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Abstract

The optimization of overlay traffic resulting from overlag@ications such as BitTorrent
is a challenge addressed by several recent researchivweisiat_ocality awareness for the
selection of peers is considered as the straight forwantisalin order to reduce network
traffic and shorten download latency. In most related workmpke approach is taken lim-
iting the number of links pointing outside an autonomoudesys while important overlay
characteristics as peer distribution over autonomoussystand time dynamics are ne-
glected in the corresponding performance evaluationsisntork, we address this lack of
realistic swarm statistics by providing our measuremesults revealing real live BitTorrent
swarm characteristics.

1 Introduction

Overlay traffic resulting from applications such as BitTorrent emergestégh burden for net-
work operators today. The problem arises of how to effectively cbatrd manage such traffic
stemming from end-to-end overlay applications from within the network. RBcthis chal-
lenge is addressed by research initiatives like SmoothiT [1], P4P [2caadle [3]. Though
solutions are still at an early stage, its importance has already triggerethstaration and
the IETF working group ALTO (Application Layer Traffic Optimization) hasem founded in
November 2008.

Locality awareness is considered as a straight forward solution byrafirduesearch initia-
tives. Traffic generated by overlay applications typically crossesdsraf a network operator
domain (a so called autonomous system, AS) multiple times and thus causes hifgr tos
network provider. It is also subject to lower quality of service such asgdobdelay. The con-
cept of locality awareness is to optimize the traffic flow with information aboutdbation of
a content providing peer in the underlying network. For example, anymigt be provided
with a list of peers for download that are marked according to the positigfeilns outside the
AS of the requesting peer. Thus, quality of service and network usagee optimized at the
same time, for the benefit of the overlay application and the network provider

Whereas locality awareness has shown its benefits in several, mostly simblased ex-
periments in a controlled environment, the question arises whether a simple loesligness
approach such as sketched above is sufficient and whether localitgreega can be utilized
efficiently in real network environments. Most evaluations of currept@gches rely on a set of
conditions which let those approaches appear as very efficient. ldovibe measurements that



we present in this paper show that these conditions are rarely met ireteadriks. In particular,
we corroborate and extend known results that the distribution of peersga®’s is highly
skewed which means that only a very small number of peers is presentimfilos AS’s. This
has a strong impact on the efficiency of locality awareness becausedsibifities of keeping
traffic within these AS’s is limited. Thus, current state of the art traffic optitronasolutions
lack real-world scenarios to be evaluated in. To alleviate that problem, egempira large-scale
measurement campaign based on BitTorrent in this paper.

The contribution of this paper is (1) providing the results on our compsahemeasurement
study of BitTorrent swarms and (2) a characterization of BitTorrentswaelevant for the qual-
ity of locality awareness solutions. The measurement results comprise aetmnpive set of
swarms for different types of content listed at mininova.org and piratefztayWe have mea-
sured the swarm size, swarm dynamics in terms of number of leecherseahets, and the AS
topology of swarms. We have also analyzed the details of individual swarorglerstand con-
tent clustering (e.g., availability of certain content in specific regions onlgg Mmeasurements
have been performed from June 2008 to May 2009 using the PlanetdaB-aab experimental
facilities. The characterization shows for example that real-life BitTornears distributions
are highly skewed (i.e., 90% of the AS’s have less than ten peers, mosthngsand demand
for more differentiated algorithms for traffic optimization. This is in contrast t@tpoevious
work where uniform distributions of peers over AS’s are assumed.

The remainder of this paper is organized as follows. Related work is disdua Sec. 2.
We first describe the measurement setup in Sec. 3 and provide the nmeasuresults and the
derived characteristics for BitTorrent swarms in Sec. 4. From thesstsewe summarize the
main observations for modeling BitTorrent swarms in Sec. 5 and concluder¢he/ance for
traffic optimization mechanisms in Sec. 6.

2 Related work

P2P has a dominant share in the total Internet traffic [4]. The main cotdribw this share
is still BitTorrent [5]. Thus, it becomes critical to understand all aspet®itdorrent’s be-
havior, including both properties of individual swarms and global statjsdicd provide good
sources of information for its modeling. This is one contribution of our paf¢udies such
as [6] and [7] do exactly this. [6] follows the lifetime of one specific torrentl analyzes Bit-
Torrent’s main performance indicators (e.g., download times). Besidesieixg its download
performance, [7] makes a step further toward providing measuremesfid & modeling of
BitTorrent. Peer uptime distribution, their bandwidth distribution, peer drpkacess proper-
ties as well as distribution of seeders across time are the main quantities iggfoon. The
set of properties in the focus of our paper is not overlapping with thesethe information we
provide is complementary to the information provided by [7].

We pay considerable attention in this paper to the distribution of peers in BitTiogwarms
across AS’s. The motivation for doing so is as follows. BitTorrent formsvisrlay graphs
and distributes content unaware of the underlying physical netwogepties. The same piece
of a file can bounce back and forth between different peers in EumogeAmerica creating
thus enormous amount of unnecessary traffic. Given the scale ofdbkepr, i.e., BitTorrent's



immense popularity, it becomes important for network owners to manage BRitifdraffic ef-
ficiently. At the same time, being network-agnostic, BitTorrent might be ioffesuboptimal
performance as seen from its users point of view. Solving the two prokd@msdtaneously
(handling P2P traffic efficiently and improving performance for the eraf)usas become an
important research area recently. Locality promotion has been so faestiegl in the literature
as the main solution class. It requires peers to give preference to sgleetghbors from the
same AS rather than those outside the AS when forming the overlay gragptal Biral. [8] and
Aggarwal et al. [3] were the first to analyze how locality promotion can hetlhuce the gen-
erated traffic and improve the performance of BitTorrent and GnuteBpergively. They both
find serious improvements of the application performance (i.e., reductioovafildad times)
and reduction of cross-ISP traffic. [9] essentially repeats the expetsoé[8] on a larger scale
and comes up with the conclusion that locality can be pushed to the limit, i.e., only a minimu
necessary inter-AS links can be kept, while all others should be maintaiwadddocal peers,
i.e., those within the same AS.

