In: Fractal Reviews in the Natural and Applied Sciences, ed. M. M. Novak, Chapman & Hall, London,
1995, pp. 153-162

1/fB-Fluctuations in Bipolar
Affective Illness

Klaus-D. Kniffki, Christian Braun, Andreas Klusch and Phuoc Tran-Gia*
Universitat Wiirzburg

Physiologisches Institut and Institut fir Informatik®

Rontgenring 9 and Am Hubland®

D-97070 Wiirzburg, Germany

Tel.:+49-931-31728; Faz: +49-931-54553

Abstract

Temporal fluctuations which cannot be explained as consequences of statistically indepen-
dent random events are found in a variety of physical and biological phenomena. These
fluctuations can be characterized by a power spectrum density S(f) decaying as 1/f°
at low frequencies with an exponent 0.5 < f < 1.5. We present a new approach to re-
veal 1/ fP-fluctuations in manic and depressive episodes in bipolar affective illness using
published data from patients for whom daily records were obtained applying a 7-point
magnitude category scale. This time series { R(t;)} was described as a point process by
introducing discriminating rating levels r and s for the occurrence of R(¢;) 2 r (‘mania’)
and R(t;) < s (‘depression’). For 8 < 1 a new method to estimate the low frequency part
of S(f) was applied using counting statistics without applying Fast Fourier Transform.
The method reliably discriminates these types of fluctuations from a random point process
with 8 = 0.0. It is very tempting to speculate that the neuronal/humoral mechanisms
at various levels of the nervous system underlying the manic and depressive episodes in
bipolar affective illness are expressions of a self-organized critical state. But the most im-
portant result of the present study is the finding of a scaling region 1d < At < 200d for the
‘manias’ and ‘depressions’ where S(f) is decaying as 1/ f? with 8 ~ 0.8. Therefore, based
on the monitored ratings for a given time period it should be possible to predict future
episodes with a certain probability by applying methods of nonlinear time series analysis
or modified feed-forward neural networks learning with the backpropagation algorithm.
This could result in an improvement of the treatment of patients.
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1 INTRODUCTION

A variety of phenomena in nature exhibit temporal fluctuations in the absence of inten-
tional stimulation which cannot be explained as consequences of statistically independent
random events. It has been shown that temporal fluctuations found in phenomena as
different as currents through cell membranes, earthquakes, sunspot activity, light emitted
from quasars, sand falling through an hour glass, traffic flow, heart beat or breathing ac-
tivity can be characterized by their power spectrum density S(f) decaying as 1/f7 at low
frequencies with 0.5 < 8 < 1.5. This behavior of the temporal fluctuations of a system
described by its S(f) is called 1/ f-noise.

Recently, Bak, Tang and Wiesenfeld (Bak, 1987) suggested that the large fluctuations in
time characterized as 1/ f-fluctuations and the self-similarity in space might both be man-
ifestations of a self-organized critical state. Self-organized criticality (SOC) describes the
tendency of some open dissipative many-body systems to drive themselves spontaneously
to a critical state with no characteristic time or length scales without any fine-tuning by
external fields: hence the criticality is self-organized. This is in contrast to the criticality
of equilibrium systems undergoing phase transition only at a critical external field, such as
temperature, pressure, electrical or magnetic fields. The idea provides a unifying concept
for large scale behavior in systems with many degrees of freedom operating persistently
far from cquilibrium at or near a threshold of instability, so to speak at the ‘border to
chaos’ (Bak, 1990).

The SOC phenomenon is expected to be universal and we assume that it is the underly-
ing principle of some biological many-body systems. The present paper uses methods and
presentations published earlier for fluctuations in the subjective intensity of well-being
(Kniffki, 1993), (Kniffki, 1994).

2 METHODS

Data from 7 patients were analyzed from a longitudinal study (Squillance, 1984). The
patients met the criteria of the Diagnostic and Statistical Manual of Mental Disorders
(DSM-1I1). The intensity of the recurrent affective illness was rated as: 0 = normality,
+1 = mild mania, +2 = moderate mania, +3 = severe mania, -1 = mild depression, -2
= moderate depression, -3 = severe depression. Fluctuations of the mental state within
a day were not monitored and were therefore neglected in this analysis. The time series
of the daily ratings R(t;) (Figure 1) can be described as a point process by introducing
discriminating rating levels for the occurrence of R(t;) > r, e.g. for the occurrence of
‘manias’ (cf. Figure 2) and R(t;) < s, e.g. for the occurrence of ‘depressions’, cf. Fig. 3;
data of another patient.

