
University of Würzburg
Institute of Computer Science

Research Report Series

Towards Efficient Simulation of Large Scale P2P
Networks

Tobias Hoßfeld, Andreas Binzenhöfer, Daniel Schlosser1,
Kolja Eger2, Jens Oberender, Ivan Dedinski3, Gerald

Kunzmann4

Report No. 371 October 2005

1 University of Würzburg
Department of Computer Science

Am Hubland, D-97074 Ẅurzburg, Germany
{hossfeld,binzenhoefer,schlosser}@informatik.uni-wuerzburg.de

2 Hamburg University of Technology (TUHH), Department of Communication Networks
Schwarzenbergstr. 95, D-21073 Hamburg, Germany.

eger@tuhh.de

3 University of Passau, Chair of Computer Networks and Computer Communications
Innstaße 33, D-94032 Passau, Germany.

{oberender,dedinski}@fmi.uni-passau.de

4 Technical University of Munich, Institute of Communication Networks
Arcisstr. 21, D-80290 M̈unchen, Germany.

gerald.kunzmann@tum.de

Presented at: Workshop “P2P Sim”, University of Würzburg, 20.07.2005

Towards Efficient Simulation of Large Scale P2P Networks

Tobias Hoßfeld, Andreas Binzenhöfer, Daniel Schlosser1, Kolja Eger2,
Jens Oberender, Ivan Dedinski3, Gerald Kunzmann4

1 University of Würzburg
Department of Computer Science

Am Hubland, D-97074 Ẅurzburg, Germany
{hossfeld,binzenhoefer,schlosser}@informatik.uni-wuerzburg.de

2 Hamburg University of Technology (TUHH), Department of Communication Networks
Schwarzenbergstr. 95, D-21073 Hamburg, Germany.

eger@tuhh.de

3 University of Passau, Chair of Computer Networks and Computer Communications
Innstaße 33, D-94032 Passau, Germany.

{oberender,dedinski}@fmi.uni-passau.de

4 Technical University of Munich, Institute of Communication Networks
Arcisstr. 21, D-80290 M̈unchen, Germany.

gerald.kunzmann@tum.de

Abstract

The algorithms and methods of the Peer-to-Peer (P2P) technology are often applied to
networks and services with a demand for scalability. In contrast to traditional client/server
architectures, an arbitrary large number of users, called peers, may participate in the net-
work and use the service without losing any performance. In order to evaluate quantitatively
and qualitatively such P2P services and their corresponding networks, different possibilities
like analytical apporaches or simulative techniques can beused to improve the implemen-
tation of a simulation in general. This task is even more important for large scale P2P net-
works due to the number of peers, the state space of the P2P network, and the interactions
and relationships between peers and states.

The goal of this work is to show how large scale P2P networks can be efficiently eval-
uated. Methods are demonstrated how to avoid problems occuring in simulations of P2P
services. Efficient data structures are required to deal with a large number of events, e.g.
the application of a calendar queue for the simulation of a Kademlia-based P2P network,
or the priority queue management to simulate eDonkey networks. In order to speed up
computational time the simulation has to be implemented in an efficient way, asking for
sophisticated programming. This can be achieved for example by using parallel simulation
techniques which utilize the distribution and autonomy of the peers in the network.

Appropriate levels of abstraction and models for differentapplication scenarios also im-
prove the computational time for simulations of large scaleP2P networks. An example is
the simulation of throughput and round trip times in networks. We investigate a BitTorrent
network on packet level, thereby, all details on the different layers are taken into account
enabling us to study cross-layer interactions.

Next, we take a look on P2P network for signalling in voice/video over IP systems. In
this context, the round trip time is crucial for the performance of the system. The packet

1

layer and its most important characteristics are modeled inorder to decrease memory con-
sumption and computational power. Finally, an eDonkey network in a mobile telecommu-
nication system is investigated. In that case we can neglectsimulating packets and instead
use a stream oriented approach for modeling the transmission of data.

Keywords P2P, eDonkey, Chord, Kademlia, BitTorrent, parallel simulation

1 Introduction

The algorithms and methods of the Peer-to-Peer (P2P) technology are often applied to networks
and services with a demand for scalability. In contrast to traditional client/server architectures,
an arbitrary large number of users, called peers, may participate in the network and use the
service without losing any performance. In order to evaluate quantitatively and qualitatively such
P2P services and their corresponding networks, different possibilitieslike analytical apporaches
or simulative techniques can be used to improve the implementation of a simulation in general.
This task is even more important for large scale P2P networks due to the number of peers, the
state space of the P2P network, and the interactions and relationships between peers and states.

However, the analytical description of the mostly very complex networks leads to problems,
as a lot of interactions and parameters have to be considered. A simulation can include all in-
teractions and parameters very easily and may reflect reality as accuratelyas possible. But the
computational power of machines is exceeded very fast. P2P networks witha large number of
users also require sufficient memory capacities. It might already be a problem just to keep the
states of the peers in the main memory. There are several possibilites to improvethe implemen-
tation of a simulation in general. This task is even more important for large scale P2P networks.
The work is structured as follows.

• Section 2: Efficient Data Structures
In a P2P network each peer is able to communicate with any other peer. Therefore the
number of possible end-to-end connections is inO(n2) for a network consisting ofn
peers. This complexity results in a large number of events per time unit. Numerous
additional events arise due to the large number of users in a large scale P2Pnetwork and
specific features of the system like priority queues in eDonkey networks (Section 2.3) or
redundancy mechanisms in Chord networks (Sections 2.1). In this section we show how
to create solutions to the corresponding problems using efficient datastructures.

• Section 3: Abstractions and Models
P2P networks can be regarded on different levels of abstractions. Depending on the in-
vestigated performance measure and the application scencario it is required to consider
the packet level. In other cases, the simulation on application layer is sufficient un-
der given cirumstances. This section deals with the applicability of the different meth-
ods. Discussing the advantages and disadvantages of different degrees of abstraction, we
show how to find the appropriate level of detail. We present a simulation of BitTorrent
on the packet-level using ns-2, Section 3.1. Thereby, all details on the different layers
are taken into account enabling us to study cross-layer interactions. Section 3.2 inves-
tigates how to model the packet layer and its most important characteristics in order to

2

signal in voice/video over IP systems using P2P networks. In Section 3.3 we investigate a
stream-oriented approach for a P2P file-sharing network which avoids simulating packet
for packet. The bandwidth share of eDonkey is used as an example and we approximate
the bandwidth that a user gets.

• Section 4: Efficient Programming and Parallel Simulation
The capability of simulations is mainly restricted by memory and computational power.
This difficulty can be overcome with two approaches: efficient implementation, cf. Sec-
tion 2, or parallel simulation. The parallel simulation benefits from distributed resources,
i.e. machines running parts of the simulation, and results in decreasing the running time
and increasing the available main memory. This section investigates the applicabilityof
this technique for simulating P2P networks. Problems like synchronisation of logical
processes and optimizations regarding the signalling overhead between themachines are
considered.

2 Efficient Data Structures

One of the most significant characteristics of a large scale P2P simulation is its enormous com-
plexity. For a network ofn peers the number of possible end-to-end connections is already in
O(n2). The huge number of events, interactions and peer states further increases this complex-
ity. Only efficient algorithms and data structures will make fast simulations possible. In this
context the running time of the simulation and the required random access memory becomes
particularly important. While, to some extent, it is possible to optimize both at the same time,
there is usually a trade-off between running time and required memory. The following three
factors have the most noticeable influence on this trade-off:

• Efficiency of the event queue

• Internal representation of a state

• Way events are modeled in the simulation

Depending on the investigated problem different kinds of optimization might bepreferable.
Figure 1 visualizes the arising possibilities. Obviously, the worst case is a completely unopti-
mized simulation as shown at the bottom of the figure. An efficient implementation ofthe event
queue on the other hand provides an advantage independent of the kindof simulation. In case
each peer has to memorize a huge state space, like e.g. the fragmentation of files in eDonkey
networks, the optimization of the state representation is especially crucial. If,however, each
peer produces a large amount of events, the way events are designed can become the determin-
ing factor all of a sudden. In structured P2P networks, e.g., a peer hasto maintain events for
the stabilization of the overlay, the maintenance of the redundancy, searches and the like. A
highly optimized solution as shown on top of Figure 1 incorporates an efficient design of events,
a memory saving representation of states and a fast event queue. In the following, we will
therefore discuss how to optimize large scale P2P simulations with respect to allthree factors.
Section 2.1 discusses the advantages and disadvantages of a special priority queue when applied

3

0

50

100

0

50

100
0

20

40

60

80

100

Event EfficiencyState Efficiency

Q
u

eu
e

E
ff

ic
ie

n
cy Calendar

Queue

Unoptimized
Simulation

Optimized
States Optimized

Events

Optimized
Simulation

Calendar Queue with
Optimized States Calendar Queue with

Optimized Events

Figure 1: Different categories of simulation efficiency

to the P2P environment. We will present possibilities to adapt the queue to the specific features
of a P2P simulation. Considering the waiting queue in eDonkey-like networks as example we
will also show how to optimize priority queues with dynamic ranking for special purposes. Since
the performance of the queues depends on the number of events and theirtemporal distribution,
we point out the importance of event design algorithms in Section 2.2. Using Kademlia bucket
refreshes, we will show how to model periodic and dynamic events efficiently. In Section 2.3
we will introduce two novel approaches to reduce the required memory forthe representation of
states. The concept of a process handler illustrates how to avoid the redundancy of parallel pro-
cesses as they frequently occur in large scale P2P systems. As a final example, we will describe
how an eDonkey peer can keep track of available and downloaded fragments.