A similar approach is taken in [10]. Wang et al. studied around 70,000 Bémbswarms
from btmon.org-BitTorrent site for 6 months in 2008, using 200 PlanetLaesiovith a cus-
tomized BitTorrent client to retrieve the swarms’ peer IP addresseseTResgldresses were run
against the whois-service to resolve the IPs’ autonomous systems. peerpainly concen-
trates on swarms distributing video files, stating that video files show the higgggsnal (AS)
interest, i.e. Chinese movies are mostly watched in China. The authors atfedydistribution
of peers to AS’s and conclude that in small swarms the application of localdyes@ss mech-
anisms is not useful, because the top AS of the swarm holds a large frattlmwhole swarm
and the traffic is already naturally localized. On the other hand in largevssitaie authors found
no AS holding more than 6% of the whole swarm population, which makes thieatxm of lo-
cality enhancements more favourable. Furthermore they find for largensythat the relation
between ordered ASes of a swarm and the AS-fraction of a swarm {largest AS of a swarm
— #peers in AS/#peers in swarm) follows the Mandelbrot-Zipf distributiorenfvally the paper
argues, that AS’s have a stationary property of forming a larger clugigin a swarm, and give
a probabilistic approach how to predict the peers’ membership in a largercl@gers in large
clusters should apply locality aware neighbor selection, peers not in ¢ugeer should stay
with the standard random neighbor selection. In contrast to this papemmgider more me-
dia types in our measurement and also cover more swarms from differesmttondexes. This
allows us to generalize the results and to identify subgroups with speciaotbastics. Thus,
we also provide a more differentiated view on regional content, which is nmarttin [10] but
not considered in detail. Especially, we show that the share of peergiA®mran be larger for
regional content.

3 Measurement Setup

The measurements described in this section aim at gathering data aboutTwediit swarms
from which we want to draw conclusions about the viability of locality awassn First, we
outline the BitTorrent protocol itself before introducing our measuremettiadelogy.



3.1 The BitTorrent Protocol

BitTorrent’s objective is to disseminate one large file to a large number of usan efficient
way. For each file an overlay network callegarmis created. According to the original BitTor-
rent specification, each overlay network consists of two differentkaigheers, the seeders and
the leechers, and a so-called trackese®deiis a peer in the swarm that holds the complete file
and uploads to others altruistically, wheredsexcheris still downloading the file.

For each swarm, a centralized component, the so-cBitddrrent tracker stores information
about the file itself and all peers in the swarm. This information includes the file iz
number of seeders and leechers, as well as the IP addresses o&tbe Ageer joining the
network asks the tracker for a list of active peers in the overlay. Tlekdrahen returns (a) the
number of seederS and leecherd. and (b) a random subset bfpeers, i.e.k different IPs, to
the requesting peer. Most trackers retére: 50 peers per default.

In order to avoid congestion at the tracker, the request rate of aridodivpeer is limited.
The default value in the original BitTorrent tracker implementation from @ailws a single
request every 5 min. However, in the Internet, various tracker implememsagixist and in our
measurements we have been able to contact various trackers eveifyriHtessary.

For searching files to download through the BitTorrent protocol, thexreseweral websites
that list indexes and directories ot orr ent files. Such a website is referred to @srent
index A torrent index maintains a list oft or r ent files containing metadata about the files to
be shared and about the tracker, as well as additional information td@pbpularity of a file
(in terms of number of seeders and leechers) or the date when the filaiblashpd.

3.2 Conducted Experiments

To gain a more differentiated view on the characteristics of existing swarestijyan in the
known work, we chose specific sets of swarms to measure. Theseferedday a number of
selection criteria which serve to define a number of swarm classes. tirastto [10], we do not
only want to analyze swarms found on one index and only distributing videstead, we want
to expand the insights gained from observing these swarms to other atdissesrms as well.
According to a certain selection criterion and the desired type of contenttther ent files
are downloaded from a torrent index. salection criterigwe consider (a) all available torrents,
(b) the most popular torrents in terms of number of peers in the swarm, atit(most recent
files which have been published in the last 24 hourstype of contentwe distinguish between
(1) music files, (2) TV series, (3) movies, (4) so-called “regional” mowégh are in a certain
language (German, Spanish, French, Italian, Dutch), and (5) all medbaémdent of the type
of content. The considerddrrent index serversover the most popular ones in the Internet, (i)
PirateBay, (ii) Mininova, and (iii) Demonoid. Here, the criteria (a)(3) am{4) correspond to
the class of swarms evaluated in [10]. Thus, we additionally consider otimeent types and
indexes as well as specific subsets of swarms.

Table 1 summarizes the measurement experiments conducted over the meriddifie 2008
to May 2009. Each measurement experiment is assigned a unique idérifiwhich is used
when describing the measurement results. In particular, we measurehirexgaeriment the
swarm size, the swarm dynamics, and the AS topology of swarms meanirfjlthtian of peers



to AS’s. In order to measure the total numidérof peers in a swarm and their corresponding
AS’s, we contacted the tracker and requested a list of peers. Aslg teetnumber of seeders
S and leecherd,, and a set of different IP addresses of peers are returned.

Since a tracker typically returns = 50 IP addresses for a single request, we used a large
number of machines with BitTorrent clients running on each of them. Thetacbthe tracker
simultaneously in order to get the IP addresses from all peers in the sataansingle time
instant, i.e. a snapshot of the swarm. In particular, several requessemir within 5 minutes
from all 219 nodes in PlanetLab [11] and 153 nodes in G-Lab [12paevely, untilN = S+ L
different IP addresses are obtained. Then, the IP addressesgpedra the origin AS using the
RIPE databaseéh(t p: / / www. ri pe. net/ projects/ris/tool s/riswhois.htm).
This measurement method is referred talass$ributed monitoringn the remainder of the paper.
However, for measuring the swarm size only, it is sufficient to monitor thekéra(denoted
as 'tracker monitored’ in Table 1 for setupPeop. and24h.) or to parse the website of the
torrent index ('website parsed’), as done in experinl@htAdditionally, we consider a publicly
available dataset from Khirman [13] with measurement results of the swaesaf torrents on
different torrent index server&Ppi ., KDe., andKM .).