Usually S(f) is obtained by Fast Fourier Traasform (FFT). To avoid the well-known
problems in using FFT for the obtained point process, we used a new simple method
based on counting statistics (Meesmann, 1993) to analyze the low frequency part of 5 N
of the monitored ratings. After the introduction of a discriminating rating level, the series
of ratings is considered to be a point process described as

y(t) = i;a(t —1), 1)
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Figure 1 Bipolar affective illness. Daily ratings of the intensity of the recurrent affective
episodes using a 7-point magnitude category scale. Subset of raw data taken from the
entire set published in (Squillance, 1984).

in which §(t — ¢;) represents Dirac’s delta function, and ¢; is the time of occurrence of a
particular R(t;) > r or R(t;) < s within the train of n events. In the absence of severe
intentional stimulation y(t) is assumed to be statistically stationary. Another statistical
variable derived from Eq. (1) is the actual number of events N(At) occurring in a time
interval At ranging from ¢, to t;. Thus, N(At) can be expressed as

t

N(At) = /Z6(t —t;)dt. (2)

The variance of counts Var[N(At)] is the so-called variance-time curve. Its second time
derivative is related to the auto-covariance function of y, C,(At) by

C,(80) = S(Varl V(@A) (9
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Figure 2 Occurrence of ratings of
the recurrent affective episodes with
R(t;) = +3 (severe mania) of the data
set shown in Figure 1. The correspond-
ing days are indicated by Dirac’s delta
functions §(t — t;).
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Figure 3 Occurrence of ratings of the
recurrent affective episodes of another
patient with R(t;) < —1 (mild to severe
depression). The corresponding days
are indicated by Dirac’s delta functions
5(t-t).

(Cox, 1980) and therefore the key to determine the low frequency part of the spectrum
S,(f) is to experimentally obtain Var[N(At)] (Meesmann, 1993). If the variance-time

curve follows within certain limits the power law,

Var[N(At)] « (At)'*P with B <1,

(4)

then it can be shown using the Wiener-Chinchin theorem that the spectrum S,( f) scales

as

Sy(f) & 1/f°

(5)

within fmin < f < fmar (Korutchev, in press), (Scharf, in press).
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The variance-time curve is defined by the variance of counts for time intervals of length
At as

Var[N(At)] = (N*(At)) - (N(AL)? (6)

with (...) denoting expectation values. For estimating Var[N(At)], the entire observation
time T is divided into k non-overlapping counting windows of duration At with T = kAt
and the variance of counts is determined for this particular window At. This is repeated
for different values of At. The results were plotted as Var[N(At)] versus At on a log-log
scale and fitted by linear regression using the least-square method.

3 RESULTS

In Figure 1 a part of the whole data set of one patient is shown, i.e., the daily ratings
R(t;) for 48 months. It is obvious from the data that the variation in intensity of the
recurrent affective episodes, taken as a whole, is not just a simple oscillation but exhibits
fluctuations of certain endogenic dynamics. This was true for all the 7 patients’ data
studied. :

By introducing discriminating levels for the occurrence of R(¢;) > r to reveal the
fluctuations in the ‘manias’ or R(t;) < s for the ‘depressions’, the data set shown partly
in Figure 1 was transformed into a point process. To obtain Figure 2 the discriminating
rating level was set to r = 43, i.e. the point process shows the occurrence of the severe
manias. Similar point processes for other discriminating rating levels were obtained for all
7 data sets and analyzed. In particular, for determining the fluctuations of the occurrence
dynamics of the depressions s = —1 was chosen (Figure 3).

