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Abstract

The optimization of overlay traffic resulting from overlay applications such as BitTorrent
is a challenge addressed by several recent research initiatives. Locality awareness for the
selection of peers is considered as the straight forward solution in order to reduce network
traffic and shorten download latency. In most related work a simple approach is taken lim-
iting the number of links pointing outside an autonomous system, while important overlay
characteristics as peer distribution over autonomous systems and time dynamics are ne-
glected in the corresponding performance evaluations. In this work, we address this lack of
realistic swarm statistics by providing our measurement results revealing real live BitTorrent
swarm characteristics.

1 Introduction

Overlay traffic resulting from applications such as BitTorrent emerges asa high burden for net-
work operators today. The problem arises of how to effectively control and manage such traffic
stemming from end-to-end overlay applications from within the network. Recently this chal-
lenge is addressed by research initiatives like SmoothIT [1], P4P [2] andOracle [3]. Though
solutions are still at an early stage, its importance has already triggered standardization and
the IETF working group ALTO (Application Layer Traffic Optimization) has been founded in
November 2008.

Locality awareness is considered as a straight forward solution by all current research initia-
tives. Traffic generated by overlay applications typically crosses borders of a network operator
domain (a so called autonomous system, AS) multiple times and thus causes high cost for the
network provider. It is also subject to lower quality of service such as a longer delay. The con-
cept of locality awareness is to optimize the traffic flow with information about thelocation of
a content providing peer in the underlying network. For example, any peer might be provided
with a list of peers for download that are marked according to the position inside or outside the
AS of the requesting peer. Thus, quality of service and network usage can be optimized at the
same time, for the benefit of the overlay application and the network provider.

Whereas locality awareness has shown its benefits in several, mostly simulation-based ex-
periments in a controlled environment, the question arises whether a simple locality awareness
approach such as sketched above is sufficient and whether locality awareness can be utilized
efficiently in real network environments. Most evaluations of current approaches rely on a set of
conditions which let those approaches appear as very efficient. However, the measurements that
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we present in this paper show that these conditions are rarely met in real networks. In particular,
we corroborate and extend known results that the distribution of peers among AS’s is highly
skewed which means that only a very small number of peers is present in most of the AS’s. This
has a strong impact on the efficiency of locality awareness because the possibilities of keeping
traffic within these AS’s is limited. Thus, current state of the art traffic optimization solutions
lack real-world scenarios to be evaluated in. To alleviate that problem, we present a large-scale
measurement campaign based on BitTorrent in this paper.

The contribution of this paper is (1) providing the results on our comprehensive measurement
study of BitTorrent swarms and (2) a characterization of BitTorrent swarms relevant for the qual-
ity of locality awareness solutions. The measurement results comprise a comprehensive set of
swarms for different types of content listed at mininova.org and piratebay.org. We have mea-
sured the swarm size, swarm dynamics in terms of number of leechers and seeders, and the AS
topology of swarms. We have also analyzed the details of individual swarmsto understand con-
tent clustering (e.g., availability of certain content in specific regions only). The measurements
have been performed from June 2008 to May 2009 using the PlanetLab and G-Lab experimental
facilities. The characterization shows for example that real-life BitTorrent swarm distributions
are highly skewed (i.e., 90% of the AS’s have less than ten peers, mostly justone) and demand
for more differentiated algorithms for traffic optimization. This is in contrast to most previous
work where uniform distributions of peers over AS’s are assumed.

The remainder of this paper is organized as follows. Related work is discussed in Sec. 2.
We first describe the measurement setup in Sec. 3 and provide the measurement results and the
derived characteristics for BitTorrent swarms in Sec. 4. From these results, we summarize the
main observations for modeling BitTorrent swarms in Sec. 5 and conclude their relevance for
traffic optimization mechanisms in Sec. 6.

2 Related work

P2P has a dominant share in the total Internet traffic [4]. The main contributor to this share
is still BitTorrent [5]. Thus, it becomes critical to understand all aspects of BitTorrent’s be-
havior, including both properties of individual swarms and global statistics, and provide good
sources of information for its modeling. This is one contribution of our paper. Studies such
as [6] and [7] do exactly this. [6] follows the lifetime of one specific torrentand analyzes Bit-
Torrent’s main performance indicators (e.g., download times). Besides examining its download
performance, [7] makes a step further toward providing measurements useful for modeling of
BitTorrent. Peer uptime distribution, their bandwidth distribution, peer arrival process proper-
ties as well as distribution of seeders across time are the main quantities [7] focuses on. The
set of properties in the focus of our paper is not overlapping with these,i.e., the information we
provide is complementary to the information provided by [7].

We pay considerable attention in this paper to the distribution of peers in BitTorrent swarms
across AS’s. The motivation for doing so is as follows. BitTorrent forms itsoverlay graphs
and distributes content unaware of the underlying physical network properties. The same piece
of a file can bounce back and forth between different peers in Europeand America creating
thus enormous amount of unnecessary traffic. Given the scale of the problem, i.e., BitTorrent’s
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immense popularity, it becomes important for network owners to manage BitTorrent traffic ef-
ficiently. At the same time, being network-agnostic, BitTorrent might be offering suboptimal
performance as seen from its users point of view. Solving the two problemssimultaneously
(handling P2P traffic efficiently and improving performance for the end user) has become an
important research area recently. Locality promotion has been so far suggested in the literature
as the main solution class. It requires peers to give preference to selecting neighbors from the
same AS rather than those outside the AS when forming the overlay graph. Bindal et al. [8] and
Aggarwal et al. [3] were the first to analyze how locality promotion can helpreduce the gen-
erated traffic and improve the performance of BitTorrent and Gnutella, respectively. They both
find serious improvements of the application performance (i.e., reduction of download times)
and reduction of cross-ISP traffic. [9] essentially repeats the experiments of [8] on a larger scale
and comes up with the conclusion that locality can be pushed to the limit, i.e., only a minimum
necessary inter-AS links can be kept, while all others should be maintained toward local peers,
i.e., those within the same AS.