To study the time dynamics of a swarm, several samples of the swarm sizecais8 thpol-
ogy are captured over a longer period of time which is denoted as “xx samypdey yy hours”
instead of “snapshot” in the column “measurement per swarm” in Table 1atrcse, for ex-
ample the average swarm size over this period of time is given, which maly iresudecimal
number, while a snapshot of a swarm always returns an integer value.



Table 1: Overview on conducted measurement setups.

D f[orrent se_Iec_tlon type of meas. per #torrents metho- observed meas.
index criteria content | swarm dology date
: . TV 96 samples website . Jun.
TV. | PirateBay| all available series over 36 hours 63,867 parsed swarm size | ;)00
. . tracker : Mar.
Pop. | PirateBay| most popular movies | snapshot 4,463 monitored swarm size 2009
. . tracker . Mar.
24h. | PirateBay| last 24 hours all media| snapshot 1,048 monitored swarm size 2009
distributed
- groups w.r.t. , 440 samples e Apr.
G p. | Mininova size & language movies over 88 hours 16 inr:;nltor AS topology 2009
distributed Apr
Mov. | Mininova | all available movies | snapshot 126,050 monitor- AS topology 280'9
ing
distributed Apr
Mus. | Mininova | all available music shapshot 135,679| monitor- AS topology 280'9
ing
regional distributed May
Reg. | PirateBay| top 30 movies shapshot 120 _monltor— AS topology 2009
ing
. . . . data taken . Mar.
KPi . | PirateBay| all available all media| snapshot 1,682,355 from [13] swarm size | .o
. | community se- . data taken . Mar.
KDe. | Demonoid lected titles all media| snapshot 11,759 from [13] swarm size 2009
- legal torrents . data taken . Mar.
KM . | Mininova promotion allmedia| snapshot 4,514 from [13] swarm size | ;0
distributed
. , 8,640 samples . Apr.
El e. open movie “Elephants Dream over 24 hours 1 monltor AS topology 2009

ing




3.3 Distributed Monitoring of Tracker

The distributed monitoring of a BitTorrent tracker for obtaining the AS topplagjes on exper-
imental facilities, like PlanetLab or G-Lab, with a large number of nodes. &neyontrolled
by a central unitC' which is located at the University of Wuerzburg in our measuremefits.
has established connections to the used PlanetLab and G-Labodeis responsible for the
distribution of the. t or r ent files to these monitoring nodéy the initialization of the moni-
toring on<2 and the collection of the created result files from The monitoring on each node
itself is realized with a python script that queries a trackéimes everyt seconds. In our mea-
surements; is set to 15 seconds to avoid overloading the tracker, whitechosen according to
N, using the analysis described below.

Figure 1 shows the number of occurencé®f the same IP address in a measurement trace.
The random variableéX can be approximated by a binomial distributidh ~ BINO(n, q),
when the tracker of a swarm of siZé is requested: times and returns 50 IP addresses each
time, i.e.q=1— (1 — 1/N)%,.

1 ‘ ‘ e .
0.97
0.8
0.7
0.6}
0.5f
0.4}
0.3y
0.2t
0.1}

0

CDF

measurement sample ||

® binomial

0O 2 4 6 8 10 12 14 16 18 20
occurrences of same IP in measurement trace

Figure 1: OccurenceX of the same IP address in a measurement sample follow a binomial
distribution X ~ BINO(b, q), when the tracker of a swarm of si2éis requested
times and returns 50 IP addresses each timeg kel — (1 — 1/N)°.

In the following, we derive the numbéf of required monitoring nodes in order to obtain all
IP addresses oV peers in a swarm. Upon each request, the tracker returns a suldset o
peers which are randomly chosen fromZslpeers. Denote b the number of times the tracker
has to be contacted to ght different IP addresses. The derivation’6fis known as theoupon
collector’s problenf14]. In [15], we derived an exact solution which is given in the follogin

Let P(j,4) denote the probability to obseryedifferent IPs after theé-th tracker response. It
is

P(j,i) =1forj < kandi > 0, (1)



since the first tracker response retukrdifferent IPs. It is
P(j,i) = 0for j > min (ik, N), (2)

since a maximum ofk different IPs are retrieved after thieh tracker response and there are
only N different IPs.
This allows to recursively comput®(, 7) for all other cases,
k (j—m) . (N—j—i—m)

k—m m

P(j,i) = Z N
m=0 (k)
which simply considers the number of possibilities to obtair m old andm new IPs, nor-
malized by the number of possibilities férdifferent IPs of a tracker response. As a result, we
obtain the distributionX of the number of required tracker responses to geialPs which is
P(X =1i)= P(N,1).
An upper bound of the average number of required tracker response

-P(j—m,i—1), 3)

o

E[X] =) iP(N,i) (4)

1=0

can be approximated [14] using the harmonic number

11 _ N
h = / v, 5)
0 ]. — X
such that Noh
B[X] ~ =, (6)

which is exact fork = 1. For example, to get a snaphot of the AS topology of a swarm with
N = 20,000 peers, around = 20 requests have to be sent from each of the 219 used PlanetLab
nodes. This takes-¢t = 5 minutes. The computation of the required number of tracker requests
allows to dimension the number of monitoring nodes and to adjust appropriatghathmeters

t andn, if a time frame of 5 minutes is allowed for capturing the snapshot.

However, it has to be noted that Equation (6) only returns the averagberuof required

tracker responses. Checking the percentage of missing IP addiessganeasurements, we
observed that only for a small number of swarms some IP addresses amegnil particu-
lar, we checked the percentage of missing IP addresses when olgsiiiAS topology of a
swarm. Figure 2 shows the cumulative distribution function (CDF) of thegp¢agie of missing
IP addresses when measuring the AS topology for the moMee.] and music filesNus.).
For 97.5% of all moviesNbv.) and more than 98.5% of all music fildgls.), all IP addresses
in the swarm were captured. A reason for missing IPs is the fact that pesrgo offline during
the measurement interval of 5minutes. This has no effect on the numesicaisvor on the
conclusions with respect to application layer traffic optimization.
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Figure 2: For 97.5% of all moviesvbv.) and more than 98.5% of all music fileBus.), all
IP addresses in the swarm were captured. The percentage of missidgrésses is
given as CDF.