For all discriminating rating levels r or s, the resulting point processes exhibited a
certain clustering of events individually described as §(t — ¢;) (cf. Figures 2 and 3). In
order to characterize the clustering more precisely one use the clustering function g(t)
which was defined for earthquakes (Olami, 1992) as follows:

gris(t) = (n(t))y, — t7, (7

where (n(t)); is the number of events in the interval (t;,¢; + t] averaged over all ¢; in
the temporal sequence S, = {R(t;) € S | R(t;) 2 r} or S, = {R(t;) € S | R(t;) < s)
and S = {R(t;)}, describing the total temporal sequence (cf. Figure 1). i is the average
density of events, i.e. the number of events within S, or S, divided by the total observation
time. The clustering function g, ,(t) should measure the expected different clustering for
the ‘manias’ and ‘depressions’ inherent in the data sets of the patients. In general, for
all discriminating levels r and s analyzed, g,,(t) is positive and non-decreasing, contrary
to a homogeneous Poisson point process for which g(t) = 0 for all t. After introducing
a certain r or s, for the resulting point process S, or S,, the low frequency part of the
corresponding spectrum S(f) was determined by using counting statistics as described in
Methods. Figure 4 shows the results of the point processes shown in Figures 2 and 3, i.c.
the Var[N(At)] for S43 and S_; (insert) arc plotted on a log-log scale versus the counting
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Figure 4 The variance-time curves Var[N(At)] for the severe manias (main plot; R(t) =
+3; cf. Figure 2) and for the mild to severe depressions (insert; R(t;) < -1; cf. Figure
3) plotted on a log-log scale versus the counting window At. The variance-time curves
scale as (At)'*? for 1d < At < 200d with indicated values of B and the corresponding
correlation coefficients r.

windows At. From the straight lines fitted to the data points it is demonstrated that the
variance-time curves follow the power laws

Var[N(At)] « (At)*°% for Sy4 (8)
and A
Var[N(At)] « (At)'** for S_, (9)

within the first scaling region 1d < At < 200d and thus the low frequency part of the
spectrum scales as

S(f) & f7°% for Sya (10)
and
S(f) x f7°87 for S_;. (11)

For At > 200d a second scaling region was observed showing for S43 8 = —0.08 and for
S., f=022.
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Similar results, i.e. similar scaling behavior for the variance-time curve and for the
spectrum were obtained for other discriminating levels r and s of the data of the other
patients.

4 DISCUSSION

Recently, also due to the introduction of the concept of self-organized criticality by Bak,
Tang and Wiesenfeld (Bak, 1987), attention has been drawn to the characterization of
temporal fluctuations in a number of physical and biological systems. This discussion
will focus on the fluctuations of endogenous biological rhythms in the physiological and
pathophysiological range.

The human heart rate, even in the healthy resting subject, displays considerable fluctu-
ations, which have been characterized as 1/ f-fluctuations (Kobayashi, 1982), (Saul, 1987),
(Zbilut, 1989), (Kleiger, 1991), (Bigger, 1992), (Meesmann, 1993), (Meesmann, 1993).

In animal experiments it has been demonstrated that the fluctuations in respiratory
intervals also exhibited 1/ f-fluctuations, but these characteristic types of fluctuation dis-
appeared into white noise fluctuations when the end-tidal pco, was raised to 50 or 60
mmHg (Kawahara, 1989).

The fluctuating insulin requirements of an unstable diabetic over an eight-year period
have been subjected to spectral analysis and it was demonstrated that the low frequency
part of the spectrum also exhibit 1/f characteristics (Campbell, 1972).

Spectral analysis of the discharge of neurones located in the mesencephalic reticular
formation of the cat has revealed that during paradoxical sleep 1/f-fluctuations of the
neuronal discharge exist there, too. However, the low frequency spectral profile became
flat, i.e. white noise was found during slow-wave sleep (Yamamoto, 1986), (Griineis, 1990).
So far, also the thalamic neurcnal discharge exhibited 1/ f-fluctuations in the absence of
intentional stimulation, but we have not seen the transition into white noise fluctuations
(Kniffki, 1992), (Mengel, 1992). Earlier, 1/f characeristics have also been reported for
primary afferent fibres in the auditory nerve (Teich, 1989).

It is tempting to speculate that the basic mechanisms which underlie the neuronal
and humoral activity in the central nervous system responsible for the state of mental
order/disorder in the absence of intentional stimulation are expressions of a self-organized
critical state, the notion introduced by Bak, Tang and Wiesenfeld (Bak, 1987) for physical
systems. Self-organized criticality (SOC) describes the tendency of dissipative systems
with many degrees of freedom to drive themselves to a critical state with a wide range of
length and time scales without any fine-tuning of external fields. The idea complements
the concept of chaos, wherein simple systems with a small number of degrees of freedom
can display quite complex behavior (Christensen, 1992).