A similar approach is taken in [10]. Wang et al. studied around 70,000 BitTorrent swarms
from btmon.org-BitTorrent site for 6 months in 2008, using 200 PlanetLab nodes with a cus-
tomized BitTorrent client to retrieve the swarms’ peer IP addresses. These IP addresses were run
against the whois-service to resolve the IPs’ autonomous systems. The paper mainly concen-
trates on swarms distributing video files, stating that video files show the highest regional (AS)
interest, i.e. Chinese movies are mostly watched in China. The authors analyzethe distribution
of peers to AS’s and conclude that in small swarms the application of locality awareness mech-
anisms is not useful, because the top AS of the swarm holds a large fractionof the whole swarm
and the traffic is already naturally localized. On the other hand in large swarms the authors found
no AS holding more than 6% of the whole swarm population, which makes the application of lo-
cality enhancements more favourable. Furthermore they find for large swarms, that the relation
between ordered ASes of a swarm and the AS-fraction of a swarm (i.e., x-largest AS of a swarm
– #peers in AS/#peers in swarm) follows the Mandelbrot-Zipf distribution. Eventually the paper
argues, that AS’s have a stationary property of forming a larger clusterwithin a swarm, and give
a probabilistic approach how to predict the peers’ membership in a large cluster. Peers in large
clusters should apply locality aware neighbor selection, peers not in largecluster should stay
with the standard random neighbor selection. In contrast to this paper, weconsider more me-
dia types in our measurement and also cover more swarms from different torrent indexes. This
allows us to generalize the results and to identify subgroups with special characteristics. Thus,
we also provide a more differentiated view on regional content, which is mentioned in [10] but
not considered in detail. Especially, we show that the share of peers in one AS can be larger for
regional content.

3 Measurement Setup

The measurements described in this section aim at gathering data about live BitTorrent swarms
from which we want to draw conclusions about the viability of locality awareness. First, we
outline the BitTorrent protocol itself before introducing our measurement methodology.
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3.1 The BitTorrent Protocol

BitTorrent’s objective is to disseminate one large file to a large number of users in an efficient
way. For each file an overlay network calledswarmis created. According to the original BitTor-
rent specification, each overlay network consists of two different kinds of peers, the seeders and
the leechers, and a so-called tracker. Aseederis a peer in the swarm that holds the complete file
and uploads to others altruistically, whereas aleecheris still downloading the file.

For each swarm, a centralized component, the so-calledBitTorrent tracker, stores information
about the file itself and all peers in the swarm. This information includes the file size, the
number of seeders and leechers, as well as the IP addresses of the peers. A peer joining the
network asks the tracker for a list of active peers in the overlay. The tracker then returns (a) the
number of seedersS and leechersL and (b) a random subset ofk peers, i.e.,k different IPs, to
the requesting peer. Most trackers returnk = 50 peers per default.

In order to avoid congestion at the tracker, the request rate of an individual peer is limited.
The default value in the original BitTorrent tracker implementation from Cohen allows a single
request every 5 min. However, in the Internet, various tracker implementations exist and in our
measurements we have been able to contact various trackers every 10 s,if necessary.

For searching files to download through the BitTorrent protocol, there are several websites
that list indexes and directories of.torrent files. Such a website is referred to astorrent
index. A torrent index maintains a list of.torrent files containing metadata about the files to
be shared and about the tracker, as well as additional information aboutthe popularity of a file
(in terms of number of seeders and leechers) or the date when the file was published.

3.2 Conducted Experiments

To gain a more differentiated view on the characteristics of existing swarm types than in the
known work, we chose specific sets of swarms to measure. These are defined by a number of
selection criteria which serve to define a number of swarm classes. In contrast to [10], we do not
only want to analyze swarms found on one index and only distributing videos. Instead, we want
to expand the insights gained from observing these swarms to other classesof swarms as well.
According to a certain selection criterion and the desired type of content, the.torrent files
are downloaded from a torrent index. Asselection criteria, we consider (a) all available torrents,
(b) the most popular torrents in terms of number of peers in the swarm, and (c) the most recent
files which have been published in the last 24 hours. Astype of content, we distinguish between
(1) music files, (2) TV series, (3) movies, (4) so-called “regional” movieswhich are in a certain
language (German, Spanish, French, Italian, Dutch), and (5) all media independent of the type
of content. The consideredtorrent index serverscover the most popular ones in the Internet, (i)
PirateBay, (ii) Mininova, and (iii) Demonoid. Here, the criteria (a)(3) and (a)(4) correspond to
the class of swarms evaluated in [10]. Thus, we additionally consider othercontent types and
indexes as well as specific subsets of swarms.

Table 1 summarizes the measurement experiments conducted over the period from June 2008
to May 2009. Each measurement experiment is assigned a unique identifierID. which is used
when describing the measurement results. In particular, we measure in each experiment the
swarm size, the swarm dynamics, and the AS topology of swarms meaning the affiliation of peers
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to AS’s. In order to measure the total numberN of peers in a swarm and their corresponding
AS’s, we contacted the tracker and requested a list of peers. As a result, the number of seeders
S and leechersL, and a set ofk different IP addresses of peers are returned.

Since a tracker typically returnsk = 50 IP addresses for a single request, we used a large
number of machines with BitTorrent clients running on each of them. They contact the tracker
simultaneously in order to get the IP addresses from all peers in the swarmat a single time
instant, i.e. a snapshot of the swarm. In particular, several requests are sent within 5 minutes
from all 219 nodes in PlanetLab [11] and 153 nodes in G-Lab [12], respectively, untilN = S+L
different IP addresses are obtained. Then, the IP addresses are mapped to the origin AS using the
RIPE database (http://www.ripe.net/projects/ris/tools/riswhois.html).
This measurement method is referred to asdistributed monitoringin the remainder of the paper.
However, for measuring the swarm size only, it is sufficient to monitor the tracker (denoted
as ’tracker monitored’ in Table 1 for setupsPop. and24h.) or to parse the website of the
torrent index (’website parsed’), as done in experimentTV. Additionally, we consider a publicly
available dataset from Khirman [13] with measurement results of the swarm sizes of torrents on
different torrent index servers (KPi., KDe., andKMi.).

To study the time dynamics of a swarm, several samples of the swarm size and the AS topol-
ogy are captured over a longer period of time which is denoted as “xx samples every yy hours”
instead of “snapshot” in the column “measurement per swarm” in Table 1. In that case, for ex-
ample the average swarm size over this period of time is given, which may result in a decimal
number, while a snapshot of a swarm always returns an integer value.
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Table 1: Overview on conducted measurement setups.

