetric Network Conditions on QoE

Finally we have a look at the results of the asymmetric scenarios Al (client to
server connection disturbed) and A2 (server to client connection disturbed). The
results for each of these scenarios contrast each other, although they use the same

parameters albeit in different directions.

Game - Fast Game - Medium Game - Slow

0.8
g g g
506 5 g
=1 = =
g g g
& 0.4} = &
0.2
0 0 0
M 2 3 4 5 1 2 3 4 5 1 2 3 4 5
MOS Samples MOS Samples MOS Samples

---Server to Client: Delay: 120 ms, 1.0% Packet Loss (Scenario A2
——Client to Server: Delay: 120 ms, 1.0% Packet Loss (Scenario A1

Figure 4.9: MOS for Scenarios with Asymmetric Disruptions

The MOS value of scenario A1 was more than twice as high as the MOS
value given to scenario A2. Figure 4.9 shows the cumulative distribution func-
tions (CDF) using the MOS value as random variable. Since MOS values are
discrete, we see a stair-plot. Each plot displays one game. The first observation
we make is that in all games the graph of scenario A2 slopes upwards much faster
than the graph of scenario Al. This indicates that generally more test participants
disliked the distortion of the server to client connection. For instance, while in
the fast-paced game less than 30% of the test participants rated scenario Al with

111

4 Leveraging the SDN Northbound-API for QoE-based Application-Aware Networking

a MOS value 2, almost 80% rated scenario A2 the same. Hardly anybody rated
scenario A2 better than a MOS value of 3, except for the slow-paced game where
less than 10% gave a MOS value of 4. The explanation for this tendency is quite
obvious: Server-to-client loss of 1% results in massive video distortions, while
client-to-server loss of 1% remains virtually ’invisible’. Very few of the test per-
sons ever knowingly complained about control inputs being dropped. However, a
packet loss of 1% can very well compromise more than 20% of the picture in the
video stream. The graph of the role play game increases the fastest. Over 90%
rated it with M OS < 2. Again, this is linked to the way people experience the
game. Role play gamers want to immerse into the world of game, therefore video
distortions of this magnitude can hardly be tolerated as they greatly decrease the
visual experience.

Comparing the client-to-server graph of each game, we observe that it continu-
ously bottoms out the slower the game gets. This means the less participants rate
client-to-server distortions as bad the slower the game becomes. Although not all
people consciously recognized the dropping of control inputs, it had an impact
on their rating. If a soccer player will not pass the ball immediately, the test sub-
ject will simply press the button again as these games often do have an inherent
delay to a players action. If a vehicle in a racing game will not turn immediately,
however, it might be too late and the player might crash into a wall. We come
to understand that server-to-client packet loss due to video distortion is far more
critical for many Cloud Gaming applications than client-to-server packet loss,
which might not even be knowingly perceived in a great deal of cases. Client-to-
server packet loss only becomes grave, if a missed input potentially results in the
player using the game. The delay of 120 ms was hardly recognized, no matter in

which direction.
4.2.4 Towards a Key Quality Indicator

So far we have derived several qualitative influences that different parameters
have on the QoE of a cloud gaming application. However, for a service provider

112

4.2 Obtaining Key Performance Indicators on the Example of Cloud Gaming

downLoss

> 0.650 =< 0.650

N\

i
TRUE
[

=1 =2 =3
y_ v
FALSE || FALSE TRUE

Figure 4.10: Decision Tree of QoE Impact Factors

113

4 Leveraging the SDN Northbound-API for QoE-based Application-Aware Networking

it is also important to know, how significant the influence of a certain parameter
is compared to others. This way the service provider can structure the service in
such a way as to ensure a minimum level of QoE at all times. We have used the
standard data mining and statistics tool Rapidminer [81] to derive the importance
of the parameters in our survey.

Table 4.2.4 lists the parameters and their assigned weights based on the informa-
tion gain calculated by the tool for samples yielding a fair quality, i.e. a MOS
value of three and above. It identifies downstream packet loss as the most impor-
tant parameter for QoE in cloud gaming in our survey with a maximum weight
of 1, followed by downstream delay, which is already significantly less impor-
tant with weight of 0.583. This shows, that the downstream transferring the video
has a statistically higher impact on QoE than the upstream with the upstream
packet loss and delay at weights of 0.370 and 0.212 respectively. However, both
upstream parameters still have a significant weight, while it appears that the in-
fluence of game type, player skill, etc. is negligible.

Additionally we used the WEKA [82] implementation of the REPTree algorithm
in RapidMiner to construct a decision tree. This method tries to construct a sub-
set of specific decision rules from a general rule covering the entire data set, i.e.
the test results, by recursively splitting it based on information gain. The rule at
the root of this tree, i.e. the first split, signifies the most important parameter for
the decision. The decision we want to make here is whether the game quality is
acceptable, i.e. true, or bad, i.e. false. The resulting tree based on our test results
is illustrated in Figure 4.10. Our tree has the downstream packet loss as the most
significant parameter at its root. A loss value of greater than 65% will result in
a bad experience. If this is not the case, the upstream delay becomes the next
significant influence factor. Here a delay of less than 150 ms will result in an at
least acceptable experience. However, if the delay is higher, the game type be-
comes the next decisive factor. Under these circumstances only the slow game
can yield acceptable results. This again suggests a difference in perception for

up- and downstream impact factors as seen in the previous section.

114

4.3 SDN-based Application-Aware Networking

Parameter Weight

Downstream Packet Loss 1.0

Downstream Delay 0.583

Upstream Packet Loss 0.370

Upstream Delay 0.212

Type of Game 0.067

Player Skill 0.006

Player Attitude Towards Game 0.006
Player Age 0.0

Table 4.2: Weight of Parameters Based on Information Gain

4.3 SDN-based Application-Aware Networking

After having presented a way to determine the impact of QoS parameters on the
application QoE for cloud gaming, we proceed by examining how these appli-
cation quality parameters as well as different kinds of other information, such
as per-flow parameters, or application signatures, can support a more effective
network management in an SDN-enabled network. Application information and
related QoS levels offer greater flexibility in terms of supporting QoE than hard
QoS parameters. However, using them may require an overhead of signaling ef-
fort compared to management at the network level. Therefore, we take a look
at the trade-off between the QoE improvement due to more detailed application
information and corresponding signaling overhead. Unfortunately, this level of
detailed application information was not available to us for our use case of cloud
gaming. Therefore, all approaches are emulated in an SDN-enabled testbed for
the application of YouTube streaming as the same type of information is not
easily obtainable for the mostly proprietary cloud gaming systems. We use the
YouTube quality monitoring tool YoMo [83], which monitors the buffer filling
level and the occurrence of playback stalling to quantify the impact each ap-
proach has on the YouTube QoE.