Currently, it is hard to give a rigorous definition for SOC, however, usually one gives
this name to those systems which do not need fine-tuning by external fields to give power-
law characteristics for the parameters describing the system. The canonical example of
SOC is the cellular automaton model called ‘sand-pile model’ introduced by Bak, Tang
and Wiesenfeld (Bak, 1987). The critical state is characterized by ‘avalanches’ (activity)
with power-law spatial and temporal distribution functions limited only by the size of the
system.

We assume that the endogenic dynamics of mental disorder can be described as a self-
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organized critical process and characterize the temporal fluctuations by its low frequency
part of the power spectrum. The method that we have used reliably discriminates 1/ f#-
fluctuations with § = 0.80 for S;3 and 8 = 0.87 for S_; in our case in the first scaling
region (cf. Figures 4) from a random point process, which would result in 8 = 0.0 as
approximated in the second scaling region At > 200d for S;3. Similar exponents and
scaling regions were obtained for all other data sets.

If the neuronal/humoral system responsible for the endogenic dynamics of mental or-
der/disorder indeed operates at a self-organized critical state, an external perturbation
could create either a small effect or a large one. There is, in principle, no limit on how long
the effect may last. The degree of unpredictability is actually less severe than for chaotic
systems; SOC systems operate at the ‘border of chaos’ (Bak, 1990). In SOC systems,
owing to an external perturbation the maximum predictability decays as a power law,
t~, where a is some constant (Bak, 1990). Fluctuations due to external stimulation are
much stronger in SOC systems than those which occur in an equilibrium system and can
not be prevented. In the case of bipolar affective illness, this would mean that a transition
from the ‘manic’ state to the ‘depressive’ state induced by a severc external perturbation
is inevitable for the individual.

The most important result of the present study is the finding of a scaling region 1d <
At < 200d for various discriminating levels describing the ‘manias’ and ‘depressions’
when S(f) is decaying as f~# with § = 0.8 for patients with bipolar affective illness.
Therefore, based on the monitored ratings of the intensity of the affective disorder, for
a given time period (Wehr, 1984) it should be possible to predict future episodes with a
certain probability by applying methods of nonlinear time series analysis (Takens, 1993)
or modified feed-forward neural networks learning with the backpropagation algorithm.
The predictions could be used to improve the treatment of patients.

As described by S.H. Barondes (Barondes, 1993), all of us are personally familiar with
good moods. At times, we are content, optimistic, even expansive; we like to be with
people, and they like to be with us. Such states of happiness may be transient conditions
for some and virtually perpetual for others.

All of us also know what it means to be sad. In such a state we tend to be suspicious and
pessimistic. We think poorly not only of our prospects but also of ourselves. We tend to
stay away from people, and they, sensing our discomfort, tend to stay away from us. Even
when good things happen, we derive little pleasure from them. Like states of happiness,
states of sadness may be either transient or sustained. '

All of us also have some knowledge of more extreme moods. We have felt or observed
grief at the loss of a loved one; we know about the elation that accompanies some great
good fortune. It is also likely that we have encountered someone in a sustained and serious
depression or maybe even witnessed an ebullient and irresponsible manic episode.

But rarely, if ever, do we ask ourselves why mood exists in the first place. What is the
biological function and the evolutionary advantage of this dimension in our behavior ?
Might our species not be better off if we take both good and bad in stride, without any
change in mood?

Moods are useful only in moderation. When they exceed a certain intensity they be-
come destructive. But where is the boundary between normal mood and mental illness
(Barondes, 1993)?

If we assume that the basic mechanisms underlying the neuronal and humoral activity
in the nervous system responsible for the state of mood are expressions of a self-organized
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critical state (Kniffki, 1994), it is quite natural that this state is characterized by the
occurrence of avalanches of different ‘energy’, i.e. intensity of mood. Normal mood and
mental illness will just be fluctuating episodes with different intensities like the occurrence
of earthquakes with different energies released.
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