ID
torrent
index

selection
criteria

type of
content

meas. per
swarm

#torrents
metho-
dology

observed
meas.
date

TV. PirateBay all available
TV
series

96 samples
over 36 hours

63,867
website
parsed

swarm size
Jun.
2008

Pop. PirateBay most popular movies snapshot 4,463
tracker
monitored

swarm size
Mar.
2009

24h. PirateBay last 24 hours all media snapshot 1,048
tracker
monitored

swarm size
Mar.
2009

Grp. Mininova
groups w.r.t.
size & language

movies
440 samples
over 88 hours

16
distributed
monitor-
ing

AS topology
Apr.
2009

Mov. Mininova all available movies snapshot 126,050
distributed
monitor-
ing

AS topology
Apr.
2009

Mus. Mininova all available music snapshot 135,679
distributed
monitor-
ing

AS topology
Apr.
2009

Reg. PirateBay top 30
regional
movies

snapshot 120
distributed
monitor-
ing

AS topology
May
2009

KPi. PirateBay all available all media snapshot 1,682,355
data taken
from [13]

swarm size
Mar.
2009

KDe. Demonoid
community se-
lected titles

all media snapshot 11,759
data taken
from [13]

swarm size
Mar.
2009

KMi. Mininova
legal torrents
promotion

all media snapshot 4,514
data taken
from [13]

swarm size
Mar.
2009

Ele. open movie “Elephants Dream”
8,640 samples
over 24 hours

1
distributed
monitor-
ing

AS topology
Apr.
2009
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3.3 Distributed Monitoring of Tracker

The distributed monitoring of a BitTorrent tracker for obtaining the AS topology relies on exper-
imental facilities, like PlanetLab or G-Lab, with a large number of nodes. Theyare controlled
by a central unitC which is located at the University of Wuerzburg in our measurements.C
has established connections to the used PlanetLab and G-Lab nodesΩ. C is responsible for the
distribution of the.torrent files to these monitoring nodesΩ, the initialization of the moni-
toring onΩ and the collection of the created result files fromΩ. The monitoring on each node
itself is realized with a python script that queries a trackern times everyt seconds. In our mea-
surements,t is set to 15 seconds to avoid overloading the tracker, whilen is chosen according to
N , using the analysis described below.

Figure 1 shows the number of occurencesX of the same IP address in a measurement trace.
The random variableX can be approximated by a binomial distributionX ∼ BINO(n, q),
when the tracker of a swarm of sizeN is requestedn times and returns 50 IP addresses each
time, i.e.q = 1− (1− 1/N)50.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

occurrences of same IP in measurement trace

C
D

F

 

 

measurement sample
binomial

Figure 1: OccurencesX of the same IP address in a measurement sample follow a binomial
distributionX ∼ BINO(b, q), when the tracker of a swarm of sizeN is requestedb
times and returns 50 IP addresses each time, i.e.q = 1− (1− 1/N)50.

In the following, we derive the numberY of required monitoring nodes in order to obtain all
IP addresses ofN peers in a swarm. Upon each request, the tracker returns a subset ofk = 50
peers which are randomly chosen from allN peers. Denote byX the number of times the tracker
has to be contacted to getN different IP addresses. The derivation ofX is known as thecoupon
collector’s problem[14]. In [15], we derived an exact solution which is given in the following.

Let P (j, i) denote the probability to observej different IPs after thei-th tracker response. It
is

P (j, i) = 1 for j ≤ k andi > 0, (1)
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since the first tracker response returnsk different IPs. It is

P (j, i) = 0 for j > min (ik,N), (2)

since a maximum ofik different IPs are retrieved after thei-th tracker response and there are
onlyN different IPs.

This allows to recursively computeP (j, i) for all other cases,

P (j, i) =
k∑

m=0

(
j−m
k−m

)
·
(
N−j+m

m

)
(
N
k

) · P (j −m, i− 1) , (3)

which simply considers the number of possibilities to obtaink − m old andm new IPs, nor-
malized by the number of possibilities fork different IPs of a tracker response. As a result, we
obtain the distributionX of the number of required tracker responses to get allN IPs which is
P (X = i) = P (N, i).

An upper bound of the average number of required tracker responses

E[X] =

∞∑

i=0

iP (N, i) (4)

can be approximated [14] using the harmonic number

hN =

∫
1

0

1− xN

1− x
dx, (5)

such that

E[X] ≈
N · hN

k
, (6)

which is exact fork = 1. For example, to get a snaphot of the AS topology of a swarm with
N = 20, 000 peers, aroundn = 20 requests have to be sent from each of the 219 used PlanetLab
nodes. This takesn · t = 5minutes. The computation of the required number of tracker requests
allows to dimension the number of monitoring nodes and to adjust appropriately the parameters
t andn, if a time frame of 5 minutes is allowed for capturing the snapshot.

However, it has to be noted that Equation (6) only returns the average number of required
tracker responses. Checking the percentage of missing IP addressesin our measurements, we
observed that only for a small number of swarms some IP addresses are missing. In particu-
lar, we checked the percentage of missing IP addresses when observing the AS topology of a
swarm. Figure 2 shows the cumulative distribution function (CDF) of the percentage of missing
IP addresses when measuring the AS topology for the movies (Mov.) and music files (Mus.).
For 97.5% of all movies (Mov.) and more than 98.5% of all music files (Mus.), all IP addresses
in the swarm were captured. A reason for missing IPs is the fact that peers may go offline during
the measurement interval of 5 minutes. This has no effect on the numerical values or on the
conclusions with respect to application layer traffic optimization.
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Figure 2: For 97.5% of all movies (Mov.) and more than 98.5% of all music files (Mus.), all
IP addresses in the swarm were captured. The percentage of missing IPaddresses is
given as CDF.

4 Measurement Results

In this section, we describe the results from the measurements and draw somefirst conclusions
from that data. We focus on observations where previous studies provide only a general impres-
sion or where the results for specific swarm types contradict the accepted knowledge. In par-
ticular, we are interested in the characteristics of the swarm size and its development over time.
Additionally, we consider the mapping of swarms on the AS topology of the Internet, since this
has important implications for the viability of locality-promoting mechanisms. Anotherimpor-
tant characteristic to model application layer traffic optimization schemes for BitTorrent has to
take into account that within a single AS several swarms are existing in parallel. To this end, we
investigate the number of parallel swarms within a single AS. Finally, we reportour findings on
content that is popular only in specific regions of the world.