115

4 Leveraging the SDN Northbound-API for QoE-based Application-Aware Networking

4.3.1 Scenario and Testbed Setup

Our Application-Aware SDN testbed emulates a path selection scenario for an
access network provider. The access network provider, e.g. a mobile network
operator, transmits the data of its customers over multiple leased lines to the
Internet. The goal of the provider is to use these lines as efficiently as possible,
i.e., as few lines as possible should be rented as long as the QoE of the user does
not suffer.

The provider has chosen an OpenFlow-enabled device as termination point for
several access connections to its customers. While the provider does have ex-
clusive last mile-access to the customers, the upstream connectivity belongs to
a different ISP. Therefore, the OpenFlow device is connected via leased virtual
channels across the WAN to a second OpenFlow-enabled device in the provider’s
Internet backbone. A customer of the provider is watching a YouTube video,
while other customers run file downloads or surf the web. The provider is inter-
ested in providing a good quality of experience to the YouTube user, while at the

same time not overextending its leased resources.

Testbed Setup

Figure 4.11 shows our testbed setup for the reference case. As OpenFlow-enabled
devices at the access and provider edge, we use two Pronto 3290 switches [62]
running PicOS 1.6.1. Both are configured for out-band management and are con-
nected via their management interfaces to an HP ProCurve 1810-24 switch, form-
ing the management network. A Dell PowerEdge 860 server is used as controller
host and is also connected to the HP switch. As controller software, we are using
the Floodlight controller [44] from BigSwitch running our own modules. The
“virtual” provider connections are represented by five links between the two
switches using Cat-5 cabling. The physical ports on the switches for these five
links are set to 10 Mbps link speed. The “provider switch” is connected to a
Cisco router, which serves as Internet gateway for our testbed. The YouTube user
is represented by a standard PC running Ubuntu Linux. The browser used to ac-

116

4.3 SDN-based Application-Aware Networking

cess YouTube is Mozilla Firefox running our YoMo plugin. When the browser
is directed to play a YouTube video, YoMo, among other things, is able to iden-
tify the TCP-flows used for the transmission as well as track the buffered and
current playtime in the YouTube player. Since the QoE of YouTube depends on
stalling [66,67], monitoring the buffered playtime gives us an indication whether
the current performance offered by the network leads to a QoE degradation for

OpenFlow Controller
%, p

Floodngﬁl

Control
Channels

Leased Lines Backhaul Provu:ler Swntch

Customer

Access Swnch

Figure 4.11: Application-Aware SDN Testbed Setup

Experiments

In the following, we discuss the differences between each of the experiments as
well as their purpose. The start of the YouTube video coincides with the start of

each experiment. The video is played out with a resolution of 480p by default.

i) Reference Experiment: In this experiment only YouTube traffic to a sin-
gle client is transmitted. The controller chooses one of the five available
links at random to transfer the flow. The YouTube traffic can use the full 10
Mbps available on that link. This experiment gives us a baseline in terms
of the available buffered playtime we can expect under optimal conditions.

ii) Reference Experiment with Interfering Traffic: For this experiment

117

4 Leveraging the SDN Northbound-API for QoE-based Application-Aware Networking

two additional PCs are connected to the testbed. One is connected to the
access switch, the other to the provider switch. We use Iperf [54] to gener-
ate traffic between those two machines in order to emulate other users on
the network. In addition to the YouTube traffic, 20 TCP flows are started
sequentially after 60 seconds with a flow inter-arrival time of one second.
The controller directs all traffic via only one of the five links, which gives
us a worst case approximation.

iii) Round-Robin Path Selection: The testbed setup for this experiment re-
mains the same as in the previous case. Once again 20 TCP flows are
generated. However, this time the controller can use more than one link.
It does so by directing each new flow to a different link in a round-robin

fashion. This experiment represents our naive load-balancing approach.

iv) Bandwidth-Based Path Selection: The same traffic and testbed as in the
previous experiments is also used here. The controller is still able to use all
links. Links are selected by their currently used bandwidth. When a new
flow arrives, the controller determines the least loaded link and directs the
flow to it. At the same time the controller checks the bandwidth required
by each of the flows every second via the switches’ flow table counters. If
there is a link with free capacity available, the controller will then redirect
the largest flow in terms of bandwidth consumption from a loaded link to
the free link. In order to avoid constant redirection, this can only happen

once every ten seconds for a specific flow.

v) Deep Packet Inspection: We extend the testbed by a machine performing
Deep Packet Inspection (DPI). The machine is connected to the manage-
ment network and can be contacted by the controller. The experiment pa-
rameters are the same otherwise. In this experiment, the controller directs
all traffic via one link. The first ten packets of each flow, are mirrored to
the controller, which then sends them to the DPI machine running a com-
bination of TShark, the console version of Wireshark [84], and several

118

4.3 SDN-based Application-Aware Networking

filter rules based on regular expressions. The DPI informs the controller
about the nature of the flow. If a particular flow is a YouTube video, the
controller will redirect the flow to another less congested link.

vi) Application-Aware Path Selection: Finally, in this ex-periment, we
leverage the information YoMo provides us with as input for the controller.
The experiment is identical to the previous one, except that 50 TCP flows
are generated to create a high load scenario and the machine used for DPI
in the previous experiment is now used to receive application information
containing the current YouTube buffer level and flow information. We call
this machine the “application station”. When the buffer level gets below
a certain threshold, the application station informs the controller that an
action is required for a particular flow in order to maintain the QoE for the

user.

4.3.2 Measurement Results

In this section, we discuss the measurement results of our experimental investi-
gation. All experiments were repeated five times. However, for the sake of visu-
alization, only one representative run is depicted. Each experiment has a duration
of 420 seconds. The used video' has a mean data rate of 2.6 Mbps with standard
deviation of 250 kbps.