2.1 Priority Queues

A simulative study of the scalability of highly distributed P2P networks automaticallyinvolves
an immense amount of almost simultaneous events. Due to the large number of peers, a few
local events per peer already result in a large number of global events.All these events have
to be stored in the event queue. Especially in structured P2P networks each peer generates a
number of periodic events. In order to guarantee a stable overlay and a consistent view of the
data, most P2P algorithms involve periodic maintenance overhead. Chord, e.g., uses a periodic
stabilize procedure to maintain the ring structure of its overlay as well as a periodic republish
mechanism to ensure the redundancy of stored resources. Moreover, since P2P networks are
mainly used as information mediators, a simulation usually involves a great numberof possi-
bly parallel searches. The choice of an efficient data structure for theevent queue is therefore

4

especially vital to the performance of large scale P2P simulations.
In order to be able to compare two different data structures to each other we need an appro-

priate measure. The most common measure in this context is the so called ”hold time”. It is
defined as the time it takes to perform a dequeue operation immediately followed by an enqueue
operation. Note that the size of the event queue is the same before and after the hold operation.
It is easy to see that different data structures have different hold times.A simple sorted list,
e.g., has a hold time ofO(n), wheren is the current size of the event queue. While dequeue
operations can be done inO(1) (simply take the first element of the list), an average enqueue
operation takesO(n) steps, since the event has to be inserted into the list according to its time
stamp. Similar, structures like trees and heaps have an improved hold time ofO(log(n)).

It has to be noted that, the hold time only states the order of magnitude of a dequeue and an
enqueue event. Yet in practice there is a significant difference betweensay100 · log(n) and
log(n).

0 200 400 600 800 1000
0

200

400

600

800

1000

Number of Events in Queue

H
o

ld
 T

im
e

Tree
Calendar Queue
List

O(log(n))

O(n)

O(1)

Figure 2: Hold times for different data structures

Especially in small simulations, where there are only a few hundred events, the order of
magnitude might not be the only crucial factor. As can be seen in Figure 2, depending on
the constant factor, a linear increasing hold time might outperform a logarithmically growing
hold time, given that the number of events remains relatively small. In large scale simulations,
however, the order of magnitude becomes the determining factor in terms of performance of
the event queue. An optimal solution therefore is a data structure with a hold timeof O(1)
independent of the size of the current event queue. Ideally, this hold timecan be achieved
without the need for additional computer memory. In the following we therefore summarize the
main idea of a calendar queue, a queue with a hold time ofO(1) [1]. We discuss its advantages

5

and disadvantages. In general, the calendar queue can be applied to any large scale simulation.
As an example for a priority queue which is designed for a special purpose, we introduce a
priority queue with dynamic ranking. This data structure can, e.g., be used torealize the waiting
queue of downloading peers in eDonkey. In this context, the incentive mechanism is realized
using credit points, that grow with the amount of uploaded bytes. The priority queue for the
waiting upload requests is sorted by peer rankings. After successful fragment downloads the
credit value is updated. We will draft the corresponding requirements and look into efficient
priority queue management.

2.1.1 Calendar Queue

In any discrete event simulation the hold time of the event queue is extremely important as up
to 40 percent of the execution time can be spent enqueuing and dequeuingevents [2]. There are
numerous proposals to realize efficient priority queues [3]. In this section we show how a basic
calendar queue [1] with a hold time ofO(1) operates. The main advantage besides the hold
time is that it is a simple and intuitive data structure. It basically works like a regular desktop
calendar. To schedule a future event (enqueue operation), one simplyturns to the current day and
writes down a corresponding note. In order to find the next pending event (dequeue operation),
one starts with the current day and moves from day to day in the calendar until he finds a non-
empty calendar day. This procedure describes exactly the way a calendar queue works, except
that a year in the calendar queue has a total ofNd days and each of these days consists ofTd

time units. The year is realized as an array of sizeNd. Technically, a year therefore consists of
Ty = Nd · Td time units. To cope with the situation of more than one event on one day, multiple
entries can be stored per day using a simple data structure like a linked list. Thislist contains all
events for that specific day.

Day 1 Day 2 Day 3 Day N� Scheduled for:

current year

next year

year after
next year**

**

Figure 3: A simple calendar queue

Figure 3 illustrates a simple example of a calendar queue. There are three events on day 1, two
events on day 3 and five events on dayNd, the last day of the year. This day also demonstrates
that the data structure used for multiple events on one day does not necessarily have to be a
linked list. In this example we use a tree like structure for dayNd. Also, note that there does
not necessarily have to be an event on each day. There is, e.g., no event scheduled on day 2. To
insert a new event into the calendar queue the time stamp of the event is used tocalculate the
corresponding day on which it should be scheduled. The index of the corresponding day in the

6

array is computed as

index =

⌊

timestamp

Td

⌋

+ 1(modNd),

wheretimestamp represents the time at which the event is due and the starting index of the
array is 1. The event is then added to the corresponding position in the list at this specific day.
For events with a time stamp scheduled after dayNd a division moduloNd is performed to
determine the day on the corresponding year. The events marked with a cross could, e.g., be
scheduled for next year and the event with the star for the year after next year. To dequeue the
next event in line one starts at the array entry corresponding to the current simulation time and
moves through the calendar until the first event is found. Thereby, events, which are scheduled
for one of the following years, are skipped. Once the final day of the year, dayNd, is reached,
the year will be incremented by one and the dequeuing process is resumed at day 1.

Figure 4: A day with too many events increases the enqueue time.

To achieve a hold time ofO(1), the parametersNd andTd have to be chosen in such a way,
that there are only a few events per day and the majority of events lies within one year. If a day
is too long or the number of days is much smaller than the number of events, therewill be a large
number of events on each day as shown by the overloaded day in Figure 4. Thus, the enqueue
time will be excessive because of the time needed to insert an event into the corresponding data
structure (cf. the heap in the figure). If, on the other hand, the number of days is much larger
than the number of events (cf. Figure 5), the dequeue time will raise, as a lotof days without
any event have to be examined until the next event is finally found.

Figure 5: Too many days increases the dequeue time.

In most P2P simulations, the event distribution is not skewed and does not change significantly
over time due to periodic events of the participating peers and the like. In this case, it is easy to

7

predict the number of events per time unit. The length of a day can then be setto a fixed value in
such a way that there are few, say about three, events per day and thenumber of days in such a
way that most of the events fall within one year. If, however, the distributionof events is skewed
or frequently changes over time, it becomes necessary to dynamically adapt the length of a day
and the number of days in a year [4]. An efficient way to restructure the calendar queue on the
fly can be found in [2].

2.1.2 Calendar Queue Results

To study P2P specific effects on the calendar queue, we simulate a Kademlia [5] based network
consisting of an average of 20000 peers. To generate movement (also known as churn) in the
overlay, each participating peer has an exponentially distributed online time withan average of
60 minutes. New peers join according to a Poisson arrival process in order to keep the average
number of peers at 20000. The simulator is written in ANSI-C to be as close to the hardware
as possible. Based on previous experiences we use a calendar queuewith Nd = 4096 days
where each day is of lengthTd = 100ms. During the described churn phase a snapshot of the
utilization of the calendar queue is taken. Figure 6 shows all 4096 days on the x-axis and the
corresponding number of events scheduled at each day on the y-axis.