4.1 Population Sizes in Swarms

First we take a look at the size of the measured swarms. For this, we analyzed the seeder
and leecher population of swarms for different content types, e.g., movies, TV shows and music
files, which are registered at different BitTorrent index websites. Thisallows us to avoid drawing
platform- or content-specific conclusions.

Figure 3 shows the observed swarm sizes for the data setsTV.,Pop.,24h.,Mov.,Mus.,KPi.,
KDe. andKMi. We can see that the distribution of the number of peers is similar for all data
sets except for the24h. andPop. set. An explanation for this divergence is the fact that these
two sets feature swarms with specific characteristics due to the popularity of the shared content.
While thePop. set of swarms contains swarms with highly sought after content by definition,
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Figure 3: CDF of the number of peers in a swarm.

it is a reasonable assumption that the recently added files of the24h. set are also more popular
than the average, since users are interested in new content which is available for the first time.

To give an impression of the proportion of seeders to leechers in swarms,Figure 4 shows a
scatterplot of the number of seeders in relation to the number of leechers per swarm for theTV.
data set. This example, which is supported by the other measurement results,implies that the
number of leechers is correlated to the number seeders.

The according data for all measured data sets is given in Table 2. It contains the statistics
for the total number of observed swarms, their mean valueµ and coefficient of variationcvar of
their sizes, the skewness, kurtosis and maximum of the swarm size distributionas well as the
95th percentile both as an absolute value and normalized by the mean swarm size. Finally, the
fraction of swarmsπ80 that contain 80% of the peers and the correlationC(S,L) between the
number of seeders and leechers in all swarms of the whole data set is shown.

The first observation we make about these results is that the swarm size depends on the content
shared. This is in line with the observations for video file swarms from [10].The swarms which
distribute movies are the largest on average, while smaller music files are shared by less peers
on average. This is due to the fact that larger files take longer to download, leading to a longer
online time of peers and therefore a higher population in the swarm. This should be offset
by the resulting additional upload bandwidth offered to the swarm. However, it can be shown
analytically, e.g., by adapting the analysis of [16], that download times do increase in such
swarms.

Regarding the different data sets, the coefficient of variation of the swarm size is in the same
range, with the exception of the Khirman set of PirateBay swarms (KPi.). This set also differs
significantly in terms of skewness, kurtosis and maximum swarm size. Althoughwe cannot
judge the source of this discrepancy with our data and the other data sets from Khirman, we
still observe that at least the 95th percentile normalized by the mean value is comparable to the
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Figure 4: Scatterplot of the number of seeders and the number of leechers in a swarm. Each dot
represents (#seeder,#leecher) of an individual swarm for the TV shows datasetTV.

corresponding values for the other data sets. This means that known observations for video file
swarms can be extended to other media types as well.

Another general observation is that the Pareto principle holds for most ofthe evaluated data
sets. Thep80 value, i.e., the fraction of top swarms that contain 80% of all peers in all swarms
of the set, is around 0.2 for all sets except the top movies and the Khirman datafor the mininova
and demonoid sites. This means that 80% of the peers belong to 20% of the swarms, therefore
this fraction of the swarms generates roughly 80% of the P2P traffic. It is clear that the most
popular content as covered by thePop. data set do not show this Pareto property, since the
different files here are equally popular and represent only a very specific part of the total shared
content.

Finally, there is a strong correlationC(S,L) between the number of seeders and the number
of leechers in a swarm. This is intuitively clear, since more leechers mean a larger number of
potential seeders, and swarms with only a few seeders are normally not popular due to long
download times.

From these observations we draw several first conclusions for a locality-aware mechanism.
The type of shared content has an impact on the swarm size and therefore on the effectiveness
of different locality-promoting solutions. We will see in the next sections thatthis is also true
for the topological characteristics of a swarm, which also depend on the content shared. In
general, the swarm size distribution is heterogeneous with a Pareto-like distribution of the total
peer population on the different swarms. Also, recently released and popular content leads to
much larger swarms in comparison.

Also, there is a significant amount of very small swarms containing less than 40 peers. With
typical BitTorrent client parameters, each peer in such a swarm will knowall other peers, since
it tries to have at least 40 neighbors. The result is a fully meshed swarm. Consequently, accepted
solutions using Biased Neighbor Selection (BNS) as introduced in [8], where peers close in the
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topology are preferred as neighbors, will have a low impact on these swarms, since there is no
choice to be made in the neighbor selection.

Therefore, we conclude that it would be a good strategy to concentrate locality-promoting
efforts on the comparably few top swarms, including new and popular content. The share of
traffic that can be influenced by targeting these swarms is significant (around 80%), while the
effort to do so is much lower than when trying to cover all or at least most of the swarms. To
optimize the monitoring of swarms in order to find these candidates, it may help to just keep
track of the seeder population, since it is strongly correlated to the number of leechers and thus
the total population of a swarm.

Table 2: Statistics on the number of peers in a swarm.
ID # swarms meanµ cvar skewness kurtosis max.

Mov. 126,049 25.46 8.48 51.89 3,573.01 20,079
TV. 63,867 15.53 6.47 29.45 1,246.99 7,276
Mus. 135,679 9.76 4.24 28.43 1,432.57 3,813

KPi. 1,682,355 11.12 13.42 216.52 69,248.60 72,988
KMi. 4,514 6.99 3.17 19.78 535.82 763
KDe. 11,759 9.73 4.64 22.90 663.79 1,883

Pop. 4,463 691.14 2.08 9.87 144.06 30,691
24h. 1,048 146.68 5.37 17.20 386.37 19,748

Table 2 (cont.): Statistics on the number of peers in a swarm.

ID q95 q95/µ π80 C(S,L)

Mov. 76 2.98 0.13 0.84

TV. 45 2.88 0.17 0.71

Mus. 32 3.28 0.25 0.61

KPi. 31 2.79 0.18 0.85

KMi. 19 2.72 0.45 0.53

KDe. 27 2.78 0.31 0.65

Pop. 2,068 2.99 0.45 0.73

24h. 435 2.97 0.12 0.65

4.2 Time-Dynamics within a Swarm

While a snapshot of the number and size of swarms is necessary to determinegood rules for
traffic optimization, it is wrong to assume that a swarm can be treated as static. The population
of a swarm varies over time, meaning that the performance of locality-awaremechanisms also
depends on this dynamics.