Reference Experiment

The upper curve in Figure 4.12 shows the pre-buffered playtime of the YouTube
player at the client in seconds over the duration without interfering traffic. It
can be seen that a pre-buffered playtime of about 55 seconds is reached within
the first 10 seconds. Thus, 55 seconds playback can be achieved without further
data. While the video is played out, the buffer decreases but is constantly refilled
so that the buffer maintains a stable level. This is as expected for the reference

"YouTube Video: "Waterfall" 90mins "Sleep Video" Bull Creek;
http://www.youtube.com/watch?v=WZtn2n51Xrw

119

4 Leveraging the SDN Northbound-API for QoE-based Application-Aware Networking

experiment. The buffer level never drops significantly and, most importantly, it
never reaches zero, which would cause the video to stall.

=

[} L

%7

=)

o

S 401

3 No Interference

(5]

E 207]

®

S L . .
0 50 100 150 200 250 300 350 400

time [s]

Figure 4.12: Buffered Playtime (1 Link), No Interference and 20 Additional TCP
Flows

Reference Experiment with Interfering Traffic

The repetition of the reference experiment with interfering traffic yields a dif-
ferent result as is illustrated in Figure 4.12, which again shows the pre-buffered
playtime in seconds over time. Up to the point when the interfering traffic starts,
the behavior is exactly the same as in the reference experiment. However, with
the reduced bandwidth available, the buffer level continuously falls as the video
is played out until it is empty and the video stalls at about the 140s mark. At about
200s the YouTube player automatically reduces the default resolution of 480p to
360p, and therewith the video bit rate. This enables the video to be played out
again with less stalling albeit in a lower quality. The buffer, however, does not

recover and stays at a low level of about 10s pre-buffered playtime.

Round-Robin Path Selection

The approach of balancing the flows across multiple links in a round robin fash-
ion should naively improve the situation for the YouTube user compared to the
one link scenario. However, this is not necessarily the case with heterogeneous
traffic as is shown in Figure 4.13. After the initial undisturbed phase, the YouTube

120

4.3 SDN-based Application-Aware Networking

buffer once again can not maintain its high level. However, this time it is not im-
mediately emptied and the video keeps playing. As the controller assigns all flows
in a round robin-fashion but can not tell, which flow is an “’elephant” and which
is a mouse, the bandwidth distribution can be very uneven. This eventually also
comes to haunt our YouTube video at about 270s after the start of experiment
when it has to share its link with multiple high bandwidth flows. Subsequently,
the buffer is drained and the video stalls yet again.

@
=]
T

IS
o
T

n
=]

pre-buffered playtime [s]

o

50 100 150 200 250 300 350 400
time [s]

o

Figure 4.13: Buffered Playtime (5 Links, 20 Additional TCP Flows, Round-
Robin Path-Selection)

Bandwidth-Based Path Selection

Taking into account the used bandwidth per flow is the next logical step from our
round-robin approach that suffered from uneven bandwidth distribution. How-
ever, it fares little better in terms of YouTube streaming performance as can be
seen in Figure 4.14. This is due to fact that all flows, except the YouTube flow,
are “elephants” and try to use the maximum bandwidth available. When the inter-
fering traffic starts at 60 seconds, the buffer begins to decrease. While this is not
as swift as in the one-link scenario, it steadily decreases and eventually reaches a
stalling event. At this point YouTube switches again to a lower resolution and the
video is able to recover.

121

4 Leveraging the SDN Northbound-API for QoE-based Application-Aware Networking

60

40

20

pre-buffered playtime [s]

0 50 100 150 200 250 300 350 400
time [s]

Figure 4.14: Buffered Playtime (5 Links, 20 Additional TCP Flows, Bandwidth-
Based Path-Selection)

=
3
£
s
©
Q
e
o
£
5
Qo
o
s o
0 50 100 150 200 250 300 350 400
time [s]

Figure 4.15: Buffered Playtime (5 Links, 20 Additional TCP Flows, DPI-Based
Path-Selection)

_ 50t
2
5 40f
=
£ 30 Up-Link Link 1
k<]
% 201
< 10 P A R VR IR P I T PTS L PROL FNN TNN
= /\\ “, 147—‘
O S L I L i i
0 50 100 150 200 250 300 350 400
time [s]

Figure 4.16: Used Bandwidth (5 Links, 20 Additional TCP Flows, DPI-Based
Path-Selection)

122

4.3 SDN-based Application-Aware Networking

Deep Packet Inspection

The previous experiments show that network information alone is not sufficient to
provide the YouTube user with a good performance. However, using deep packet
inspection, we can identify the YouTube traffic in the network and prioritize it.
This approach yields the desired success as is shown in Figure 4.15. The YouTube
pre-buffered playtime behaves the same way as in our reference scenario without
any interfering traffic. However, the overall usage of the available network re-
sources is reduced as depicted in Figure 4.16. Here, the used bandwidth in Mbps
over time is shown. Initially, there is a spike up to the maximum utilization of
10 Mbps on Link]1. This is due to the YouTube buffer ramping up. After about
20 seconds the deep packet inspection has identified the traffic as YouTube video
and notified the controller, which redirects the video to its own dedicated Link2.
When the interfering traffic starts at 60s, it remains on Link1, not able to influence
the YouTube stream. Since the DPI can not provide application state information
all links are reserved for YouTube streams, which in this case results in a network
resource utilization of just about 15% on average.