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

Day of the year (100ms each)

N
u

m
b

er
 o

f
ev

en
ts

Spike at current
day of the year

Figure 6: Snapshot of a calendar queue withNd = 4096 andTd = 100ms.

The spike in the figure corresponds to the day on which the snapshot wastaken (day 1793 of
the current year). All events to the left of this day are scheduled for one of the following years.
All events to the right of the current day either take place this year or on one of the following
years. There are two important details which can be derived from the figure. On the one hand

8

there are too many events on a single day in general. On the other hand, there is a huge number
of events scheduled for the current day. In general we can distinguish three different kind of
events in a P2P simulation:

• Events that take place in the near future, especially those scheduled afterone single over-
lay hop.

• Periodic events, like the stabilize mechanism in Chord.

• Events that take place in a more distant future, like timeouts or bucket refreshes in Kadem-
lia.

In our case the events of the first category are responsible for the spike at the current day,
since we use an average network transmission time of 20ms in the corresponding simulation
while the length of a day is set to 100ms. The intuitive solution to avoid this spike would be to
shorten the length of a day. However, as long as the total number of days remains unaltered, the
average number of events per day will remain unaltered as well. Therefore the idea is to shorten
the length of a day, while simultaneously increasing the total number of days. From a global
point of view there are quiet a number of events at each millisecond in a largeP2P network. We
therefore decided to first of all shorten the length of a day to just 1ms. Thedanger in increasing
the total number of daysNd is that there might be many days without any event. Since the
average number of events per day in Figure 6 is approximately 25 we decided to increase the
total number of days to4096 · 8 = 32768, resulting in a new average of about 3 events per
day. The results of the new run with 32768 days and a length of 1ms per dayare illustrated in
Figure 7.

As expected, there are approximately 3 events per day now and no burstof events at the
current day. Furthermore, periodic and more distant events are equallydistributed among all
days of the calendar queue. The corresponding values for the parametersTd andNd therefore
provide a priority queue with a hold time ofO(1).

In some situations, however, the adaptation of the parameters is not that easy. For example,
an often used method in large scale simulations is to pre-calculate events which correspond to
the behavior of the user. That is, events like joins, searches, or leaves, which are triggered by
the user and are independent of the applied P2P algorithm, are calculated before the simulation
and written to a file. This file is then used as input at the beginning of the simulation. There are
some advantages to this approach:

• The event file can be given to different simulators in order to achieve a better comparability
of the corresponding results.

• It becomes possible to implement new user models without having to change the simulator
in any way.

• Log files and traces of emulations and applications can easily be translated intoinput files
for the simulator.

• The simulation time is slightly reduced due to the pre-calculated events.

9

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

2

4

6

8

10

12

14

16

Day of the year (1ms each)

N
u

m
b

er
 o

f
ev

en
ts

Figure 7: Snapshot of a calendar queue withNd = 32768 andTd = 1ms.

However there is a big disadvantage in terms of performance of the event queue. Since all
user specific events are put into the event queue at the start of the simulation, the number of
events per day increases significantly. Figure 8 illustrates this problem in detail. For the sake of
clarity we plotted the moving average with a window size of 40.

The blue curve shows the distribution of all events in the event queue. Theevents can be
split into those read from the input file (red curve) and those generated during the simulation
(green curve). In this case the increased number of events per day is obviously generated by
user specific events. The enqueue time of an event will therefore no longer be inO(1) since
there are too many events per day now. A solution to this problem is to maintain two different
queues for the two different kind of events. A regular calendar queuefor events generated by
the simulation and a simple sorted list for the user specific events. With the parameters used in
Figure 8 the calendar queue offers a hold time ofO(1) for events generated by the simulation.
Since user specific events are already sorted in the file, the enqueue operations into the sorted
list at the beginning of the simulation can also be done inO(1). There are no more enqueue
operations into this queue during the simulation and dequeue operations can be done inO(1)
as well. To guarantee the functionality of the double queue concept the dequeue operation is
slightly modified. The simulator simply compares the next scheduled events of both queues and
executes the one with the smaller time stamp. This way, the advantages mentioned above persist
while the management of events remains inO(1).

The above example convincingly motivates the need for special event queues under given
circumstances. In the following section we therefore present a specialized priority queue with
dynamic ranking, which can, e.g., be used to realize the waiting queue in eDonkey networks.

10

0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

10

20

30

40

50

Day of the year (1ms each)

N
u

m
b

er
 o

f
ev

en
ts

All events
User specific events
Simulation events

Figure 8: Composition of the events in the calendar queue.

2.1.3 Priority Queues with Dynamic Ranking

P2P systems head towards equal treatment of all peers using incentive mechanisms. When
multiple peers request data from a provider, it has to determine bandwidth allocation. Due to
the average Internet connection restrictions, only a limited number of peerswill be processed at
a time. During upload a so-calledupload-slotis occupied and will be released after completion.
Then the next upload to another requestor can be processed.

Because many peers request uploads from a peer, there can be thousands of peers asking to
be served first. P2P applications watch up to three properties:

• time: the duration from first contact request to now. Longest duration should be served
first.

• resource priority: A peer may share multiple resources, but speed up certain ones, e.g.
seldom or newly introduced files. Using file priority, a peer can control bandwidth usage
between all shared resources.

• peer priority: Peers can have lasting cooperations and therefore prefer previous partners
to unknown peers. This factor realizes incentive mechanisms.

The eDonkey network realizes an incentive mechanism based on these three factors. They are
linearily combined and make up the so-calledwaiting score. The next upload slot will be given
to the requestor with the maximum waiting score. While file priority and waiting time are mostly
static values, the peer priority changes dynamically with any transaction to the corresponding

11

peer. Thecredit pointsreflect this change: with every completed upload the credit grows up to
a value of 10 (high precedence), while any download consumes some credits, until it reaches
the bottom value of 1 (low precendence). This causes that any transaction between two peers
influences the sort order of the waiting queue.

At large, the P2P performance an user experiences is made up of picking this peer for upload-
slots and it influences directly when a resource download is completed. We consider here an
efficient implementation of picking the next peer by maximum waiting score. The requests can
be handled in a waiting queue, but resorting this can be expensive. Figure 9 displays for requests
and their line up due to their waiting score. It shows that an high priority requests might be
served in front of an longer waiting request.

New incoming requests

next pick for upload-slot

ABD C ABD ABD C

waiting score = time
* peer priority
* resource priority

Score=1800Score=180

Score=540Score=324

��������
�	
��
�

�	

������������ ���	�� ����
 ���������������� ����
�	
��
�

�	

 ���	�������������� ����
������������ ��������������������

Figure 9: Waiting queue with score computation

The credit point mechanism balances uploads with downloads, such that an active cooperation
in both directions is accelerated, but a transfer into one direction only is slowed down. Figure
10 shows the local credit computation with three peers that were download sources for 2, 5 and
10 MBs.

In a large scale simulation, this means intensive work on the data structure. A simple approach
would have a queue containing all requests and re-compute the scores for the next pick. Upload-
slots in eDonkey are limited to 1 MB or 5 minutes, resulting in1/5∗m picks per minute over all
m simulated peers. The queue sizen is restricted (e.g.n = 4096 in eMule) and in average all
waiting slots are filled. By sorting the queue, this approach costsO(m ·n · log n) per simulation
minute. This forms a bottleneck w.r.t simulation time and therefore we examine other options.

At first we look closely when and how waiting score changes occur. We assume that the file

12

x10

1

credit

Upload [MB]

x

1

x
x

x

2MB download

x
x

x

x
max. rate

5MB download

x

x

x

x

x
x

x

10MB download

x

x

x
x

x

]

Figure 10: Moving an updated value between sorted runs

priority is constant. The waiting time continuously increases, but it grows simultaneously for all
requests. Only the credit is dynamically changing: this is due to parallel operations and its value
may increase and decrease, but most updates will be minor changes.

We look into two aspects: First, we investigate the characteristics that accompany re-sorting.
When a rescheduling event occurs, either one of the three factors haschanged. The massive
operation is there is a slight change of the credit (e.g. decrease by 0.1).An example (cf. Figure
11) is the sortingABcD, where ABD are sorted runs withA < B, B < c, c < D. If the sort
key of entryc is decreased, its new position is somewhat earlier and some other entries will be
shifted. The end state is thereforeAc′BD with A < c′, c′ < B. Thus complete reorganization
for a single event is not necessary. Finding the correctB and the new position ofc′ can be found
in O(log n) at worst case. An efficient implementation can take advantage from the restricted
search field, given from the alteration and the previous position.