4 Measurement Results

In this section, we describe the results from the measurements and draviisbim@nclusions
from that data. We focus on observations where previous studieglpronly a general impres-
sion or where the results for specific swarm types contradict the acckpbsviedge. In par-
ticular, we are interested in the characteristics of the swarm size and ilspi@ent over time.
Additionally, we consider the mapping of swarms on the AS topology of theratesince this
has important implications for the viability of locality-promoting mechanisms. Anathpor-
tant characteristic to model application layer traffic optimization schemes footBéit has to
take into account that within a single AS several swarms are existing in paialléis end, we
investigate the number of parallel swarms within a single AS. Finally, we repoffindings on
content that is popular only in specific regions of the world.

4.1 Population Sizes in Swarms

First we take a look at the size of the measured swarms. For this, we athahzeeeder
and leecher population of swarms for different content types, e.g., BjoMéshows and music
files, which are registered at different BitTorrent index websites. dlhégvs us to avoid drawing
platform- or content-specific conclusions.

Figure 3 shows the observed swarm sizes for the datd ¥etRop., 24h., Mov., Mus.,KPi .,
KDe. andKM . We can see that the distribution of the number of peers is similar for all data
sets except for the4h. andPop. set. An explanation for this divergence is the fact that these
two sets feature swarms with specific characteristics due to the popularity siidihed content.
While thePop. set of swarms contains swarms with highly sought after content by definitio
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Figure 3: CDF of the number of peers in a swarm.

it is a reasonable assumption that the recently added files @4theset are also more popular
than the average, since users are interested in new content which iskevitahe first time.

To give an impression of the proportion of seeders to leechers in swkigusge 4 shows a
scatterplot of the number of seeders in relation to the number of leechres@genm for theT V.
data set. This example, which is supported by the other measurement riegpliess that the
number of leechers is correlated to the number seeders.

The according data for all measured data sets is given in Table 2. ltin®ike statistics
for the total number of observed swarms, their mean valaad coefficient of variation,,,, of
their sizes, the skewness, kurtosis and maximum of the swarm size distribstiosll as the
95th percentile both as an absolute value and normalized by the mean swarrhisaly, the
fraction of swarmsrg, that contain 80% of the peers and the correlati(i, L) between the
number of seeders and leechers in all swarms of the whole data set is.show

The first observation we make about these results is that the swarm geaeddeon the content
shared. This is in line with the observations for video file swarms from [L& swarms which
distribute movies are the largest on average, while smaller music files assdhatess peers
on average. This is due to the fact that larger files take longer to dowr&sating to a longer
online time of peers and therefore a higher population in the swarm. Thiddsheuwoffset
by the resulting additional upload bandwidth offered to the swarm. Howéwan be shown
analytically, e.g., by adapting the analysis of [16], that download times deadserin such
swarms.

Regarding the different data sets, the coefficient of variation of thems\see is in the same
range, with the exception of the Khirman set of PirateBay swaKRs (). This set also differs
significantly in terms of skewness, kurtosis and maximum swarm size. Althagbannot
judge the source of this discrepancy with our data and the other data@®t&firman, we
still observe that at least the 95th percentile normalized by the mean valuagmcable to the
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Figure 4: Scatterplot of the number of seeders and the number of lsénteeswarm. Each dot
represents (#seeder,#leecher) of an individual swarm for the dWsHatasetV.

corresponding values for the other data sets. This means that knoervatisns for video file
swarms can be extended to other media types as well.

Another general observation is that the Pareto principle holds for mabedadvaluated data
sets. Thepgg value, i.e., the fraction of top swarms that contain 80% of all peers in allrsgvar
of the set, is around 0.2 for all sets except the top movies and the Khirmafod#tia mininova
and demonoid sites. This means that 80% of the peers belong to 20% of ttmesswlzerefore
this fraction of the swarms generates roughly 80% of the P2P traffic. led& that the most
popular content as covered by tRep. data set do not show this Pareto property, since the
different files here are equally popular and represent only a veifigppart of the total shared
content.

Finally, there is a strong correlati@ri(.S, L) between the number of seeders and the number
of leechers in a swarm. This is intuitively clear, since more leechers meagea tfarmber of
potential seeders, and swarms with only a few seeders are normally piapaue to long
download times.

From these observations we draw several first conclusions for htyeaaware mechanism.
The type of shared content has an impact on the swarm size and tkeveftine effectiveness
of different locality-promoting solutions. We will see in the next sections tihiatis also true
for the topological characteristics of a swarm, which also depend on thertoshared. In
general, the swarm size distribution is heterogeneous with a Pareto-likbutisin of the total
peer population on the different swarms. Also, recently released gnagracontent leads to
much larger swarms in comparison.

Also, there is a significant amount of very small swarms containing less thaeers. With
typical BitTorrent client parameters, each peer in such a swarm will lkalbether peers, since
it tries to have at least 40 neighbors. The result is a fully meshed swamseGoently, accepted
solutions using Biased Neighbor Selection (BNS) as introduced in [8]reybeers close in the

11



topology are preferred as neighbors, will have a low impact on thesersyaince there is no
choice to be made in the neighbor selection.

Therefore, we conclude that it would be a good strategy to concenticétyepromoting
efforts on the comparably few top swarms, including new and popular monféne share of
traffic that can be influenced by targeting these swarms is significantn@®0%), while the
effort to do so is much lower than when trying to cover all or at least mosteofttarms. To
optimize the monitoring of swarms in order to find these candidates, it may helptthejeis
track of the seeder population, since it is strongly correlated to the nurhlemalers and thus
the total population of a swarm.