Application-Aware Path Selection

While the deep packet inspection approach has already enabled us to provide a
good experience to the user, we also wasted a lot of bandwidth as the dedicated
link for the YouTube video is only slightly used after the initial ramp-up of the
buffer and the other dedicated links remain empty. It would be beneficial for the
network only to use the extra resources when there actually is a problem and
return to normal operation when it no longer persists. This is where the benefits
of the SDN northbound interface come into play. By leveraging this interface, we
can implement application-state awareness in the network. The benefits can be
seen in Figure 4.17. With all traffic on one link, the buffer level of the YouTube
video starts to decrease, like we have seen in 4.3.2. When it reaches a threshold of
20s pre-buffered playtime, the controller is triggered and it redirects the YouTube
traffic to a less-loaded link. However, this time this is not a dedicated link. It

123

4 Leveraging the SDN Northbound-API for QoE-based Application-Aware Networking

can be used

by other traffic. Therefore, once the YouTube video has reached a

buffered playtime of 35 seconds, the controller can use more capacity on the link

for other traffic until the video again reaches its lower playtime threshold. As

we can see in Figure 4.18, all links in this experiment are fully loaded. Despite

of this, the YouTube user still experiences a good quality using the Application-

Aware SDN

Figure 4.17:

Figure 4.18:

Resource-

approach.
£
B T B - R = R R R
time [s]
Buffered Playtime (5 Links, 50 Additional TCP Flows, Applicaton-

Aware Path-Selection)

—. 501 Uplink f=""7TTTTTTmommmmomommmsmoes N
0 p-Linl .
3 40f K !
s
) Link 3 \»*"*
5 Link4 \s
2200 Links\
s 10} /A
3 " _
0 f Y ,n m/ ‘ ‘ ‘ ‘ ‘
() 50 100 150 200 250 300 350 400
time [s]

Used Bandwidth (5 Links, 50 Additional TCP Flows, Application-
Aware Path-Selection)

Overhead

All in all, two OpenFlow switches are required for these approaches in addition

to the controller. For deep packet inspection and application-aware networking

124

4.3 SDN-based Application-Aware Networking

another machine is required to gather information about the running applications.

Furthermore, all of the described methods to improve the performance for the

YouTube user cause a certain overhead on the control plane. In the following, we

describe said overhead for each approach and determine its efficiency in terms of

resource consumption. As a gauge for the efficiency p of resource utilization, we

use the ratio of bandwidth used on average once the interfering traffic has started,

a)

b)

c)

_ Mean(UsedBandwidth)
~ Available Bandwidth

Round-Robin Path Selection: The simplest solution with round-robin
flow scheduling also has the least overhead. Here, only the OpenFlow
Packet-In, Packet-Out and Flow Mod messages have to be transmitted via
the control channel. No additional traffic and components are necessary.

For this approach all resources are used, therefore p ~ 1.

Bandwidth-Based Path Selection: For the band-

width-based approach, more overhead in terms of control channel traffic
is required compared to the round-robin approach. The controller needs
to periodically query the flow table counters in the switches to determine
the current bandwidth utilization of each flow and link. Additionally, the
balancing of bandwidth usage causes more flow redirection operations,
which increases the number of sent Flow Mod packets and the CPU load
on the switches. Again all available resources are used with p ~ 1.

Deep Packet Inspection: The deep packet inspection approach requires
an additional, potentially heavy loaded, computing resource in the control
plane to perform the packet analysis. Furthermore, the first ten packets
of each flow have to be mirrored. We use the control channel for this.
The bandwidth utilization on the control channel in the DPI case shows
an increase of bandwidth utilization to just under 1 Mbps when packet
mirroring occurs at the beginning of the experiment. This is double the
required bandwidth used by normal reactive flow setups, which peak at

125

4 Leveraging the SDN Northbound-API for QoE-based Application-Aware Networking

about 0.5 Mbps. However, compared to the bandwidth-based approach,
no real-time querying of the switches is necessary. A general problem of
DPI is also that the application signatures have to be constantly updated,
which requires additional expenses. As there is no access to the application
state in this approach, all links except one have to be dedicated lines for
potential YouTube flows. As in our scenario only one YouTube flow is
actually transmitted a lot of bandwidth is left unused leading to a p of just
0.15. Using only one line for YouTube flows would increase the bandwidth
usage to p ~ 0.85 which is still less compared to the other scenarios.

d) Application-Aware Path Selection: Like DPI, the application-state-
aware approach also requires an additional computing instance to receive
and filter the application information for the controller. While this method
puts no significant overhead on the control channel, it requires the ex-
change of information of the application station instance and the served
clients. This may cause a significant amount of traffic, if the application
state changes constantly. Furthermore, an additional software component
is required at the client to monitor the application. This can be a part of the
application itself or, as is the case with us, be a plug-in for the software that
should be monitored. With the benefit of application state information, all
resources can once again be used leading to a p ~ 1.

Quantifying the Results

Figure 4.19 shows the cumulative distribution functions of the pre-buffered play-
time for five experiment runs of our approaches once interfering traffic has
started. For the sake of readability the confidence intervals are only drawn for the
experiment without flow management. As can be seen, they are very small and
this is also true for the other approaches. The approach without any flow manage-
ment performs the worst in terms of playtime, having about 70% of the time a pre-
playtime below 20 seconds. The Bandwidth-based and Round Robin approaches
fare slightly better, but at the cost of a reduced video quality. The Round-Robin

126

4.4 Lessons Learned

approach seems to outperform the Bandwidth-based approach, but this is because
the video stalls earlier and so the Round Robin approach benefits much sooner
from the reduced video size. Deep Packet Inspection and the Application-Aware
SDN approach show by far the best performance with a pre-buffered playtime of
50 seconds and above for about 90 and 80% of the time, respectively. However,
taking the conserved bandwidth and smaller resource overhead into account, the
Application-Aware SDN approach appears to be the most viable.

Round Robin

Bandwidth-based
0.8-

One Path
0.6

CDF

0.4r

0.2r

0 10 20 30 40 50 60
pre-buffered playtime [s]

Figure 4.19: Cumulative Distribution Function for the Pre-Buffered Playtime (20
Additional TCP Flows)

4.4 Lessons Learned

In this chapter, we have presented our findings on how to obtain and leverage QoS
and QoE information in conjunction with the SDN Northbound-API to improve
the quality for users and make the network management more resource-efficient.

We described a test setup to perform a subjective survey on the topic of cloud
gaming as a resource-intensive example application and evaluated the results. We
determined that the QoS parameter that influences the perceived game experience
most is downstream packet loss with a weight of 1.0 based on information gain.

127

4 Leveraging the SDN Northbound-API for QoE-based Application-Aware Networking

While this is very similar to QoE in conventional gaming, in cloud gaming, it is
far more important for players in which direction packet loss occurs as upstream
packet loss only has a weight of 0.37. This is caused by the fact that, in general,
the perceived quality of the video plays an important role and is severely impacted
by even slight amounts of packet loss. This is especially true for games that rely
on impressive visuals. The second most important impact factor is downstream
delay with a weight of 0.583. This smaller value can be explained by the fact that
humans can compensate a certain amount of constant delay so that it does not
greatly lessen the experience.