While it may be efficient to promote locality in a swarm that was measured as beinglarge at
a given time instant, it may be less efficient when the swarm shrinks quickly after that snapshot.
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Figure 5: Total swarm size of exemplary swarms (measurement setupGrp.) as defined in Ta-
ble 6.
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Figure 6: Number of seeders and leechers over time for a German versionof open office (GOO.).

To gain insights into the time-dependent behavior of swarms, we observed selected swarms over
a timespan of several days. The evolution of the size of four of these exemplary swarms, which
are taken from the set summarized in Table 6, is depicted in Figure 5. The selection of these
swarms allows us to show principal differences between swarms even if they share the same type
of content.

We observe that there are variations in the population of each swarm, as well as quantitative
and qualitative differences in these variations between the swarms. While swarm D), which is
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Figure 7: Standard deviationsi of the size of swarmi vs. average size of swarmi for measure-
ment experimentTV.

sharing a movie in English, shows only small changes in its peer population, thesize of swarm
C) exhibits a periodic behavior. We attribute this to the fact that in this swarm, a movie in
Spanish is distributed. As a consequence, the peers in this swarm can be found mainly in Spain
and South America, and therefore the swarm population increases duringthe daytime in these
regions and decreases again afterwards. Swarm G), sharing a German movie, shows a similar
characteristic, although it is less pronounced due to the fact that this swarm is smaller.

The development of the peer population of swarm B) is a superposition of a continually in-
creasing popularity and a 24 hour cycle like for swarms C) and G). While swarm D) distributes
content that seems not to be preferred regionally, the movie shared in swarm B) seems to be more
popular in a specific part of the world. Another example for this dependency of content and a
periodic swarm size behavior is shown in Figure 6, where the seeder andleecher population of
a swarm distributing a German version of OpenOffice is plotted over time.

In order to be able to describe and compare the dynamics of swarm sizes, we use the standard
deviation of the size of a single swarm measured at regular intervals. This value is plotted in
Figure 7 for the swarms of theTV. data set, sorted by swarm size. Only swarms with 10 peers or
less on average are shown. We see a clear trend for a higher variation of the swarm size in larger
swarms. There is a theoretical lower bound for the standard deviation, leading to the peculiar
shape of the plot for mean swarm sizes that are not an integer value. Since we captureR = 96
samples of the size of a swarmi for theTV. experiment, the minimum standard deviationsi for
a given average swarm sizemi ∈ [a; a+1[ is obtained when we measurek times a size ofa and
R− k times a size ofa+ 1 (for a ∈ N). Thus, it is

mi =
ka+ (R− k)(a+ 1)

R
(7)
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Algorithm[17].

and

si =

√
ka2 + (R− k)(a+ 1)2

R
−m2

i =
1

R

√
(R− k)k . (8)

We now want to determine the amount of swarms that show a diurnal behaviorsimilar to
swarms B), C) and G), in order to judge the relevance of this effect for the performance evalu-
ation of locality awareness mechanisms. To that end, we use a method called periodicity trans-
form which automatically detects periodicities for a given data set. In particular, we rely on the
’M -best’ algorithm as introduced in [17] that returns a list of theM = 10 best periodicities.
From theM best periodicities that are{τi : 1 ≤ i ≤ M}, we calculate the autocorrelationρi at
lag ti and select the best period of durationτk with maximum, positive autocorrelationρk, i.e.
k = arg (max{ρi : 1 ≤ i ≤ M}).

Figure 8 shows the CDF of the length of the ’best’ period for the number of seeders, the
number of leechers, and the entire swarm size for theTV. data set. It can be seen that the three
different curves show a similar behavior. In particular, the curves forthe number of leechers and
the total swarm size are almost identical, showing that the leechers mainly determine the diurnal
behavior. Furthermore, we observe that roughly the ’best’ period forx % of all swarms is around
24 h.

Figure 9 shows the autocorrelationρk to the best period of durationτk. Again, the three
different curves are quite similar. We observe that from the swarms in theTV. data set only
8.36 % show a strong correlationρk > 0.7. As a summary of the time-dynamics analysis, we
see for roughly 5.7 % of the swarms a day-night behavior can be observed. To be more precise,
for these swarms the autocorrelation is larger than 0.7 for the best period,while the duration of
the period is about 1 day, i.e. between 21 hours and 27 hours.
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Figure 9: Autocorrelation to the best period forTV.

4.3 AS Topology of Swarms

In order to judge the potential of swarms to be optimized by locality-aware mechanisms, we
have to take a look at the distribution of the peers in the Internet topology. Wedo so by mapping
peer IPs to AS’s and thus get a statistic on the number of peers per AS for agiven swarm. In
general, we believe that swarms that are distributed over fewer AS’s butwith more peers per AS
can utilize locality-awareness much better than a swarm that is highly dispersed topologically.
While there is already a higher probability for peers to exchange data locallyin an AS containing
a large share of the swarm, the potential to save traffic by systematically promoting locality is
also greater.

We present the CDFs for the average number of peers per AS for swarms of theMov. data set
in Figure 10 and for theMus. data set in Figure 11, respectively. Note that the x-axis is scaled
logarithmically. The swarms are grouped according to their average size asshown in Table 3
and Table 4 together with the relative size of each group. We observe that,for an increasing
mean swarm size, the average number of peers per AS grows. However, this value as well as the
maximum number of peers in one AS is still small even for the largest swarms.

Table 3: Percentage of swarms grouped according to their size for movie files (Mov.).
[0; 25[ [25; 50[ [50; 100[ [100; 500[ [500; 1e3[ [1e3;∞[
0.8580 0.0703 0.0294 0.0347 0.0040 0.0036

Table 4: Percentage of swarms grouped according to their size for music files (Mus.).
[0; 25[ [25; 50[ [50; 100[ [100; 200[ [200; 500[ [500; 1000[ [1000; 2000[ [2000;∞[
93.28 3.80 1.29 0.94 0.52 0.11 0.04 0.01
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Figure 10: CDF of average number of peers per observed AS. Swarms(Mov.) are grouped
according to their size, cf. Table 3.
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Figure 11: CDF of average number of peers per observed AS. Swarms(Mus.) are grouped
according to their size, cf. Table 4.