Table 2: Statistics on the number of peers in a swarm.

| ID [ #swarms| meanyu | cyar | skewness | kurtosis | max. |
Mov. 126,049 25.46 8.48 51.89 3,573.01 | 20,079
TV. 63,867 15.53 6.47 29.45 1,246.99 7,276
Mus. 135,679 9.76 4.24 28.43 1,432.57 3,813
KPi . | 1,682,355 11.12 13.42 216.52 | 69,248.60 | 72,988
KM . 4514 6.99 3.17 19.78 535.82 763
KDe. 11,759 9.73 4.64 22.90 663.79 1,883
Pop. 4,463 | 691.14 2.08 9.87 144.06 | 30,691
24h. 1,048 | 146.68 5.37 17.20 386.37 | 19,748

Table 2 (cont.): Statistics on the number of peers in a swarm.

| ID | qo5 | gos/m | 70 | C(S, L) |
Mov. 76 298 | 0.13 0.84
TV. 45 2.88 | 0.17 0.71
Mus. 32 3.28 | 0.25 0.61
KPi . 31 2.79 | 0.18 0.85
KM . 19 2.72 | 0.45 0.53
KDe. 27 2.78 | 0.31 0.65
Pop. | 2,068 2.99 | 0.45 0.73
24h. 435 2.97 | 0.12 0.65

4.2 Time-Dynamics within a Swarm

While a snhapshot of the number and size of swarms is necessary to detgooheules for
traffic optimization, it is wrong to assume that a swarm can be treated as sta¢i@opulation
of a swarm varies over time, meaning that the performance of locality-awachanisms also
depends on this dynamics.

While it may be efficient to promote locality in a swarm that was measured as laegegat
a given time instant, it may be less efficient when the swarm shrinks quidielytafit snapshot.

12
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Figure 6: Number of seeders and leechers over time for a German vefsipan office GOO.).

To gain insights into the time-dependent behavior of swarms, we obserlaates] swarms over
a timespan of several days. The evolution of the size of four of thesemagy swarms, which
are taken from the set summarized in Table 6, is depicted in Figure 5. Tixticelef these
swarms allows us to show principal differences between swarms even #liaee the same type
of content.

We observe that there are variations in the population of each swarm |laswgeiantitative
and qualitative differences in these variations between the swarms. Whitensi), which is

13



measurement (mi, si)

1 || ——theoretical minimum

[y
o

=
o
o
T

standard deviation s. of swarm size

o 1 2 3 4 5 6 7 8 9 10
average swarm size m

Figure 7: Standard deviation of the size of swarni vs. average size of swarirfor measure-
ment experiment V.

sharing a movie in English, shows only small changes in its peer populatiosizéhef swarm
C) exhibits a periodic behavior. We attribute this to the fact that in this swarm,\déenmo

Spanish is distributed. As a consequence, the peers in this swarm caumigenfiainly in Spain
and South America, and therefore the swarm population increases dueimgytime in these
regions and decreases again afterwards. Swarm G), sharing aGeronge, shows a similar
characteristic, although it is less pronounced due to the fact that thisnswamaller.

The development of the peer population of swarm B) is a superposition afitnaally in-
creasing popularity and a 24 hour cycle like for swarms C) and G). WhidéeravD) distributes
content that seems not to be preferred regionally, the movie sharedrnm 8yaeems to be more
popular in a specific part of the world. Another example for this deperydehcontent and a
periodic swarm size behavior is shown in Figure 6, where the seeddeectter population of
a swarm distributing a German version of OpenOffice is plotted over time.

In order to be able to describe and compare the dynamics of swarm seasewhe standard
deviation of the size of a single swarm measured at regular intervals. @his is plotted in
Figure 7 for the swarms of thHEV. data set, sorted by swarm size. Only swarms with 10 peers or
less on average are shown. We see a clear trend for a higher varitiensovarm size in larger
swarms. There is a theoretical lower bound for the standard deviatiatindgto the peculiar
shape of the plot for mean swarm sizes that are not an integer value &ncapture? = 96
samples of the size of a swarinfior the TV. experiment, the minimum standard deviatigrior
a given average swarm sizg € [a;a+ 1] is obtained when we measutdimes a size ofi and
R — k times a size ofi + 1 (for a € N). Thus, itis

_ka+(R—k)(a+1)
N R

mg

(7)
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and

o Jka*+ (R=k)(a+1)* 5 1 —
S —\/ 7 mi =5 (R—k)k. (8)
We now want to determine the amount of swarms that show a diurnal belswidar to
swarms B), C) and G), in order to judge the relevance of this effect éopérformance evalu-
ation of locality awareness mechanisms. To that end, we use a method cailtetigity trans-
form which automatically detects periodicities for a given data set. In pantjoutarely on the
' M-best’ algorithm as introduced in [17] that returns a list of fife= 10 best periodicities.
From the)M best periodicities that arer; : 1 < i < M}, we calculate the autocorrelatignat
lag t; and select the best period of duratignwith maximum, positive autocorrelatign,, i.e.

k = arg (max{p; : 1 <i < M}).

Figure 8 shows the CDF of the length of the ’best’ period for the numbeeefilars, the
number of leechers, and the entire swarm size foffifiedata set. It can be seen that the three
different curves show a similar behavior. In particular, the curveth®number of leechers and
the total swarm size are almost identical, showing that the leechers mainlgndetehe diurnal
behavior. Furthermore, we observe that roughly the 'best’ perioxi¥6of all swarms is around
24 h.

Figure 9 shows the autocorrelatign to the best period of duration,. Again, the three
different curves are quite similar. We observe that from the swarms ifVhe&lata set only
8.36 % show a strong correlatign > 0.7. As a summary of the time-dynamics analysis, we
see for roughly 5.7 % of the swarms a day-night behavior can be aakefe be more precise,
for these swarms the autocorrelation is larger than 0.7 for the best petfidd,the duration of
the period is about 1 day, i.e. between 21 hours and 27 hours.
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Figure 9: Autocorrelation to the best period fov.

4.3 AS Topology of Swarms

In order to judge the potential of swarms to be optimized by locality-aware méeshsa, we
have to take a look at the distribution of the peers in the Internet topologgode by mapping
peer IPs to AS’s and thus get a statistic on the number of peers per AQjfeeraswarm. In
general, we believe that swarms that are distributed over fewer ASiitiuinore peers per AS
can utilize locality-awareness much better than a swarm that is highly dispesaogically.
While there is already a higher probability for peers to exchange data lacaltyAS containing
a large share of the swarm, the potential to save traffic by systematically pingnhacality is
also greater.

We present the CDFs for the average number of peers per AS fomsnditheMbv. data set
in Figure 10 and for th&/us. data set in Figure 11, respectively. Note that the x-axis is scaled
logarithmically. The swarms are grouped according to their average siwoas in Table 3
and Table 4 together with the relative size of each group. We observedhat) increasing
mean swarm size, the average number of peers per AS grows. Hotteyerlue as well as the
maximum number of peers in one AS is still small even for the largest swarms.