A B D

A B Dc’

c

Sorted run
Single entry

Figure 11: Incentive-driven Credit Computation

This is why we examine second, how the magnitude of entries can be shrunk down. Similar
to calendar queuing, we suggest to dissolve this complexity by grouping entries. Note, that there

13

absolute credit
comparing max. elements

grouping by constant factors
(file priority, arrival time)

variable factors
(credit)

C
B D

A

Figure 12: Separating constant and variable ranking influence factors

Job arrival time credit value result order
A 4th high 1st
B 2nd - 2nd
C 1rd low 3rd
D 3rd high 4th

Table 1: Example download jobs

do not exist disjoint score ranges. Instead, we suggest to distinguish the constant and variable
fractions of the score. We can then easily derive the complete queue by projection (which would
be expensive). However, finding the top pick is easy, because we canuse a another priority
queue. We build several queues with a certain range of constant values(cf. Figure 12 with Table
1). When an update occurs, only the variable fraction changes. Because each queue size is much
smaller than the previous large queue, queuing speeds up.

2.1.4 Dynamic Ranking Measurements

Our experiemnts investigated an efficient datastructure for score-based waiting queues. Two
parameters impact simulation efficiency. The most important influence factor for simulation
time is themaximum number of stored jobs. This essential size decides about the efficiency of
all underlying data structures. Deployed eMule clients limit their size to4096and these queues
are usually heavy crowded. We assume, that for each processed job the free queue slot will be
immediately occupied by a successor.

The second assumption considers ratio of the update frequencies to the turn frequency. For
a clear understanding we first sketch both operations. Aturn picks the top-most element for

14

10
2

10
3

10
4

0

0.5

1

1.5

2
x 10

5

queue size

th
ro

ug
hp

ut
 [1

/s
ec

]

single queue
16 lines
64 lines
256 lines
512 lines

Figure 13: Throughput by varied buffer sizes with quota 1:1

processing and removes it from the queue. The free queue slot is filled with a element that is
newly queued according to its peer and resource priority. A completed download triggers an
updateof the peer priority (if there is an pending upload). To reflect the new priority in the
queue order, this element must be resorted. Unless otherwise stated we assume a quota of1:1,
which is the average behavior in small groups. This corresponds to the long-term average in
incentive-supporting P2P systems, as any received byte has been sent somewhere else.

Figure 13 compares queue strategies with varied buffer sizes. We measured the throughput
of credit point alternations with the corresponding waiting queue update. The traditional single
lined queue has exponentially decreasing performance. With large queuesizes this solution is
clearly inferior to the other options. Multiple queue lines can accelerate throughput by the factor
of two. As a rule of thumb, there should be enough lines to keep the queue size around 25. In
the range of 300 up to 2000 queue entries a data structure with 64 lines performs better than with
256, which keep than up for larger queues.

Figure 14 compares varied quotas. When insert operation outweight, there is nearly constant
performance. The graph shows, that the lined queues show good behavior with heavy update
characteristics. For 4k queue sizes, the 64 line variant gains the best performance.

Summarizing, queue processing with heavy updating can be accelerated. Our solution distin-
guishes between constant and variable factors and builds lines of similar constant lines. Then
updates work on much smaller queues. We showed that lined queuing is superior for all queue
sizes and all quotas.

15

10
−2

10
−1

10
0

10
1

10
2

0

2

4

6

8

10
x 10

4

quota [updates / insert]

th
ro

ug
hp

ut
 [1

/s
ec

]

single queue
16 lines
32 lines
64 lines
128 lines

Figure 14: Throughput by quota with queue size 4k

2.2 Event Design Algorithms

The previously discussed performance of the event queue is of course not the only factor, which
influences the efficiency of large scale simulations. It is almost equally important that the design
of events utilizes the specific features of the queue. The time needed to deleteor move events
in the queue might, e.g., play a decisive role. In P2P simulations, however, it isoften necessary
to erase timeout events or to reorganize a large amount of events in the queue. We therefore
discuss some possibilities to avoid the corresponding problems and show howto enhance the
performance of a large scale simulation using event design algorithms, whichare well adapted
to queues of discrete event simulation.

2.2.1 Periodic Events

As long as there are only enqueue and dequeue operations on the queue, the performance of the
calendar queue is known to be inO(1). However, sometimes there is a need to delete events
from the queue, just like a date in real life might get canceled. A possible reason could be a
timeout event which is no longer needed or has to be moved to another date. The same is true
for already scheduled periodic events of a peer which goes offline. The most obvious way to
cope with obsolete events is to search for the event in the queue and delete it.If this has to
be done frequently, however, the performance of the event queue degrades significantly. In the
worst case the entire calendar has to be searched with a running time ofO(n). This process
can be sped up by investing some computer memory. For timeouts, e.g., a peer can store a flag
indicating whether a search is already done or not. If so, the timeout eventcan be discarded
when being dequeued. Periodic events could also check whether the corresponding peer is still
online. Otherwise the periodic event will be discarded as well and started again the next time

16

the peer goes online. If, however, it is possible for a peer to go offline and online before the next
call of the periodic event, the peer ends up having two periodic events instead of just one. Again,
investing some computer memory can solve this problem. For each of its periodic events, the
peer stores a flag stating whether an instance of this periodic event is scheduled or not. When
now a peer goes online again the flaghas republish = 1 might, e.g., prevent it from starting a
second instance of its periodic republish procedure. This trade-off between computer memory
and simulation running time is not always this easy to solve. The following sectiontherefore
discusses how to handle dynamic events efficiently.

2.2.2 Dynamic Events

Dynamic events frequently have to be moved in the event queue or might become obsolete in
the course of the simulation. To be able to maintain the performance of the eventqueue it is
especially important to find a smart design for those dynamic events. An interesting example

4380

3960 5820

peer X

bucket 1

bucket 2 bucket 3

Figure 15: The next refresh times of three exemplary Kademlia buckets.

in this context is the bucket refresh algorithm in Kademlia-based P2P networks. A peer in a
Kademlia network maintains approximately log2(n) different buckets, wheren is the current
size of the overlay network. Each of this buckets has to be refreshed assoon as it has not been
used for one hour. To guarantee this refresh, a peer maintains a timer foreach of its buckets.
The timer is reset to one hour every time the peer uses the corresponding bucket, e.g. if it issues
a search for a peer or a resource which fits into this bucket.

Figure 15 shows three exemplary buckets for a peerX and the next time they will be re-
freshed. The next bucket which has to be refreshed is bucket 2 at simulation time 3960. The last
bucket to be refreshed is bucket 3 at simulation time 5820. This example can be used to show
how to develop a good event design step by step. Assuming we do not wantto invest any com-
puter memory, we have to move a bucket refresh event in the queue everytime a peer uses the
corresponding bucket as illustrated in Figure 16. That is, each time a peeruses one of its buckets
for searches and the like, we have to delete the old bucket refresh entryfrom the queue and add
a new entry at the time when the new refresh is due. This, however, increases the execution time
drastically, since deleting an event from a calendar queue requiresO(n) steps.

To reduce the running time, we should therefore invest some computer memory. For each

17

bucket i

Figure 16: Refresh event moved every time peer uses bucket

bucket of a peer, we could store the time stamp of its next refresh. These timestamps are
updated every time a peer uses the corresponding bucket and additionallya new refresh event is
inserted into the event queue. Instead of removing the obsolete event from the queue, however,
it is simply skipped when being dequeued as indicated by the dotted arrows in Figure 17. That
is, every time a refresh event is dequeued, we can compare its time stamp to the timestamp of
the next refresh as stored by the peer. A refresh is only executed if thetwo time stamps match,
otherwise the event is obsolete and discarded.

bucket i

Figure 17: Obsolete refresh events are being skipped

This solution, however, requires more computer memory than actually necessary. Especially
if there are a lot of searches in the network and consequently a lot of obsolete refresh events. A
more sophisticated solution would be to again memorize the time of the next refreshat the peer,
while only using one single event per bucket. Each time the peer uses a bucket, the time stamp
of the next refresh is updated locally at the peer. However, there is no new event inserted into the
event queue nor is any old entry moved in the event queue. When a refresh event is dequeued its
time stamp is compared to the time stamp of the next refresh as stored locally at the peer. If the
time stamps match, the refresh is performed otherwise the refresh event is re-inserted at the time
of the next bucket refresh as indicated in Figure 18. This way, the memory needed to store the
obsolete refresh events can be avoided completely. The problem, however, is that there is still
one event for each bucket of each peer. In a Kademlia network of sizen, each peer maintains
log2(n) buckets on average. This still leaves us with a total of log2(n) · n refresh events in the
event queue. For a peer population of 100000 peers, this adds up to about 1.7 million events!