However, the QoE is not only dependent on the QoS parameters of delay and
packet loss, but also has to be put into context with the content as we have seen
that different types of games may result in disruptions to be perceived differently
by the user. Therefore, it is obvious that solely with measurable QoS parame-
ters, the true user-perceived quality can not be estimated. Additional application
information and, ideally, application state information is required.

We continued by illustrating the benefits of combining application-state in-
formation with SDN network control for network management for the example
of YouTube streaming as the application state could not be determined from our
proprietary cloud gaming setup. We saw that users can benefit profoundly from
this approach compared to purely QoS-based methods. Using application state in-
formation and deep packet inspection as input to manage the network, the users’
video stream can be prevented from stalling. In both cases, the pre-buffered play-
time is above 50 seconds in 80% of the time. In the same scenario, the conven-
tional approaches fail to prevent stalling. However, the improved performance
comes at a cost of a resource overhead caused by the necessary signaling traffic
and computation. Generally, more signaling and computing is required to profit
from the advantages in QoE. Currently, to achieve this, a reactive flow setup with
OpenFlow is required, which limits the applicability of this approach to smaller
networks such as the scenario described. Still, with the ongoing trends towards
Network Functions Virtualization and the increasing use of network processors,
this may change in the future.

128

4.4 Lessons Learned

The main contribution of this chapter is on the one hand to quantify the impact
of QoS parameters on the QoE of cloud gaming and on the other hand to show
that the SDN control plane can be used to aggregate and leverage QoS and QoE
information provided by the network devices as well as the applications running
in the network to efficiently manage the use of the available network resources.

129

5 Conclusion

Software Defined Networking has emerged as a game-changing approach to net-
working, which is evident by the growing rate of adoption and number of avail-
able products on the market. The inherent flexibility it provides compared to
traditional networking has become its key incentive beyond the possibility of
CAPEX reduction. Consequently, the concept is applied to more and more areas
in networking.

However, not all of these areas are suited equally to this new approach.
Through the performance investigations discussed in this monograph, it became
apparent that SDN in its current form is best suited for two types of networks.
The first type are networks whose traffic patterns are well-known or can be con-
trolled. In this type of networks, the forwarding rules can be pre-determined by
the SDN controller. Thus, it only has to become involved when either a con-
figuration change is required or a failure occurs. In both cases the flexibility of
realizing the control plane in software with open interfaces enables the controller
to swiftly take the correct action. In particular, we have shown that the advance
notification of an SDN controller of an imminent topology change can facilitate
the maintenance of service quality.

The second type of networks are those with a relatively small number of flows
but a high need for management, e.g., due to limited resources. Typically, net-
works of this kind are access networks. We have shown that with the input of ap-
plication information and the on-the-fly adjustment of forwarding rules through
an SDN controller leveraging this information, the Quality of Experience of an
application in such a network can be improved significantly. This is especially
true when classical Quality of Service parameters are not sufficient, e.g., due to

131

5 Conclusion

traffic asymmetry, as we illustrated in the case of cloud gaming.

Beyond using SDN as a means for network control, we have shown that it can
be applied to augment the network and its management. We were able to deter-
mine that SDN can be applied in the monitoring domain to passively monitor
the network without a significant loss of accuracy but with a significant gain in
flexibility and reduction of overhead. In fact, network monitoring recently has
emerged as a possible “killer-app” for SDN as attested by recent product an-
nouncements like “BigTap” from BigSwitch Networks.

Despite of these promising results, we have also determined that current SDN
implementations have to be significantly improved to become relevant beyond
test beds and insular deployments. This starts with the available switching hard-
ware, which does not support all of the required capabilities on the data path.
This takes away a lot of the flexibility as performance is key and features that do
not work swiftly cannot be used in production deployments. However, the soft-
ware controllers are also an issue. In our studies, we have shown that controller
performance has a huge impact on the performance of the overall system. At the
same time we determined that current controller realizations have shortcomings
in the way they treat devices and incoming traffic so that service disruption is a
distinct possibility.

In general, however, our studies have demonstrated that SDN can indeed work
as a concept. The investigations we have conducted were based on early proto-
types and many of the shortcomings we found are being addressed. The novel
approaches to leverage SDN we have shown are gaining more traction within
the networking community and may soon be realized in products for specific do-
mains. Despite of this, SDN is not an omni-tool that should be applied to each
and every use-case without question. It is prudent to weigh the benefits against

drawbacks for each scenario in which one might consider using SDN.

132

Bibliography and References

Bibliography of the Author

(1]

(2]

(3]

(4]

(5]

— Journals and Book Chapters —

T. Zinner, M. Jarschel, T. Ho3feld, P. Tran-Gia, and W. Kellerer, “A Com-
pass Through SDN Networks,” 2014, to be published in IEEE Communica-
tions Magazine.

M. Jarschel, D. Schlosser, S. Scheuring, and T. Hofeld, “Gaming in the
clouds: QoE and the users’ perspective,” Mathematical and Computer Mod-
elling, vol. 57, no. 11-12, pp. 2883-2894, June 2013.

— Conference Papers —

M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia, “SDN-based
Application-Aware Networking on the Example of YouTube Video Stream-
ing,” in Proceedings of the 2nd European Workshop on Software Defined
Networks (EWSDN 2013), Berlin, Germany, October 2013, pp. 87-92.

M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia,
“Modeling and Performance Evaluation of an OpenFlow Architecture,” in
Proceedings of the 23rd International Teletraffic Congress (ITC 2011), San
Francisco, CA, USA, September 2011, pp. 1-7.

M. Jarschel, F. Lehrieder, Z. Magyari, and R. Pries, “A Flexible OpenFlow-
Controller Benchmark,” in Proceedings of the 1st European Workshop on

133

Bibliography and References

(6]

(7]

(8]

(9]

[10]

Software Defined Networks (EWSDN 2012), Darmstadt, Germany, Octo-
ber 2012, pp. 48-53.

M. Jarschel, T. Zinner, T. Hohn, and P. Tran-Gia, “On the Accuracy of
Leveraging SDN for Passive Network Measurements,” in Proceedings of
the Australasian Telecommunication Networks & Applications Conference
(ATNAC 2013), Christchurch, New Zealand, November 2013, pp. 41-46.