Table 3: Percentage of swarms grouped according to their size for miegiév .).
[0; 25[ | [25; 50[ | [50; 100[ | [100; 500[ | [500; 1e3[| [1e3;o0]
0.8580| 0.0703 | 0.0294 0.0347 0.0040 0.0036

Table 4: Percentage of swarms grouped according to their size for masi¢vis .).
[0; 25[ | [25; 50[ | [50; 100[ [ [100; 200[ [ [200; 500[ | [500; 1000[ | [1000; 2000[| [2000; 0]
93.28 3.80 1.29 0.94 0.52 0.11 0.04 0.01
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Figure 10: CDF of average number of peers per observed AS. Swadms) are grouped
according to their size, cf. Table 3.
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Figure 11: CDF of average number of peers per observed AS. Swinss) are grouped
according to their size, cf. Table 4.

The coefficient of variation also grows for larger swarms (cf. Fig@refdr the same group-
ing). From the results, we see that there are a only a few, if any, AS'stimain a significant
fraction of the swarm, while there are still many AS’s in the same swarm holdilygame or
two peers. For these, locality-awareness is probably only of limited usz gie few peers in
these AS’s do not have much choice in selecting local peers to exchatagwith.
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Figure 13: Number of AS’s per swarrvifs.,Mov.).

Another important characteristic of a swarm is the absolute number of #ite swarms that
are distributed over fewer AS’s but with more peers per AS can likely utilicelity promotion
mechanism more efficiently. To this end, we consider the movie s .) as well as the
music files Mus.). Figure 13 shows the CDF of the number of AS’s per swarm for both data
sets. Since there are more peers involved in swarms offering movie cqnitemesare also more
different AS’s involved than in swarms providing music files. On avertlygre are 65 % more
AS'’s involved in movie swarms than in music swarms. In particular, if the CDFehtimber
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of AS’s for movie swarms is normalized by a factor of 1.65, it is nearly idehticthe CDF for
music swarms. The maximum number of observed AS'’s is 1,744 for movie svearan309 for
music swarms, respectively.

4.4 Multiple Swarms in a Single AS

Another important characteristic to model application layer traffic optimizatibarses for Bit-
Torrent has to take into account that within a single AS several swarnmexetéeng in parallel.
We have taken a closer look at tMev. andMus. data sets which have been captured at the
same time. In order to determine the number of parallel swarms, we havel phes&é® ad-
dresses of any peer in all swarms of both data sets and mapped them tord8reu Since we
only consider a subset of all existing types of content and a subsétexisting torrent index
websites, the presented study here only gives a lower bound for theenwiparallel swarms
within an AS.

Figure 14 shows the CDF of the number of parallel swarms within a singletAfaslto be
noted that about 10 % of all AS’s have only a single swarm. However,yué@ge number of
parallel swarms in an AS is about 255. Since the distribution is heavily skehwednedian is
only about 12 swarms. The 99% quantile lies at 6,096 parallel swarms, whilmaximum
number of parallel swarms is 35,327.

1
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0.4r

0.2

0 1 1 1
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4

Figure 14: Number of parallel swarms within an A®&E.,Mov.).

The top ten of the AS’s with the largest number of parallel swarms is enurderatie
following. We give the observed AS number, the number of swarms whikwarently active
in the AS, the AS name, and the organization name corresponding to the &i8elnto get this
information, we used the ARIN WHOIS database search which is availalblietat: / / ws.
arin. net/whoi s and the RIPE databaseldtt p: / / ww. db. ri pe. net/ whoi s.
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Table 5: Top ten of the AS’s with the largest number of parallel swarms datesetd/bv. and
Mus. are taken into account only.

(1.) AS 7132 (SBIS-AS) participates in 35327 swarms: AT&T InterneviSes

(2.) AS 19262 (VZGNI-TRANSIT) participates in 28776 swarms. Verizoternet Services
Inc.

(3.) AS 2856 (BT-UK-AS) patrticipates in 25762 swarms: BTnet UK Reglaetwork

(4.) AS 3269 (ASN-IBSNAZ) participates in 24967 swarms: Telecom ltalia

(5.) AS 6327 (SHAW) patrticipates in 24670 swarms: Shaw Communications Inc

(6.) AS 577 (BACOM) participates in 22447 swarms: Bell Canada

(7.) AS 6830 (UPC) participates in 22244 swarms: UPC Broadband

(8.) AS 812 (ROGERS-CABLE) participates in 22230 swarms: Rogerte@dmmunications
Inc.

(9.) AS 5089 (NTL) participates in 21975 swarms: NTL Group Limited, Unitéagdom

(10.) AS 3352 (TELEFONICA DE ESPANA) participates in 21776 swarnmaefbnica-Data-
Espana

4.5 Characteristics of Regional Swarms

We have already seen the effect regional content has on the evoliditibea swarm size over
time. We now take a closer look at the topological characteristics of swaimgaglthis content.
To this end, we consider 16 individual swarms of different averagessiistributing movies in
German, Spanish, Chinese or English (cf. Table 6). For these swasranalyze the absolute
number of peers in the AS’s observed over the lifetime of the swarm. Théges this analysis
are shown in Figure 15. The AS ids on the x-axis are sorted by the nurhpeers observed in
them. This means on the left side we have the AS with the minimum number of pegtesddc
this AS, while on the right side we have the AS’s with many peers. On the ywaxisave the
absolute number of peers per AS; both axes are scaled logarithmically.

We see that larger swarms tend to have larger shares of the swarm in ABigleFor the
largest swarm A, the most AS’s are observed. Also, swarms sharirrgatitenally interesting
content, i.e., in English, are spread over a larger number of AS’s thamwtlmens distributing
more regional content. Thus, swarms C and E, although being largerilaams J and N, are
concentrated on the same or even lower number of AS’s due to the fath¢hagers interested
in that content can be found in the same region.