The coefficient of variation also grows for larger swarms (cf. Figure 12, for the same group-
ing). From the results, we see that there are a only a few, if any, AS’s that contain a significant
fraction of the swarm, while there are still many AS’s in the same swarm holding only one or
two peers. For these, locality-awareness is probably only of limited use, since the few peers in
these AS’s do not have much choice in selecting local peers to exchange data with.
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Figure 12: CDF of coefficient of variation of number of peers per observed AS per swarm. The
swarms (Mus.) are grouped according to their total size, cf. Table 4.
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Figure 13: Number of AS’s per swarm (Mus.,Mov.).

Another important characteristic of a swarm is the absolute number of AS’s,since swarms that
are distributed over fewer AS’s but with more peers per AS can likely utilize locality promotion
mechanism more efficiently. To this end, we consider the movie files (Mov.) as well as the
music files (Mus.). Figure 13 shows the CDF of the number of AS’s per swarm for both data
sets. Since there are more peers involved in swarms offering movie contents, there are also more
different AS’s involved than in swarms providing music files. On average,there are 65 % more
AS’s involved in movie swarms than in music swarms. In particular, if the CDF of the number
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of AS’s for movie swarms is normalized by a factor of 1.65, it is nearly identical to the CDF for
music swarms. The maximum number of observed AS’s is 1,744 for movie swarmsand 809 for
music swarms, respectively.

4.4 Multiple Swarms in a Single AS

Another important characteristic to model application layer traffic optimization schemes for Bit-
Torrent has to take into account that within a single AS several swarms areexisting in parallel.
We have taken a closer look at theMov. andMus. data sets which have been captured at the
same time. In order to determine the number of parallel swarms, we have parsed the IP ad-
dresses of any peer in all swarms of both data sets and mapped them to AS numbers. Since we
only consider a subset of all existing types of content and a subset of all existing torrent index
websites, the presented study here only gives a lower bound for the number of parallel swarms
within an AS.

Figure 14 shows the CDF of the number of parallel swarms within a single AS. It has to be
noted that about 10 % of all AS’s have only a single swarm. However, the average number of
parallel swarms in an AS is about 255. Since the distribution is heavily skewed, the median is
only about 12 swarms. The 99% quantile lies at 6,096 parallel swarms, while the maximum
number of parallel swarms is 35,327.
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Figure 14: Number of parallel swarms within an AS (Mus.,Mov.).

The top ten of the AS’s with the largest number of parallel swarms is enumerated in the
following. We give the observed AS number, the number of swarms which are currently active
in the AS, the AS name, and the organization name corresponding to the AS. Inorder to get this
information, we used the ARIN WHOIS database search which is available athttp://ws.
arin.net/whois and the RIPE database athttp://www.db.ripe.net/whois.
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Table 5: Top ten of the AS’s with the largest number of parallel swarms. Thedata setsMov. and
Mus. are taken into account only.

(1.) AS 7132 (SBIS-AS) participates in 35327 swarms: AT&T Internet Services
(2.) AS 19262 (VZGNI-TRANSIT) participates in 28776 swarms: VerizonInternet Services

Inc.
(3.) AS 2856 (BT-UK-AS) participates in 25762 swarms: BTnet UK Regional network
(4.) AS 3269 (ASN-IBSNAZ) participates in 24967 swarms: Telecom Italia
(5.) AS 6327 (SHAW) participates in 24670 swarms: Shaw Communications Inc.
(6.) AS 577 (BACOM) participates in 22447 swarms: Bell Canada
(7.) AS 6830 (UPC) participates in 22244 swarms: UPC Broadband
(8.) AS 812 (ROGERS-CABLE) participates in 22230 swarms: Rogers Cable Communications

Inc.
(9.) AS 5089 (NTL) participates in 21975 swarms: NTL Group Limited, United Kingdom
(10.) AS 3352 (TELEFONICA DE ESPANA) participates in 21776 swarms: Telefonica-Data-

Espana

4.5 Characteristics of Regional Swarms

We have already seen the effect regional content has on the evolution of the swarm size over
time. We now take a closer look at the topological characteristics of swarms sharing this content.
To this end, we consider 16 individual swarms of different average sizes distributing movies in
German, Spanish, Chinese or English (cf. Table 6). For these swarms, we analyze the absolute
number of peers in the AS’s observed over the lifetime of the swarm. The results of this analysis
are shown in Figure 15. The AS ids on the x-axis are sorted by the number of peers observed in
them. This means on the left side we have the AS with the minimum number of peers located in
this AS, while on the right side we have the AS’s with many peers. On the y-axiswe have the
absolute number of peers per AS; both axes are scaled logarithmically.

We see that larger swarms tend to have larger shares of the swarm in singleAS’s. For the
largest swarm A, the most AS’s are observed. Also, swarms sharing internationally interesting
content, i.e., in English, are spread over a larger number of AS’s than the swarms distributing
more regional content. Thus, swarms C and E, although being larger than swarms J and N, are
concentrated on the same or even lower number of AS’s due to the fact thatthe users interested
in that content can be found in the same region.

Table 6: Individually measured swarms over time (Grp.) using the following notion:ID) aver-
age swarm size & language

A) 21,351 EN B) 17,170 EN C) 4,550 SP D) 3,182 EN
E) 1,390 SP F) 972 GE G) 832 GE H) 626 GE
I) 579 SP J) 479 EN K) 473 GE L) 351 GE
M) 289 GE N) 258 EN O) 217 SP P) 81 CHI
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Figure 15: Number of peers per observed AS over time (Table 6).
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Figure 16: Relative number of peers in a swarm’s top AS (Reg.).

Swarm D is an exception here. We have seen in Sec. 4.2 that the peer populaton within swarm
D remains almost constant over time and doesn’t show any periodic day-night pattern. Thus, the
swarm distributes content that seems not to be preferred regionally. However, swarm D shows
the highest skewness in terms of number of peers per AS compared to the other swarms. In
particular, 30 % of the peers belong to the same AS with the AS number 30058. Acloser look
reveals that the company responsible for this AS offers its customers different ways to host their
content, e.g. using dedicated, virtual or colocated servers.
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Figure 18: Kurtosis of number of peers per AS (Reg., Mus., Mov.).