M. Jarschel, D. Schlosser, S. Scheuring, and T. Hoffeld, “An Evaluation
of QoE in Cloud Gaming Based on Subjective Tests,” in Proceedings of
the Workshop on Future Internet and Next Generation Networks (FINGNet
2011), Seoul, Korea, June 2011, pp. 330-335.

R. Pries, M. Jarschel, and S. Goll, “On the Usability of OpenFlow in Data
Center Environments,” in Proceedings of the Workshop on Clouds, Net-
works and Data Centers collocated with the IEEE International Conference
on Communications (ICC 2012), Ottawa, Canada, June 2012, pp. 5533—
5537.

— Demonstrations —

M. Jarschel and R. Pries, “An OpenFlow-Based Energy-Efficient Data Cen-
ter Approach,” in Proceedings of the ACM SIGCOMM 2012 conference,
Helsinki, Finland, August 2012, pp. 87-88.

M. Jarschel, D. Schlosser, M. Duelli, and R. Pries, “IPOM: Interactive
Proxy Management Tool for Future Communication Networks Using Open-
Flow,” Kaiserslautern, Germany, pp. 1-2, June 2011.

General References

[11]

134

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in

Bibliography and References

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

Campus Networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69-74, April 2008.

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a globally-
deployed software defined wan,” in Proceedings of the ACM SIGCOMM
2013 conference, Hong Kong, China, August 2013, pp. 3-14.

T. D. Nadeau and K. Gray, SDN: Software Defined Networks. O’Reilly
Media, 2013.

O. M. E. Committee" et al., “Software-defined networking: The new norm
for networks,” Open Networking Foundation White Papers, 2012.

J. Dufty, “Cisco takes fight to SDNs with bold Insieme launch,’
http://www.networkworld.com/news/2013/110613-cisco-insieme-
275666.html, November 2013, last accessed on 2014.03.06.

“Open networking foundation,” https://www.opennetworking.org/, last ac-
cessed 2014.03.12.

S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J. Finnegan,
N. Viljoen, M. Miller, and N. Rao, “Are we ready for sdn? implementation
challenges for software-defined networks,” IEEE Communications Maga-
zine, vol. 51, no. 7, pp. 3643, July 2013.

A. Doria, R. Gopal, H. Khosravi, L. Dong, J. Salim, and W. Wang, “For-
warding and control element separation (forces) protocol specification,”
2010.

A. Devlic, W. John, and P. Skoldstrom, “Carrier-grade network manage-
ment extensions to the sdn framework,” in Proceedings of the 8th Swedish
National Computer Networking Workshop (SNCNW 2012), Stockholm,
Sweden, June 2012.

135

Bibliography and References

[20]

(21]

(22]

(23]

[24]

[25]

[26]

136

G. Hampel, M. Steiner, and T. Bu, “Applying software-defined network-
ing to the telecom domain,” in Proceedings of 16th IEEE International
Global Internet Symposium (GI 2013) collocated with IEEE INFOCOM
2013, Turin, Italy, April 2013, pp. 133-138.

T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ra-
manathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A distributed con-
trol platform for large-scale production networks,” in Proceedings of the
9th USENIX conference on Operating Systems Design and Implementa-
tion (OSDI 10), Vancouver, BC, Canada, October 2010, pp. 351-364.

C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Composing
software defined networks,” in Proceedings of the 13th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 13), Lom-
bard, IL, USA, April 2013, pp. 1-13.

C. E. Rothenberg, M. R. Nascimento, M. R. Salvador, C. N. A. Corréa,
S. Cunha de Lucena, and R. Raszuk, “Revisiting routing control platforms
with the eyes and muscles of software-defined networking,” in Proceedings
of the first workshop on Hot topics in software defined networks (HotSDN
12), Helsinki, Finland, August 2012, pp. 13-18.

C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Madhyastha,
“Flowsense: Monitoring network utilization with zero measurement cost,”
in Proceedings of the Passive and Active Measurement Conference (PAM
2013), Hong Kong, China, January 2013, pp. 31-41.

H. Kim and N. Feamster, “Improving network management with software
defined networking,” IEEE Communications Magazine, vol. 51, no. 2, pp.
114-119, February 2013.

T. Hof}feld, R. Schatz, M. Varela, and C. Timmerer, “Challenges of QoE
Management for Cloud Applications,” IEEE Communications Magazine,
vol. 50, no. 4, pp. 28-36, April 2012.

Bibliography and References

(27]

(28]

[29]

(30]

(31]

(32]

(33]

G. Wang, T. Ng, and A. Shaikh, “Programming your network at run-time for
big data applications,” in Proceedings of the first workshop on Hot topics in
software defined networks (HotSDN 12), Helsinki, Finland, August 2012,
pp. 103-108.

“OpenFlow Switch Specification, Version 1.4.0,”
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf, October
2013, last accessed on 2014.03.06.

B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown, “Elastic Tree: Saving Energy in Data Center
Networks,” in Proceedings of the 7th USENIX Symposium on Networked
System Design and Implementation (NSDI 10), San Jose, CA, USA, April
2010, pp. 249-264.

S. Das, G. Parulkar, P. Singh, D. Getachew, L. Ong, and N. McKeown,
“Packet and Circuit Network Convergence with OpenFlow,” in Proceedings
of the Optical Fiber Conference (OFC/NFOEC’10), San Diego, CA, USA,
March 2010.

R. Braga, E. S. Mota, and A. Passito, “Lightweight DDoS Flooding At-
tack Detection Using NOX/OpenFlow,” in Proceedings of the 35th Annual
IEEE Conference on Local Computer Networks, Denver, CO, USA, Octo-
ber 2010, pp. 416-423.

M. P. Mateo, “Openflow switching performance,” Master’s thesis, Politec-
nico Di Torino, Torino, Italy, 2009.

A. Bianco, R. Birke, L. Giraudo, and M. Palacin, “Openflow switching:
Data plane performance,” in Proceedings of the IEEE International Confer-
ence on Communications (ICC2010), Cape Town, South Africa, May 2010,

pp. 1-5.