Table 6: Individually measured swarms over tin@ [f.) using the following notioniD) aver-
age swarm size & language

A) 21,351 EN| B) 17,170 EN| C) 4,550 SP| D) 3,182 EN
E)1,390SP | F)972GE | G) 832 GE | H) 626 GE
) 579 SP J) 479 EN K)473 GE | L) 351 GE
M)289 GE | N)258 EN | 0)217 SP | P) 81 CHI
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Figure 15: Number of peers per observed AS over time (Table 6).
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Figure 16: Relative number of peers in a swarm’s top R&J.).

Swarm D is an exception here. We have seen in Sec. 4.2 that the pe&atpoputhin swarm
D remains almost constant over time and doesn’t show any periodic daypatiern. Thus, the
swarm distributes content that seems not to be preferred regionallye‘¢oywswarm D shows
the highest skewness in terms of number of peers per AS compared to #iesatirms. In
particular, 30 % of the peers belong to the same AS with the AS number 30088sér look
reveals that the company responsible for this AS offers its customersediffi@ays to host their
content, e.g. using dedicated, virtual or colocated servers.
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The fact that users are interested in regional content leads to a higtBtéqaétion, which is
the relative number peers in a swarm’s top AS. This is especially true foriS$peontent, see
Figure 16. Here, the top AS of each swarm in Bexgy. set is used for comparison, i.e., the AS
containing most peers from a swarm. A CDF of the relative share of pearsre located in
these AS’s is plotted for swarms with Dutch, French, Italian and Spanidiemion

While in all cases there are at least 10% of the total swarm population in th&Spghis
share is between 40 and 48% for the Spanish content, implying a high dégreer grouping.
To judge whether this phenomenon only exists for a single AS, we evalulatetha second to
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Figure 19: Scatter plot of the total number of peers in a swarm vs thege/esio of peers per
AS for theMov. data set.

fifth largest AS’s of the swarms in tHReg. data set, cf. Figure 17. It appears that the top AS of
a swarm contains significantly more peers than the other AS’s, although dhestill holding
around 5% of the total swarm population.

We affirm this result by comparing the kurtosis, i.e., the fourth moment of dhiisityn that
indicates statistical peaks, of the number of peers per AS for the swarmsRegh, theMus.
andMov. sets. The results are shown in form of a CDF in Figure 18.

The regional swarms show a much higher kurtosis than the two larger ardgaoeral sets.
This leads us to the conclusion that the concentration of a larger fractitire gwarm in the
same AS is much more common in regional swarms. Therefore, at least ttent@ted parts
of these swarms may profit more from locality-aware mechanisms. This mesreiregional
interest in a shared file can play a significant role in the suitability of the dwpswarm for
locality promotion, something previously underestimated. In particular, thelkoidbsis values
for a certain fraction of swarms providing music or movie files in Figure 18 atdi that this
phenomenon of regional interests with many peers in the top AS can bevetd$er any kind
of content.

We want to highlight here that — independent of the locality mechanism wwhady — these
relevant swarm characteristics have to be considered to show thtvelfiess of any algorithm.
In [18], we show that a scenario with a heavily skewed peer distributi@sedl Unchoking [19]
and Biased Neighbor Selection [8] have opposite effects in the peers lartfest AS. Biased
Unchoking can be utilized better in AS’s with many peers and therefore $otherdownload
times. Biased Neighbor Selection lets peers in a large AS mainly compete agaihsitger,
while peers from other AS'’s also have neighbors in the large AS. Asudt riee upload capacity
of the large AS is used by both local and remote peers, while the local geerst utilize the
rest of the swarm. Consequently, the download times increase.
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4.6 Reliable Monitoring of Trackers

Monitoring of BitTorrent trackers can be efficiently utilized in a distributeg waget a snapshot
of the swarm. Application layer traffic optimization mechanisms may utilize the monittztzq
which comprises the swarm size, the type of content, the language of éhedfontent, or even
the AS topology of the peers currently participating in the swarm. Howeweprttblem remains
that in that case the monitored data depends on the actual tracker software

In our measurements, we found for example one particular switra.] for which we
discovered only 10% of the peers. The tracker returned a swarmfA8® ®00 peers, however,
we only observed 30,000 IP addresses. We used 219 PlanetLabamabtiesquested the tracker
every 10 seconds from each machine over 24 hours. Thus, weedamore than one million
tracker responses with 50 IPs. In that case, we should observesateand 375,000 different
IPs according to Eq. (6). It has to be remarked again, that in Sec. 3taveeshown that for
97.5% of all moviesNbv.) and more than 98.5% of all music fileglus.), all IP addresses in
the swarm were captured.

There are two possible reasons for this observation regarding thenddva. (1) The tracker
always returns the same IP addresses. This could be the case wHip-beareness mecha-
nisms are implemented by the tracker. However, this is not the case heregé®in PlanetLab
are distributed world-wide. Thus, it seems reasonable that the randuemed@r or the function
which returns a random subset of all peers is wrongly implemented. @)trélcker returns
wrong information about the number of seeders and leechers in the swaboth cases, the
guestion arises how an ALTO mechanism can reliably monitor swarms for braglgmented
trackers.

5 Modeling AS Topology of BitTorrent Swarms

As we have seen from the measurement results presented in Sec. éy@sp&ct for modelling
BitTorrent swarms is the skewed peer distribution. In this section, we mrassimple model
which returns the probability’(k) that a peer belongs to theth largest AS within a swarm
consisting ofn different AS’s. In particular, we investigate whether the peer distribigimong
the different AS’s follows a power-law, which means

Pk)=a/k’ +c. (9)

Therefore, we consider all swarrfig consisting of exactly: different AS’s fromMus. and
the Mbv. data set, respectively. For each swarm J,, we measure the rati; (k) of peers
belonging to thek-th largest AS in swarmifor k = 1,2, --- ,n. Then, we compute the average
ratio P(k) over all swarms, yielding at

k)= 5 3 Bilh). (10)

Figure 20 shows the measured rafidk) of peers belonging to thi-th largest AS within
a swarm consisting of. = 40 different AS's. All swarms consisting of exactly different
AS'’s are considered from thdus. data set. The oberved rati§(k) is then compared with the
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Figure 20: Comparison of the measured rafitk) and the theoretical probabiliti(k) that a
peer belongs to thé-th largest AS within a swarm consisting of = 40 different
AS’s. All swarms consisting of exactly different AS’s are considered from théis.
data set.

power-law model function as defined in Eq. (9). The parametgisc of the model function
are retrieved by means of non-linear regression. We used the optimizatibosxtmf Matlab to
find an optimal fitting function for the given measurement data. Optimal in this weeans to
find the unknown parameteusb, ¢ in Eq. (9), such that the mean squarred error is minimized.
As a result, we obtai?(k) = 0.0769/k%8013 4 0.0134 which is plotted as solid, red curve.
Figure 20 indicates that the power-law describes quite well the peer digiritamong AS’s.