The fact that users are interested in regional content leads to a high top AS fraction, which is
the relative number peers in a swarm’s top AS. This is especially true for Spanish content, see
Figure 16. Here, the top AS of each swarm in theReg. set is used for comparison, i.e., the AS
containing most peers from a swarm. A CDF of the relative share of peersthat are located in
these AS’s is plotted for swarms with Dutch, French, Italian and Spanish content.

While in all cases there are at least 10% of the total swarm population in the topAS, this
share is between 40 and 48% for the Spanish content, implying a high degreeof peer grouping.
To judge whether this phenomenon only exists for a single AS, we evaluated also the second to

22



10
0

10
5

10
−4

10
−3

10
−2

10
−1

10
0

total number of peers in swarm

av
er

ag
e 

ra
tio

 o
f p

ee
rs

 p
er

 A
S

 

 

movies (mininova)

typical swarm size

Figure 19: Scatter plot of the total number of peers in a swarm vs the average ratio of peers per
AS for theMov. data set.

fifth largest AS’s of the swarms in theReg. data set, cf. Figure 17. It appears that the top AS of
a swarm contains significantly more peers than the other AS’s, although these are still holding
around 5% of the total swarm population.

We affirm this result by comparing the kurtosis, i.e., the fourth moment of a distribution that
indicates statistical peaks, of the number of peers per AS for the swarms in theReg., theMus.
andMov. sets. The results are shown in form of a CDF in Figure 18.

The regional swarms show a much higher kurtosis than the two larger and more general sets.
This leads us to the conclusion that the concentration of a larger fraction ofthe swarm in the
same AS is much more common in regional swarms. Therefore, at least the concentrated parts
of these swarms may profit more from locality-aware mechanisms. This means that the regional
interest in a shared file can play a significant role in the suitability of the according swarm for
locality promotion, something previously underestimated. In particular, the highkurtosis values
for a certain fraction of swarms providing music or movie files in Figure 18 indicates that this
phenomenon of regional interests with many peers in the top AS can be observed for any kind
of content.

We want to highlight here that – independent of the locality mechanism understudy – these
relevant swarm characteristics have to be considered to show the effectiveness of any algorithm.
In [18], we show that a scenario with a heavily skewed peer distribution, Biased Unchoking [19]
and Biased Neighbor Selection [8] have opposite effects in the peers in thelargest AS. Biased
Unchoking can be utilized better in AS’s with many peers and therefore lowers the download
times. Biased Neighbor Selection lets peers in a large AS mainly compete against each other,
while peers from other AS’s also have neighbors in the large AS. As a result, the upload capacity
of the large AS is used by both local and remote peers, while the local peersdo not utilize the
rest of the swarm. Consequently, the download times increase.
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4.6 Reliable Monitoring of Trackers

Monitoring of BitTorrent trackers can be efficiently utilized in a distributed way to get a snapshot
of the swarm. Application layer traffic optimization mechanisms may utilize the monitoreddata,
which comprises the swarm size, the type of content, the language of the offered content, or even
the AS topology of the peers currently participating in the swarm. However, the problem remains
that in that case the monitored data depends on the actual tracker software.

In our measurements, we found for example one particular swarm (Ele.) for which we
discovered only 10% of the peers. The tracker returned a swarm size of 400,000 peers, however,
we only observed 30,000 IP addresses. We used 219 PlanetLab nodesand requested the tracker
every 10 seconds from each machine over 24 hours. Thus, we received more than one million
tracker responses with 50 IPs. In that case, we should observe at least around 375,000 different
IPs according to Eq. (6). It has to be remarked again, that in Sec. 3.3 wehave shown that for
97.5% of all movies (Mov.) and more than 98.5% of all music files (Mus.), all IP addresses in
the swarm were captured.

There are two possible reasons for this observation regarding the swarm Ele. (1) The tracker
always returns the same IP addresses. This could be the case when locality-awareness mecha-
nisms are implemented by the tracker. However, this is not the case here; the nodes in PlanetLab
are distributed world-wide. Thus, it seems reasonable that the random generator or the function
which returns a random subset of all peers is wrongly implemented. (2) The tracker returns
wrong information about the number of seeders and leechers in the swarm.In both cases, the
question arises how an ALTO mechanism can reliably monitor swarms for badlyimplemented
trackers.

5 Modeling AS Topology of BitTorrent Swarms

As we have seen from the measurement results presented in Sec. 4, one key aspect for modelling
BitTorrent swarms is the skewed peer distribution. In this section, we present a simple model
which returns the probabilityP (k) that a peer belongs to thek-th largest AS within a swarm
consisting ofn different AS’s. In particular, we investigate whether the peer distributionamong
the different AS’s follows a power-law, which means

P (k) = a/kb + c . (9)

Therefore, we consider all swarmsIn consisting of exactlyn different AS’s fromMus. and
theMov. data set, respectively. For each swarmi ∈ In, we measure the ratiõPi(k) of peers
belonging to thek-th largest AS in swarmi for k = 1, 2, · · · , n. Then, we compute the average
ratio P̃ (k) over all swarms, yielding at

P̃ (k) =
1

|In|

∑

i∈In

P̃i(k) . (10)

Figure 20 shows the measured ratioP̃i(k) of peers belonging to thek-th largest AS within
a swarm consisting ofn = 40 different AS’s. All swarms consisting of exactlyn different
AS’s are considered from theMus. data set. The oberved ratiõPi(k) is then compared with the
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Figure 20: Comparison of the measured ratioP̃ (k) and the theoretical probabilityP (k) that a
peer belongs to thek-th largest AS within a swarm consisting ofn = 40 different
AS’s. All swarms consisting of exactlyn different AS’s are considered from theMus.
data set.

power-law model function as defined in Eq. (9). The parametersa, b, c of the model function
are retrieved by means of non-linear regression. We used the optimization toolbox of Matlab to
find an optimal fitting function for the given measurement data. Optimal in this case means to
find the unknown parametersa, b, c in Eq. (9), such that the mean squarred error is minimized.
As a result, we obtainP (k) = 0.0769/k0.8013 + 0.0134 which is plotted as solid, red curve.
Figure 20 indicates that the power-law describes quite well the peer distribution among AS’s.