137

Bibliography and References

(34]

(35]

(36]

(37]

(38]

(39]

[40]

138

V. Tanyingyong, M. Hidell, and P. Sjodin, “Improving PC-Based OpenFlow
Switching Performance,” in Proceedings of the 6th ACM/IEEE Symposium
on Architectures for Networking and Communications Systems (ANCS
’10), New York, NY, USA, October 2010.

Y. Luo, P. Cascon, E. Murray, and J. Ortega, “Accelerating OpenFlow
Switching With Network Processors,” in Proceedings of the 5th ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems (ANCS’ 09), New York, NY, USA, October 2009, pp. 70-71.

A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: scaling flow management for high-performance
networks,” in Proceedings of the ACM SIGCOMM 2011 conference,
Toronto, ON, Canada, August 2011, pp. 254-265.

C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore, “OFLOPS:
An Open Framework for OpenFlow Switch Evaluation,” in Proceedings
of the Passive and Active Measurement Conference (PAM 2012), Vienna,
Austria, March 2012.

R. Sherwood and K.-K. Yap, “Cbench Controller Benchmarker,”
http://www.openflowswitch.org/wk/index.php/Oflops, 2011, last accessed
on 2014.03.09.

A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,
“On controller performance in software-defined networks,” in Proceedings
of the 2nd USENIX conference on Hot Topics in Management of Internet,
Cloud, and Enterprise Networks and Services (Hot-ICE *12), San Jose, CA,
USA, April 2012.

J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and N. McKeown,
“Implementing an openflow switch on the netfpga platform,” in Proceedings
of the 4th ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, San Jose, CA, USA, November 2008, pp. 1-9.

Bibliography and References

[41] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker, “Applying nox to the
datacenter,” in Proceedings of the 8th ACM Workshop on Hot Topics in
Networks (HotNets-VIII), New York, NY, USA, October 2009.

[42] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker,
“Extending networking into the virtualization layer.” in Proceedings of the
8th ACM Workshop on Hot Topics in Networks (HotNets- VIII), New York,
NY, USA, October 2009.

[43] “Nox Classic,” https://github.com/noxrepo/nox-classic, last accessed on
2014.03.09.

[44] “Floodlight,” http://www.projectfloodlight.org/floodlight/, last accessed on
2014.03.09.

[45] “Maestro,” http://code.google.com/p/maestro-platform/, last accessed on
2014.03.09.

[46] F. Wamser, R. Pries, D. Staehle, K. Heck, and P. Tran-Gia, “Traffic char-
acterization of a residential wireless internet access,” Special Issue of the
Telecommunication Systems (TS) Journal, vol. 48, no. 1-2, pp. 5-17, 2011.

[47] Endace, “DAG 7.5G2 Datasheet,” http://www.emulex.com/artifacts/b4469f7d-
ecee-4022-8232-295390c7c036/end_ds_all_dag_7.5g2.pdf, last accessed
on 2014.03.09.

[48] P. Tran-Gia, Einfithrung in die Leistungsbewertung und Verkehrstheorie.
Munich, Germany: Oldenbourg, July 2006.

[49] T. Zseby, “Deployment of sampling methods for sla validation with non-
intrusive measurements,” in Proceedings of Passive and Active Measure-
ment Workshop (PAM 2002), Fort Collins, CO, USA, March 2002, pp. 25—
26.

[50] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “Opentm: traffic matrix es-
timator for openflow networks,” in Proceedings of the Passive and Active

139

Bibliography and References

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

140

Measurement Conference (PAM 2010), Zurich, Switzerland, April 2010,
pp- 201-210.

L. Jose, M. Yu, and J. Rexford, “Online measurement of large traffic aggre-
gates on commodity switches,” in Proceedings of the USENIX workshop
on Hot Topics in Management of Internet, Cloud, and Enterprise Networks
and Services (Hot-ICE ’11), Boston, MA, USA, March 2011.

M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement with
opensketch,” in Proceedings of the 13th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 13), Lombard, IL,
USA, April 2013, pp. 29-42.

D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and P. Tran-Gia,
“Pareto-Optimal Resilient Controller Placement in SDN-based Core Net-
works,” in Proceedings of the 25th International Teletraffic Congress (ITC
2013), Shanghai, China, September 2013.

“Iperf: The tcp/udp bandwidth measurement tool,”
https://github.com/esnet/iperf, last accessed on 2014.03.09.

S. Hemminger et al., “Network emulation with netem,” in Linux Conf Au.
Citeseer, 2005, pp. 18-23.

“Beacon,” http://www.beaconcontroller.net/, last accessed on 2014.03.09.

B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid pro-
totyping for software-defined networks,” in Proceedings of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks (HotNets-1X), no. 19,
Monterey, CA, USA, October 2010.

D. Schwerdel, “ToMaTo - Next Generation Testbed Software,” ICSY
Department of Computer Science, University of Kaiserslautern, Kaiser-
slautern, Germany, Tech. Rep. ICSY-2010-3, 2010.

Bibliography and References

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

D. Schwerdel, D. Giinther, R. Henjes, B. Reuther, and P. Miiller, “German-
lab experimental facility,” Berlin, Germany, September 2010, pp. 1-10.

J. Fontén, T. Vazquez, L. Gonzalez, R. Montero, and I. Llorente, “Open-
nebula: The open source virtual machine manager for cluster computing,”
in Proceedings of the Open Source Grid and Cluster Software Conference
2008, Oakland, CA, USA, May 2008.

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the linux
virtual machine monitor,” in Proceedings of the Linux Symposium, Ottawa,
ON, Canada, June 2007, pp. 225-230.

Pica8, “Pronto 3290 OpenFlow Switch,”
http://www.pica8.org/products/p3290.php, last accessed on 2014.03.11.

M. Fiedler, K. Kilkki, and P. Reichl, “From quality of service to quality of
experience,” in Dagstuhl Seminar Proceedings, no. 09192, Dagstuhl, Ger-
many, May 2009.

A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead data-
center traffic management using end-host-based elephant detection,” in Pro-
ceedings of the 30th IEEE International Conference on Computer Commu-
nications (IEEE INFOCOM 201 1, Shanghai, China, April 2011, pp. 1629-
1637.