bucket i

Figure 18: Obsolete refresh events are completely avoided

Considering that bucket refreshes can only be moved forward in time, wecan develop an
optimized solution in terms of needed memory. As before, we memorize the time of the next
refresh for each bucket locally at the peer. This time, however, we onlyuse one single refresh
event for the entire peer. This refresh event is scheduled at the minimum of the next refresh
times of all buckets of the peer. When dequeued, it calculates the currentminimum of all bucket

18

refresh times and compares it to its own time stamp. Note, that there are only two possibilities
now. Either its time stamp is smaller then the current minimum or the two time stamps match.
In case of a match the event triggers the refresh of the corresponding bucket. Otherwise, it
sets its own time stamp to the current minimum and is re-inserted into the event queueat that
specific time as illustrated in Figure 19. Since this procedure takes exactly onehold time, it

bucket 1

bucket 2

bucket 3

current
minimum

Figure 19: Refresh event scheduled at minimum next refresh times of all buckets

can be done inO(1) for the calendar queue. As an example, consider a refresh event with a
time stamp smaller then the current minimum in Figure 15. Comparing its own time stamp, say
3700, to the current minimum 3960 (bucket 2), it recognizes that the refresh it was scheduled for
became obsolete. It therefore re-enqueues itself into the calendar queue at time 3960. If none
of the buckets is used by the peer, before the refresh event is dequeued again, bucket 2 will be
refreshed. The new refresh time of bucket 2 will be set to3960s + 3600s = 7560s and the
refresh event scheduled at the current minimum 4380.

2.3 State Representation

To achieve scalability of large scale P2P simulations, the peer cost must also be extremely lean
in terms of computational complexity and memory consumption. Therefore, a simplified and
compact state representation is essential. In this section we introduce the concept of a process
handler, a mechanism, which can be used to reduce the amount of computer memory needed
to represent the state of a distributed process. We will also go into the issue of a multi-source
download protocol (MSDP). Such a protocol is able to receive contentfrom multiple suppliers
simultaneously. For this purpose, a file is divided into fixed length blocks (chunks). Each of
these chunks can then be requested from a different uploader. The simulation keeps track of
already downloaded chunks of the file. This information is then used to decide which chunk will
be requested in the next download process. We establish some assumptionsthat allow for lean
and efficient management of already downloaded chunks at each individual peer.

2.3.1 Process Handlers

As stated above, in large scale P2P simulations computer memory is an almost as equal problem
as running time. Due to the highly distributed nature of such systems, however, there are many
processes that involve more than one peer. To model those processes each of the participating
peers has to store some representation of the process. The resulting copies of the process descrip-

19

tion at the individual peers are usually highly redundant. We therefore introduce the concept of
a process handler to reduce the amount of computer memory needed to represent a distributed
process.

Day 1 Day 2 Day 3 Day N
process handler
Ra = 3
xyz = 48

Figure 20: Example of a process handler with 3 remaining accesses

A process handler is a well defined part of the computer memory, where redundant informa-
tion about a distributed process is stored. Each event or peer participating in the process stores a
pointer to the process handler. The process handler includes a variableRa which determines the
number of remaining accesses, i.e. the number of events or peers still pointing to it. Figure 20
shows a process handler withRa = 3 remaining accesses, as there are still three events pointing
to it. Each time an event does no longer participate in the process, it decreases theRa counter by
one and deletes its pointer to the process handler. An event, which uses theprocess handler for
the first time accordingly increases theRa counter by one and stores a pointer to the handler. The
last event pointing to the process handler finally frees the memory as soon as it terminates the
process. From a global point of view, there are, e.g., many distributed searches in a large scale
structured P2P network. Thereby, each search process could be modeled using a search handler.
The search handler could store redundant information like the source and the destination of the
search, the global timeout of the search, and the number of already received answers.

2.3.2 Modeling Resource Allocation

Content distribution spreads data from some to many locations. Bandwidth anderror rates affect
the process of completing the transfer and its duration. The intermediate state of nodes is given
by the resource allocation. Many protocols divide resources into blocks(i.e. EDonkey chunks),
which are validated on a sub-resource level. Locally stored data falls into two categories:ver-
ified blocksare actually published and redistributed, whilepartial datawaits for completion to
become verified.

Many protocols use concurrent transfers that head towards completionof disjoint blocks.

20

Peer P1

Peer P2

Peer P3

Peer P4

Figure 21: Resource allocation example (darkness = availability, black = local)

Transfers can be aborted at any time and some nodes might store incomplete chunks for a long
time. The resulting state is called allocation (cf. Figure 21). Allocation strategieshead towards
completing partial data and thus share it. However odd allocation could prohibit sharing new
fragments and block further downloads [6]. In large-scale simulation, data storage is expensive
and must be kept at a minimum. Therefore, we deal with the question how much space will be
allocated and how efficient allocation storage is.

Odd fragment distribution can lead to poising downloads [7], caused by a high number of
started downloads, but without any complete source. Aberer et. al look into improved data
access in P2P networks [8], but do not mention their data structures. Lahmedi et. al examined
simulation of dynamic data replication in GRIDs [9], but represent the status as a tree and did
not focus on memory effectiveness.

Modeling such effects in large scale simulators is storage-intensive. Example: an EDonkey
client that acquires 10 movies results in a total of 1000 blocks. Due to network limitations,
received partial data might be heavily fragmented. Modeling the allocation withsixteen-byte-
boundaries and a 150 connections with 64 transfer windows causes a worst case of 10 MB status
information per peer. This raises the question, what effects can be simulatedwith alternative
models and at what costs. We search for an approximation that maps the current state into an
efficient data structure. We will sketch several solutions, determine their storage complexity and
discuss weaknesses.

During the upload process two peers negotiate fragments to be transmitted. The transmission
might be disturbed either by peer disconnects, packet loss, or session end. The receiving peer
acknowledges incoming data for completion check. A session end occurs,when the sender
cancels the upload slot to serve another queued receiver. There areseveral causes to abort a
session. In the current eMule implementation a session is restricted by time and data volume.

In the simulation environment, each peer needs to keep track of available fragments. An
uploading peer will freely choose a size and offset to be transmitted. Usually a session will not
complete a block, so partial data remains until the next upload. Peers will onlyshare blocks that
have been verified, i.e. that are completely available at the local site.

• Storing thepercentageof received data only, is the most simple approach. It is sufficient
to model the delay, when no bottlenecks of block sources exist. With the problem of free-
riders we cannot assume high block availability. The total cost per peer resource is O(n)
for n blocks, with a low constant factor – stored in a word variable. The example would
occupy 1 kB per node.

21

D
A

TA

sliding window n=8

A
C

K

acknowledged data

lost packets

received fragment
missing fragments
(at most n blocks)

chunk data

Figure 22: Worst case scenario for chunk availability after session abort

• A more accurate approach uses detailed information restricted on publishedblocks only.
This is the minimum set for download negotiation. It can be achieved either withrange
lists or a bit vector. A range list (of missing blocks) has the advantage that it shrinks to-
wards completion, and as such a huge allocation with few gaps is efficiently represented.
Range lists depend on the number of parallel threads, a large number of transmissions can
result in discontinuous blocks. The cost is O(n · m) for n blocks andm concurrent trans-
fers. When we assume a limited number of 16 concurrent transfers and a high probability
of completing previous blocks, the example request is 32 kB of memory in average. The
worst case is that new upload slots cannot complete previously started partial data and the
number of partial data blocks increase continuously. In average large numbers of partial
filled blocks will occur only at the very end, when all other blocks are completed. While
this is a pretty good option, you cannot simulate protocol effects, which we observed in
the EDonkey protocol (described later).

• Due to weak implementations some EDonkey implementations (e.g. JMule) create their
own fragmentation within blocks. The receiver sends a request containing size and offset
of a missing fragment. The sender may choose any size up to the given value. Exam-
ple: receiver asked for 1500 Byte from offset 0. Sender returns 1450 Bytes only. Correct
implementations will fill the 50 Bytes and adjust the maximum packet size. Bad imple-
mentations gain partial data with worst case memory allocation. A simulation can inves-
tigate this usingrange lists on byte level. The memory usage is expensive: O(n · k) where
k = blocksizereceiversize the maximum number of gaps created by a bad implementation
(cf. Figure 22). In the example this would be 27 kB per block, with a worst case of 27 MB

22

status for a single peer. Clearly, this variant is not applicable for large scale simulations.