The goodness-of-fit for the model functionP (k) is expressed by means of the coefficient of
determinationR2. A value close to one means a perfect match between the model function and
the measured data. For the measurements given in Figure 20 and the obtainedmodel function,
the coefficient of determination isR2 = 0.978035 indicating the good match in a statistical way.
In our case, the coefficient of determination can be computed as follows

R2 = 1−

∑n
k=1

(
P̃ (k)− P (k)

)2

∑n
k=1

(
P̃ (k)− 1/n

)2
. (11)

Analogously, Figure 21 compares the measured ratioP̃i(k) and the fitted model function
P (k) = 0.1445/k1.1632 + 0.0128 for swarms from theMov. data set consisting ofn = 40
different AS’s. Again, the power-law can be observed and the coefficient of determination of
R2 = 0.993338 indicates a nearly perfect match between the measurement data and the model
function.

25



0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

AS id k

pr
ob

ab
ili

ty
 P

(k
) 

th
at

 p
ee

r 
be

lo
ng

s 
to

 A
S

 k

40 ASs per swarm (movies)

 

 
R2=0.993338
P(k)=0.1445 / k1.1632 + 0.0128

Figure 21: Comparison of the measured ratioP̃ (k) and the theoretical probabilityP (k) that a
peer belongs to thek-th largest AS within a swarm consisting ofn = 40 different
AS’s. All swarms consisting of exactlyn different AS’s are considered from theMov.
data set.

In the following, we have computed the optimal parameters of the power-law function as
defined in Eq. (9) for all swarms consisting of exactlyn different AS’s. Again, the coefficient of
determinationR2 is used to measure the goodness-of-fit. Figure 22 and Figure 23 show a scatter
plot of the numbern of different AS’s in a swarm vs.R2 for theMus. and theMov. data set,
respectively. The maximum number of observed AS’s is 1,744 for movie swarms and 809 for
music swarms. As we can see from both figures, the match between the measurement data and
the pwer-law model function is very well and the coefficient of determinationis above 0.9.

In order to provide a model for the AS topology of BitTorrent swarms, the number of AS’s per
swarm is required in addition to the parameters of the power-law model. The number of different
AS’s was discussed in 4.3 and a further analysis shows that it can be modeled with a log-normal
distribution. Using the measurement data, the maximum likelihood estimates of the paramters
for the log-normal model distribution were calculated. In particular, we obtain µ = 1.2161 and
σ = 1.1009 for theMus. data set, resulting in a coefficient of determination ofR2 = 0.99. For
theMov. data set, the parameters of the log-normal distribution areµ = 1.5113 andσ = 1.2636
leading toR2 = 0.99, again.
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Figure 22: Scatter plot of the numbern of different AS’s in a swarm vs. the coefficient of
determinationR2 as goodness-of-fit measure between the measurement data and the
power-law model according to Eq. (11) for theMus. data set.
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Figure 23: Scatter plot of the numbern of different AS’s in a swarm vs. the coefficient of
determinationR2 as goodness-of-fit measure between the measurement data and the
power-law model according to Eq. (11) for theMov. data set.
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6 Summary

From the results presented above, we make the following main observations for modeling Bit-
Torrent swarms and its relevance for traffic optimization mechanisms.

Considering the swarm statistics according to the offered content (i.e., TV shows, movies and
music) shows that the larger the offered content is in terms of volume, the larger the average
and maximum number of peers is in such a swarm, as already shown in less detail in [10]. Ad-
ditionally, our results show that the distribution of peers among the swarms follows the Pareto
principle for the different measurement sets (1), (4) and (5) which contain random files. This
means that 80% of all peers belong roughly to the top 20% swarms for all mediatypes. The
Pareto principle cannot be observed for measurement set (2), (3), and (6), since we only con-
sider popular or recently published contents there. These recently published torrents are highly
popular. This is reasonable, since users are typically interested in new contents, recently broad-
casted movies etc. In consequence, traffic optimization should concentrateon the relatively low
number of swarms with larger content and high popularity, since the potentialgains are much
higher than for small swarms. Not only does a larger content lead to more traffic, but also the
possibilities for locality promotion are more numerous in larger swarms, where there are more
peers in one AS in general.

Also, especially for regional content we observe a day-night behavior of the swarm size, since
mostly users of a certain region (within a similar time zone) are interested in that content, e.g.,
movies in French are mostly downloaded by users from France. In general, we found for 5 %
of the investigated swarms a clear statistical indication for day-night behavior. Therefore, traffic
optimization schemes need to take into account that their efficiency may vary over time. Also, a
one-time observation of a swarm may not suffice to characterize it for its suitability for locality
promotion, even if it is no longer in its flash-crowd phase.

Both regional swarms with location-dependent content and large swarms show some top AS’s
with many peers when considering the AS topology of a swarm, i.e., the AS affiliations of peers
within a swarm. However, also the observed number of different AS’s ofa swarm increases
significantly with the swarm size. As a result, more than 90% of the observed AS’s contain less
than 10 peers in a random swarm. The average number of peers per AS isbelow 2 peers for 99%
of the swarms in some measurement sets. However, the variation of the numberof peers per AS
can be quite large, e.g., there are many AS’s with a single peer, but some AS’s with several peers
inside.

For modeling the AS topology of BitTorrent swarms, we showed that the number of differ-
ent AS’s within a swarm follows a log-normal distribution. Further, the probability that a peer
belongs to thek-th top AS follows a power-law model. Thus, the peer distribution among AS’s
within a swarm is heavily skewed. This is generally neglected in the evaluation of traffic opti-
mization schemes, where a more even distribution of peers in the internet topology is assumed.
The resulting error in judging the effectiveness of a locality promotion mechanism is even more
pronounced for swarms containing regional content, where the skewness in the peer distribution
is higher. Even if traffic optimization is actively done for only the AS’s with large shares of
swarms, as proposed in [10], the effect on the whole swarm must be considered. Since these
AS’s contain significant fractions of the total swarm, applying locality awareness here may very
well affect the rest of the peers and the traffic distribution in AS’s with a smaller share of peers.
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