S. Das, Y. Yiakoumis, G. Parulkar, N. McKeown, P. Singh, D. Getachew,
and P. D. Desai, “Application-aware aggregation and traffic engineering in
a converged packet-circuit network,” in Proceedings of the Optical Fiber
Conference (OFC/NFOEC’11), Los Angeles, CA, USA, March 2011.

F. Dobrian, A. Awan, D. Joseph, A. Ganjam, J. Zhan, V. Sekar, I. Stoica, and
H. Zhang, “Understanding the impact of video quality on user engagement,”
in Proceedings of the ACM SIGCOMM 2011 conference, Toronto, ON,
Canada, August 2011, pp. 362-373.

141

Bibliography and References

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

142

T. HoBfeld, R. Schatz, M. Seufert, M. Hirth, T. Zinner, and P. Tran-Gia,
“Quantification of YouTube QoE via Crowdsourcing,” in Proceedings of the
IEEE International Workshop on Multimedia Quality of Experience - Mod-
eling, Evaluation, and Directions (MQoE 2011), Dana Point, CA, USA,
December 2011.

I. Nave, H. David, A. Shani, Y. Tzruya, A. Laikari, P. Eisert, and
P. Fechteler, “Games large graphics streaming architecture,” in Proceed-
ings of the IEEE International Symposium on Consumer Electronics (ISCE
2008), Vilamoura, Portugal, April 2008, pp. 1-4.

M. Pigora and S. Waldron, “The 3d world in your browser: A server render-
ing approach,” in Proceedings of the Interservice/Industry Training, Simula-
tion & Education Conference (I/ITSEC 2010), Orlando, FL, USA, Novem-
ber 2010.

D. Chan, “On the feasibility of video gaming on demand in wireless
lan/wimax,” last accessed on 2014.03.11.

Y.-C. Chang, P.-H. Tseng, K.-T. Chen, and C.-L. Lei, “Understanding the
performance of thin-client gaming,” in Proceedings of the IEEE Interna-
tional Communications Quality and Reliability Workshop (CQR 2011),
Naples, FL, USA, May 2011, pp. 1-6.

T. Szigeti and C. Hattingh, End-to-End QoS Network Design: Quality of
Service in LANs, WANs, and VPNs (Networking Technology). Cisco
Press, 2004.

M. Claypool and K. Claypool, “Latency and player actions in online
games,” Communications of the ACM, vol. 49, no. 11, p. 45, November
2006.

A. Ojala and P. Tyrvainen, “Developing cloud business models: A case
study on cloud gaming,” IEEE software, vol. 28, no. 4, pp. 4247, July
2011.

Bibliography and References

[75]

[76]

(771

(78]

[79]

(80]

(81]

(82]

[83]

[84]

P. Ross, “Cloud computing’s killer app: Gaming,” IEEE Spectrum, vol. 46,
no. 3, pp. 14-14, March 2009.

T. Chang, “Gaming will save us all,” Communications of the ACM, vol. 53,
no. 3, pp. 22-24, March 2010.

L. Pantel and L. C. Wolf, “On the impact of delay on real-time multiplayer
games,” in Proceedings of the 12th International workshop on Network and
operating systems support for digital audio and video (NOSSDAV 2002),
Miami Beach, FL, USA, May 2002, pp. 23-29.

T. Henderson and S. Bhatti, “Networked games: a qos-sensitive applica-
tion for qos-insensitive users?” in Proceedings of the ACM SIGCOMM
workshop on Revisiting IP QoS: What have we learned, why do we care?
(RIPQOS), Karlsruhe, Germany, August 2003, pp. 141-147.

P.800 : Methods for subjective determination of transmission quality, ITU-
T Std.

P. Kabel, F. Hermann, and M. Hengstenberg, “Spielplatz deutschland,”
2006.

“RapidMiner,” http://rapidminer.com, last accessed on 2014.03.11.

“WEKA,” http://sourceforge.net/projects/weka/, last accessed on
2014.03.11.

B. Staehle, M. Hirth, R. Pries, F. Wamser, and D. Staehle, “YoMo: A
YouTube Application Comfort Monitoring Tool,” in Proceedings of the
Workshop on Quality of Experience for Multimedia Content Sharing
(QoEMCS 2010), Tampere, Finland, June 2010.

“Wireshark,” http://www.wireshark.org/, last accessed on 2014.03.11.

143

ISSN 1432-8801

	Introduction
	Definition and Use Cases of SDN
	Principles of Software Defined Networking
	Definition and Significance of SDN Interfaces
	Definition of SDN Features
	Use-Cases for Software Defined Networking

	Scientific Contribution
	Outline of This Thesis

	Performance Analysis of Software Defined Networking
	Background and Related Work
	Works on Data Plane Performance
	Works on Control Plane Performance

	OpenFlow System Measurement
	Data Plane Performance Experimental Setup
	Data Plane Measurement Results

	OpenFlow Controller Benchmark
	Benchmark Architecture
	Comparison with Cbench
	Controller Benchmarking Results

	Analytical Modeling of OpenFlow
	Model Input Parameters
	A Simplified Model of an OpenFlow Architecture
	Analytical Results for the Simplified Model
	Generalizing the Model
	OpenFlow Controller Service Time Distribution
	OpenFlow Architecture Model using Generalized Controller Service Times
	Analytical Results for the Generic Service Model

	Lessons Learned

	SDN Control Plane Applications
	Previous Works on (SDN-based) Measurements
	Accuracy of Leveraging SDN for Passive Network Measurements
	Measurement Architecture
	Testbed Setup
	Measurement Results

	Proof of Concept for Novel Approaches to Networking enabled by SDN
	Interactive Proxy Management in Future Communication Networks Using OpenFlow
	ECDC: An OpenFlow-Based Energy-Efficient Data Center Approach

	Lessons Learned

	Leveraging the SDN Northbound-API for QoE-based Application-Aware Networking
	Background and Related Work
	Background and Works on Application-Aware SDN
	Works on QoE in Inter-active Video Applications

	Obtaining Key Performance Indicators on the Example of Cloud Gaming
	Survey Parameters and Design
	Rater Reliability
	Identification of Key Influence Factors for Cloud Gaming QoE
	Towards a Key Quality Indicator

	SDN-based Application-Aware Networking
	Scenario and Testbed Setup
	Measurement Results

	Lessons Learned

	Conclusion
	Bibliography and References
	Index