Study of resource allocation in large-scale systems is crucial to understand the dynamic behav-
ior of these platforms. We have seen that in-depth simulation is intensive, butwe can learn from
well-behaving peers with much easier methods. Range lists of blocks combinedwith percentage
per block will reveal major effects and allows for collecting data in large-scale simulations. This
method accommodates 100,000 peers in 1 GB while allowing four concurrent uploads.

3 Abstractions and Models

The need for different abstraction levels and models for different application scenarios is ob-
vious. On the one hand detailed information is necessary to study the traffic characteristic in
the network, thereby measurements below the application layer (e.g. at the transport layer) is in-
evitable, on the other hand scalability properties are of interest, e.g. duringprotocol prototyping,
and computation complexity should be reduced.

Model Abstraction Accuracy Computation & Description
grade memory costs

NS2 simulation low high high simulate all network layers

Overlay model middle middle middle model transmission times

Stream approach high low low streams instead of packets

Table 2: Comparison of different simulation approaches

By adopting different simplifications validity of the simulation has to be ensured.For exam-
ple, Figure 23 shows the goodput of the download of a file of 540 kB usingthe Transmission
Control Protocol (TCP). While thethroughputis defined as the number of bits per second trans-
mitted by the source host, thegoodputrepresents the number of bits per second received by the
destination port. We consider different access bandwidths for different round trip times without
packet loss. In that case, the throughput and the goodput are identical. The results are ob-
tained by an ON/OFF simulation with a full implementation of the TCP Reno stack according to
4.4BSD-Lite. The ON/OFF simulation reproduces the packet transfer on TCP/IP layer in order
to determine when a user is actively transmitting, i.e. a packet is transmitted over the access net-
work. The packet arrivals for each user are determined exactly according to the TCP/IP stack.
The flow control mechanism of TCP tries to adapt the bandwidth to the congestion in the net-
work. This means that TCP’s flow control mechanism influences the goodput for downloading
a file. Influence factors are the round trip time (RTT), the network accessbandwidth of the user,
packet losses, and the volume of the file. In Figure 23, the goodput is plotted vs the the access
bandwidth of the user in downlink direction, i.e. the maximum throughput physically possible
on the particular link, which is denoted asdownlink capacity. We can see that for some given
scenarios (here: for download capacities up to 50 kbps) the goodput approaches the downlink
capacity. This means that we do not need to differ between the goodput influenced by TCP and

23

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

downlink capacity [kbps]

go
od

pu
t [

kb
ps

]

RTT = 100ms
RTT = 200ms
RTT = 300ms

Figure 23: Goodput for the download of a 540 kB file via TCP without packet loss

the downlink capacity. As a consequence, it is not required to simulate TCP ifthere are no re-
markable differences. However, this assumption is not true if the volume of the transmitted file
is too low or the downlink capacity is such large that the number of currently transmitted bits on
the downlink is below the network’s bandwidth-delay product. In that case, a detailed ON/OFF
simulation is required for determining the goodput. The resulting mean goodput(of several sim-
ulation runs) for such a scenario can then be used for simulations of the same scenario without
mimicing TCP’s behaviour. This approach reduces the overall computational efforts and enables
to generate statistically ensured simulation results.

Figure 23 shows that round trip times have an influence on the throughput. Therefore, it
may be necessary to model transmission times for certain applications. Randomtrip times,
e.g. negative-exponentially distributed, are a simple way to model it, but sometimes this is not
sufficient. In our current research, we are working on improving searches in P2P networks by
e.g. applying proximity neighbor selection. Thus, it is mandatory that transmission times are
modeled in more detail. On the other hand, simulating the whole packet-layer wouldreduce the
network size we are able to handle in the simulations.

In the following we present a simulation of BitTorrent on the packet-level using ns-2. Thereby,
all details on the different layers are taken into account enabling us to study cross-layer inter-
actions. Section 3.2 presents a coordinates-based transmission time model. Thus, we are still
able to apply given transmission times and jitter effects on distinct overlay connections, without
the need to model lower network layers. The proposed model may not only be used for P2P
simulations, but in all kind of overlay networks. In Section 3.3 we investigate astream-oriented

24

approach for a P2P file-sharing network which avoids simulating packet for packet at all. This
is possible since in the investigated scenarios the goodput and the downlink capacity are equal
(otherwise we could use the mean goodput as downlink capacity). The bandwidth share of
eDonkey is used as an example and we approximate the bandwidth that a usergets.

3.1 Packet-based Simulation

BitTorrent is a popular P2P application for a fast dissemination of exactly one file in a P2P net-
work. We investigated the performance of packet-based simulation of the BitTorrent protocol
based on the well-known network simulator ns-2 [10].
In BitTorrent each peer controls to whom it uploads data. This is called unchoking. Roughly
speaking, the main principle in BitTorrent is that a peer uploads to the four peers with the highest
upload rates to it measured every 10 seconds. When a peer has completedthe download of the
file, unchoking is based on the download rate of the connected peers rather than the upload rate.
Details about the BitTorrent protocol can be found in [11].
Since data in BitTorrent is transferred over TCP, one reason to simulate onpacket-level is to take
the exact behavior of TCP into account. The influence of TCP on BitTorrent’s unchoking algo-
rithm can be notable. E.g. the TCP throughput depends on the round trip time (RTT) between
the peers. The achieved throughput increases with decreasing RTT. So it can be reasoned that
a peer unchokes other peers which are near to it with respect to the delaybetween the peers.
This means that the performance of a peer does not only depend on its upload capacity and the
number of peers it knows, but also on the RTT to other peers. To prove or vitiate such cross-layer
interactions packet-based simulation is inevitable. Other reasons are to studytraffic aggregation
caused by P2P applications at the core and edge routers of the network.Furthermore, packet-
based simulations can be used to validate abstraction models like that describedin Section 3.3.
In the following we present a user and a network topology model to simulate BitTorrent file-
sharing networks. These are not only applicable for packet-based simulations. In the last part of
this section we present results about the computation complexity of our packet-based simulation
with respect to simulation time and memory consumption.

3.1.1 User behavior model

BitTorrent differentiates between two types of peers. On the one hand theleecher, a peer which
has completed none or a few pieces of the file. On the other hand the seed, which has completed
its download and provides its resources purely altruistically to the network. The lifetime of a peer
in BitTorrent is depicted in Figure 24. When a peer enters the network without any completed
chunk it has to wait until other peers have uploaded altruistically the data. Then with one or more
completed chunks a peer participates actively in the network by also uploading data to others
until it finally completes the whole file. For simulation we need to model most importantly
the leecher arrival process and the seed leaving process. For a detailed representation also the
download pauses of a leecher and its leaving process, which is initiated e.g.by error or by an
unsatisfied user and which can depend on the progress of the download, have to be taken into
account. Additionally, also seeds rejoin the network although a user has nomotivation to do that.
This is due to the implementation of specific clients, where the software automaticallyconnects

25

Leecher

Leecher with

one or more

complete chunks

Seed

Peer enters

the P2P net

Peer pauses

Peer aborts

the download

Peer leaves with

complete file

Seed rejoins

Figure 24: Lifetime of a peer in BitTorrent

to the network after start-up and serves the file. For the sake of simplicity we concentrate in the
following on the leecher arrival process and the seed leaving processand neglect the others.
The first approach is to study the worst case scenario for file dissemination, which is called
the flash crowd effect. Thereby, initially only one seed and a number of leechers are in the
network. This represents an extraordinary burden on the network because only one peer can
upload data to the others. In our opinion this is an interesting scenario to studydifferent rules
for file dissemination because these protocols must be designed such that the available capacity
is used as efficient as possible. This incorporates the case where several peers have nothing or
nothing of interest for the others to share.
In the second approach the leecher arrival is modeled according to a Poisson process with mean
λ. This can be expanded to a non-stationary Poisson process with different mean values for
different intervals in the simulation. By studying real peer populations in BitTorrent networks,
e.g. in [12], it was observed that especially during the first days after releasing new content the
peer population is much higher than in the following time.
The seed leaving process can also be modeled as worst case and normalcase. In the worst case
a peer leaves the network immediately after it has completed the download. In theother case a
seed stays for a negative exponential distributed time with meanµ before leaving the network.
Furthermore, it is highly probable that the original provider of the file also functions as a seed
which does not leave the network at all.
A recent study [13] confirmed the assumption of negative exponentially distributed inter-arrival
times of peers for their inspected tracker log files of BitTorrent. Furthermore, they observed a
power-law distributed lingering time, which is the time a peer stays in the network after it has
completed its download. For our investigated small number of peer populationsa power-law
distribution is not applicable, but should be considered for large and long-lasting simulations.
To model the access speed of an user it should be noted that it does not only depend on the
connection type, but also on the willingness-to-share of that user. Mostapplications offer to
limit the capacity of the uplink. Because of asymmetric access lines (e.g. ADSL)and user
behavior we assume that the bottleneck in wired networks is the capacity of theuplink of a peer.
When altruistic behavior is noticeable also download capacity has to be taken into account since

26

Peer 3
 Peer 2

Peer 1

Access Router 3

Access Router 1

Access Router 2

For
N

P

 = 3

Figure 25: Simplified topology for three peers

in this case a peer receives data from numerous other peers.