The goodness-of-fit for the model functidi(k) is expressed by means of the coefficient of
determinationk?. A value close to one means a perfect match between the model function and
the measured data. For the measurements given in Figure 20 and the obtaotedunction,
the coefficient of determination &2 = 0.978035 indicating the good match in a statistical way.
In our case, the coefficient of determination can be computed as follows

S (PU - P0)

R*=1 -~ o
iy (Pk) —1/n)

(11)

Analogously, Figure 21 compares the measured ré;(tk) and the fitted model function
P(k) = 0.1445/k11632 1 0.0128 for swarms from thevbv. data set consisting of = 40
different AS’s. Again, the power-law can be observed and the cosifi of determination of
R? = 0.993338 indicates a nearly perfect match between the measurement data and the model
function.
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Figure 21: Comparison of the measured rafitk) and the theoretical probabiliti?(k) that a
peer belongs to thé-th largest AS within a swarm consisting of = 40 different
AS’s. All swarms consisting of exactly different AS’s are considered from thv.
data set.

In the following, we have computed the optimal parameters of the power-laatifun as
defined in Eq. (9) for all swarms consisting of exactldifferent AS’s. Again, the coefficient of
determination?? is used to measure the goodness-of-fit. Figure 22 and Figure 23 sluatters
plot of the number. of different AS’s in a swarm vsR? for theMus. and theMbv. data set,
respectively. The maximum number of observed AS’s is 1,744 for movienssvand 809 for
music swarms. As we can see from both figures, the match between the emestidata and
the pwer-law model function is very well and the coefficient of determinati@bove 0.9.

In order to provide a model for the AS topology of BitTorrent swarms, tivalmer of AS’s per
swarm is required in addition to the parameters of the power-law model. Thieerof different
AS’s was discussed in 4.3 and a further analysis shows that it can béedaedé a log-normal
distribution. Using the measurement data, the maximum likelihood estimates of Hratpes
for the log-normal model distribution were calculated. In particular, weiohta= 1.2161 and
o = 1.1009 for theMus. data set, resulting in a coefficient of determinatiorR3f= 0.99. For
theMov. data set, the parameters of the log-normal distributionpatel.5113 ando = 1.2636
leading toR? = 0.99, again.
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Figure 22: Scatter plot of the numberof different AS’s in a swarm vs. the coefficient of
determinationk? as goodness-of-fit measure between the measurement data and the
power-law model according to Eq. (11) for thas. data set.
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Figure 23: Scatter plot of the numberof different AS’s in a swarm vs. the coefficient of
determinationk? as goodness-of-fit measure between the measurement data and the
power-law model according to Eq. (11) for thbv. data set.
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6 Summary

From the results presented above, we make the following main observatiom®deling Bit-
Torrent swarms and its relevance for traffic optimization mechanisms.

Considering the swarm statistics according to the offered content (i.e hdWss movies and
music) shows that the larger the offered content is in terms of volume, ther ldrg average
and maximum number of peers is in such a swarm, as already shown in lessdé®. Ad-
ditionally, our results show that the distribution of peers among the swarmsvfotiee Pareto
principle for the different measurement sets (1), (4) and (5) whictiagomandom files. This
means that 80% of all peers belong roughly to the top 20% swarms for all rygaia. The
Pareto principle cannot be observed for measurement set (2) n(B)Y6& since we only con-
sider popular or recently published contents there. These recentlylpetblisrrents are highly
popular. This is reasonable, since users are typically interested in méants, recently broad-
casted movies etc. In consequence, traffic optimization should conceontrtite relatively low
number of swarms with larger content and high popularity, since the potgaiia are much
higher than for small swarms. Not only does a larger content lead to mofie,tkaft also the
possibilities for locality promotion are more numerous in larger swarms, where #re more
peers in one AS in general.

Also, especially for regional content we observe a day-night behafitbe swarm size, since
mostly users of a certain region (within a similar time zone) are interested in thintpe.g.,
movies in French are mostly downloaded by users from France. Inaemar found for 5%
of the investigated swarms a clear statistical indication for day-night behavierefore, traffic
optimization schemes need to take into account that their efficiency may varyime. Also, a
one-time observation of a swarm may not suffice to characterize it foritebdity for locality
promotion, even if it is no longer in its flash-crowd phase.

Both regional swarms with location-dependent content and large swaowsseme top AS’s
with many peers when considering the AS topology of a swarm, i.e., the AStadfikaof peers
within a swarm. However, also the observed number of different AS& eivarm increases
significantly with the swarm size. As a result, more than 90% of the obser8&icantain less
than 10 peers in a random swarm. The average number of peers peb@&&is2 peers for 99%
of the swarms in some measurement sets. However, the variation of the nofrpleers per AS
can be quite large, e.g., there are many AS’s with a single peer, but sormavilsseveral peers
inside.

For modeling the AS topology of BitTorrent swarms, we showed that the nuoflffer-
ent AS’s within a swarm follows a log-normal distribution. Further, the phility that a peer
belongs to the:-th top AS follows a power-law model. Thus, the peer distribution among AS’s
within a swarm is heavily skewed. This is generally neglected in the evaludtimafiic opti-
mization schemes, where a more even distribution of peers in the internetggpelassumed.
The resulting error in judging the effectiveness of a locality promotion me@strais even more
pronounced for swarms containing regional content, where the skaviméhe peer distribution
is higher. Even if traffic optimization is actively done for only the AS’s with Eghares of
swarms, as proposed in [10], the effect on the whole swarm must Isdepad. Since these
AS’s contain significant fractions of the total swarm, applying locality awass here may very
well affect the rest of the peers and the traffic distribution in AS’s with alemshare of peers.
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