3.1.2 Network Topology

Based on the assumption that the bottleneck of the network is at the access lines of the users and
not at the routers, we use a simplified topology in our simulations. We model the network with
the help of access lines and overlay links. Each peer is connected with an asymmetric line to its
access router. All access routers are connected directly to each othermodeling only an overlay
link. This enables us to simulate different upload and download capacities aswell as different
end-to-end (e2e) delays between different peers. As an example the simplified topology for a
fully-connected peer population of 3 is depicted in Figure 25.
One disadvantage of this model is the required number of links. ForNP peers in the network the
number of links in the topology isZ = (NP + 1) · NP /2. This means, that the number of links
increases quadratically with the number of peers in the network causing a memory problem for
large peer populations.
One possible solution to overcome this problem is to neglect the differences ine2e delay between
the peers. This would result in omitting the overlay links in the already simplified topology
resulting in a star topology withZ ′ = NP links. A more sophisticated solution for simulations
with different e2e delays between peers is presented in Section 3.2.

3.1.3 Simulation complexity

To measure the complexity of the packet-level implementation we ran a simulation of aBitTor-
rent P2P network for a file of 10 MB. The chunk size was set to the default value of 256 KB. At
the beginning of the simulation a flash crowd enters the network, whereas thepopulation was
varied from 10-60 peers. Furthermore, only one peer holds the completefile at the start.
We used a Pentium III (Tualatin) PC with 1400 MHz and 2 GB RAM running Debian GNU/Linux
3.0 (Woody) for the simulation. The simulation time for the different number of peers is shown
in Figure 26.
An exponential increase of the simulation time can be clearly seen from Figure26. Whereas the

27

10 15 20 25 30 35 40 45 50 55 60
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

No. of Peers

S
im

ul
at

io
n

T
im

e
[s

]

Figure 26: Simulation time for different number of peers

simulations for 40 or less peers can be completed in less than one hour, simulation time for 50
peers is around 5 hours and for 60 peers even around 11 hours. This indicates that packet-level
simulation does not scale for even medium sized P2P networks when the file download is simu-
lated.
The memory consumption with this peer populations is uncritically. During simulation of 60
peers only 2.6% of the 2 GB RAM was used.
In spite of the high computation cost, the detailed simulation on packet-level provides an in-
sight into cross-layer interactions and is necessary to validate abstract models for large scale
simulations.

3.2 Modeling packet delay with global network coordinates

Our current research on applying P2P mechanisms in Voice-Over-IP (VoIP) solutions leads to
two oppositional requirements. On the one hand, we want to simulate a huge worldwide network
with hundreds of thousands or even some million participants. On the other hand, the simulations
should be as realistic as possible, to be able to develop a protocol that is as very fast and highly
reliable. Therefore, it is, amongst other things, necessary to take realistic internet transmission
times into account. Participants in different countries and on different continents lead to a wide
range of average round-trip times (Table 3) and packet loss values (Table 4)[14]. We think it is,
in our area of application, not sufficient to model packet loss and network transmission by using
an analytical distribution function (e.g. negative exponential distribution),because lookups in
P2P networks can be performed more efficiently if the protocol can relay on proximity neighbor
selection [15]. The network transmission model we are going to present in this subsection was
mainly developed by Robert Nagel in his diploma thesis. [16].

28

Russia Europe N America S Asia E Asia Latin America
Russia 55.88 93.46 224.38 502.99 264.64
Europe 120.58 40.55 155.46 452.87 298.05 256.22

North America 256.75 146.91 50.71 341.67 188.05 258.96
Balkans 130.74 49.17 177.43 480.15 299.09

South Asia 630.23 414.67 143.85 583.10
East Asia 262.02 326.51 215.80 387.95 34.98 484.65

Latin America 441.90 328.20 297.25 597.74 514.87 81.53
Middle East 234.26 214.83 285.79 504.49 332.19 445.95

Oceania 423.60 398.87 278.88 440.10
Africa 581.91 724.72 522.37
Baltics 91.01 50.36 173.30 486.21 309.29

Central Asia 682.71 736.53
South East Asia 604.19 439.48

East Europe 148.82 273.96
Caucasus 692.76

Table 3: Inter-continental average round-trip times (in milliseconds)

Russia Europe N America S Asia E Asia Latin America
Russia 1.39 0.84 0.52 1.99 0.22
Europe 1.56 0.27 0.30 0.80 0.30 1.42

North America 2.11 1.11 0.47 0.56 0.34 1.35
Balkans 2.88 3.91 3.07 2.23 3.12

South Asia 3.68 2.72 3.58 5.95
East Asia 1.29 0.81 0.54 1.16 0.44 9.65

Latin America 1.98 2.56 2.57 2.01 1.01 2.31
Middle East 2.10 1.09 1.70 1.48 1.25 2.40

Oceania 1.67 0.68 0.64 0.55
Africa 5.05 4.97 3.10
Baltics 1.27 0.08 0.09 0.28 0.12

Central Asia 4.02 3.10
South East Asia 5.28 5.96

East Europe 0.77 1.21
Caucasus 2.30

Table 4: Inter-continental packet loss (in percent)

29

3.2.1 Modeling network transmission times

Table 5 gives a short overview on different approaches to model transmission times for one
overlay hop.

Model Computation cost Memory Comment
Analytical function simple, O(1) no geographical information

inexpensive high jitter unavoidable

Lookup table simple, O(N2) high precision
inexpensive problematic data acquisition

Network topology complex high problematic data acquisition

Coordinates-based inexpensive, O(N) data available
expensive offline comp. good precision

Table 5: Different approaches for modeling network transmission times

The simplest way is to use analytical distribution functions, e.g. negative exponential distri-
butions. They do not require difficult computations and huge amount of memory, but they do not
consider the geographical network topology. Worst, a different network transmission time be-
tween two nodes is calculated for every packet, and therefore, high jitter values are unavoidable.
Thus, packets that are transmitted back-to-back will arrive in a random order.

Storing all inter-node transmission times in a lookup table would lead to very high precision,
but this method is not applicable in huge networks, as the size of the table grows quadratically
with the number of nodes. Also, acquisition of the data may be very problematic.

Modeling the network topology with routers, autonomous systems and links is a common
method to build complex models of the internet, and therefore is applied by many topology
generators as Inet-3.0 [17] or BRITE [18]. Yet, drawbacks for using this method could be: it
may be problematic to acquire real internet topologies, still a large amount of memory is required
for huge networks and the computation of routing paths and transmission times iscomplex.

We will present a topology model, that is based on network coordinates. Itis characterized by
a relatively high precision, but low memory and computation costs during the simulation. The
required memory scales linear with the number of nodes in the network. The computation of
the network coordinates is expensive, but is done offline and the coordinates may be re-used in
different simulations. Real internet measurements are available from CAIDA [19] which allows
a simulation that is as close to real network conditions as possible. The basic idea is using
network coordinates for estimating the transmission time between two nodes. Theinter-node
transmission time is directly proportional to the geometrical distance in the coordinate space.
In Chapter 3.2.2 we describe the “Global Network Positioning GNP” method that we use to
construct the coordinate space. Chapter 3.2.3 explains how GNP is used inour simulations and
Chapter 3.2.4 shows results that could be obtained by using this network model. We conclude
this section with a short outlook.

30

3.2.2 Global Network Positioning (GNP)

Global Network Positioning [20] was originally developed for predicting packet delays from
one host to another. Each node therefore periodically pings a set ofmonitors(or landmarks)
and measures the required round trip times (RTT). In this section we describe how nodes are
able to compute their own position in the geometrical space with this information and the known
monitor coordinates.

Creating a newd-dimensional coordinate space at first requires calculating the coordinates of
the landmarks. To achieve a high precision, it is suggested to choose landmarks that are as far
apart as possible. All round-trip-times between the monitors must be known and the number of
monitorsn must be greater then the number of dimensionsd (n > d). The error between the
measureddistancêtH1H2 and thecalculateddistancetH1H2 between the two nodesH1 andH2

is defined as:

ǫ(tH1H2 , t̂H1H2) =

(

tH1H2 − t̂H1H2

tH1H2

)2

(1)

The coordinates of the monitors can then be computed by minimizing the following objective
function for every monitorM :

fobj,M (cM1 , . . . , cMN
) =

∑

Mi,Mj∈{M1,...,MN}|i>j

ǫ(tMiMj
, t̂MiMj

) (2)

After measuring the RTT to at leastm (d + 1 < m <= n) monitors, a node can compute its
own coordinates by minimizing the following objective function:

fobj,H(cH) =
∑

Mi∈{M1,...,MN}

ǫ(tMiH , t̂MiH) (3)

The estimated transmission timetH1H2 between two arbitrary nodesH1 andH2 with co-
ordinates(cH1,1, . . . , cH1,d) and (cH2,1, . . . , cH2,d) can finally be obtained by computing the
geometric distance between the two nodes in the coordinate system:

tH1H2 =
√

(cH1,1 − cH2,1)2 + · · · + (cH1,n − cH2,n)2 (4)

3.2.3 Applying GNP for modeling network transmission

We use GNP coordinates in a slightly different way in combination with ping measurements
acquired from CAIDA’s skitter project [19]. There are 14 monitors available in the dataset
(Table 6), that are mostly positioned at DNS roots. These monitors do daily RTT measurements
to a list of selected nodes that are spread over the entire IP space. We are not going to use all
monitor nodes for the computation of the coordinates, as good values can already be gained with
d+1 monitors and the computation duration increases significantly if more monitors areused. As
mentioned above, it is important to carefully select the monitors. A lot of research has been done
in this area [20, 21]. We select our monitors with help of anmaximum separationalgorithm, i.e.
we try to select monitors that have a maximized inter-monitor distance (by means oftransmission
times). This maximization can be solved very easily, as there are only 14 different monitors

31

available, and it leads to good results. Another promising, but more computation expensive,
method is theGreedy algorithm, that chooses the set of monitors that minimizes the average
distance error (Equation 1) between all monitors.

Monitor name Location IP address
arin Bethesda, MD, US 192.149.252.8

b-root Marina del Rey, CA, US 129.9.0.109
cam Cambridge, UK 128.232.97.8

cdg-rssac Paris, FR 195.83.250.10
d-root College Park, MD, US 128.8.7.4
e-root Moffett Field, CA, US 192.203.230.250
i-root Stockholm, SE 192.36.144.117
ihug Auckland, NZ 203.109.157.20

k-peer Amsterdam, NL 193.0.4.51
k-root London, UK 195.66.241.155

nrt Tokyo, JP 209.249.139.254
riesling San Diego, CA, US 192.172.226.24
uoregon Eugene, OR, US 128.223.162.38

yto Ottawa, CA 205.189.33.78

Table 6: CAIDA monitor hosts

b-root d-root i-root k-root nrt ihug
b-root 68.882 186.476 172.536 127.812 185.123
d-root 68.882 118.987 95.266 208.739 229.618
i-root 186.476 118.987 36.523 315.139 319.436
k-root 172.536 95.266 36.523 275.874 312.360

nrt 127.812 208.739 315.139 275.874 138.511
ihug 185.123 229.618 319.436 312.360 138.511

Table 7: Inter-monitor round trip times (in milliseconds)

Table 7 shows the symmetric RTT matrix achieved from a subset of 6 monitors that we use
to build a 5-dimensional coordinate space. The monitor’s coordinates can now be calculated by
minimizing Equation 2 for all monitors.

The skitter data set comprises no inter-node RTT measurements, but it provides us with RTT
measurements from each monitor to about300.000 hosts (Table 8). Coordinates for these hosts
can by computed by minimizing Equation 3 for all hosts. This computationally expensive multi-
dimensional minimization problem is solved offline. Currently, we are using the Simplex Down-
hill Method proposed by Nelder and Mead [22], because it is very easyto implement. Coordi-
nates for the Caida dataset have to be computed once, and can then be reused for all simulations,
without any further computation costs. The mean transmission time for the Caida measurements
is about 80 milliseconds.

The following paragraph presents the structure of our simulator and the way we integrated
GNP. Scenarios we are simulating are described in asource file, where parameters like number

32

b-root d-root i-root k-root nrt ihug
18.166.0.1 84.055 10.535 117.495 85.541 210.628 251.454
81.165.0.1 146.550 85.889 36.159 9.554 284.824 291.408

198.31.255.254 8.777 98.625 177.254 145.013 127.879 196.591
200.63.11.1 249.277 184.413 1060.883 309.182 376.213 523.068
217.200.12.1 172.939 107.576 75.661 27.682 309.860 321.287

. .

Table 8: Host-monitor round trip times(in milliseconds)

of total participants, number of online nodes and average online times are set. From it, a traffic
generator computes all join, leave and search events, as well as the IDs of nodes and content.
We call its outputevent file. The event file can then by put into ourcoordinates tool, that assigns
a random host from the Caida dataset to each node in the event file. The tool also adds the
appropriate coordinates to the event file. Our simulator automatically detects if coordinates are
set or not, and uses the coordinates or a negative-exponential distribution to compute transmis-
sion times, respectively. Transmission times between nodes are calculated withEquation 4, but
would be constant for each transmission between the same two nodes. Therefore, a log-normal
distributed jitter is added to the transmission times, if coordinates are used. This proceeding is
based on real internet measurements [23]. A lognormal distribution is denoted asλ(µ, σ2), and
its probability density function (PDF) is expressed as:

Φ =







exp

(

−1
2

(

ln(x)−m
s

)2
)

if x > 0

0 otherwise
(5)

The parametersm ands can be calculated from measurements where the minimum transmis-
sion timeθ, the mean transmission timeµ and the standard deviationσ are known:

m = ln

(

(µ − θ)2
√

σ2 + (µ − θ)2

)

(6)

s =

√

√

√

√ln

(

(

σ

µ − θ

)2

+ 1

)

(7)

At the moment, we are doing jitter measurements in the Internet to evaluate the parameters
m(µ) ands(µ) as a function of mean transmission time. We expect narrow lognormal distribu-
tions for nodes in close distance and a higher deviation if the foreign node isfarther away.

3.2.4 Results

To evaluate the quality of our coordinates, i.e. how exact can we estimate the RTTs between the
nodes compared to the real measurements, we use the directional relative error metric:

r =
dH1H2 − d̂H1H2

min(dH1H2 , d̂H1H2)
(8)

33

Therefore, we select two monitors, that have not been used to compute thecoordinates, and
calculate the relative error between them and2.000 random hosts from our dataset. A direc-
tional relative error of plus (minus) one means, that the calculated distanceis larger (smaller) by
a factor of two than the measured value, whereas a error of zero is a perfect fit. Figure 27 shows
the performance of both algorithms. Maximum separation with 6 monitors performs compara-
bly to the Greedy algorithm with 9 monitors.81% of the calculated round trip times reveal a
relative error of less than50%. On the other hand,50% of the calculated round trip times have
a relative rror of less than12.3%. We use maximum separation, as it requires significantly less
computation effort.

0 0.5 1 1.5 2 2.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

relative error

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

6 monitors, maximum separation
6 monitors, greedy algorithm
9 monitors, greedy algorithm

percentile max. sep. 10 20 30 40 50 60 70 80 90
relative error≤ (in %) 1.83 3.84 6.20 8.90 12.35 17.68 26.93 47.57 111.23

Figure 27: Monitor selection method comparison

To evaluate the precision of calculated round trip times with respect to the measured times,
we have grouped the measured times and the corresponding calculated times inbins of 50 mil-
liseconds and plotted the directional relative error of each pair on a vertical line (Figure 28). The
mean directional relative error is indicated by squares, the 25th and 75th percentile are indicated
by the outer whiskers of the line. The figure also shows that GNP performsquite well for dis-
tances under 350 milliseconds. A general trend to undershoot in calculated values in apparent;
especially for distances of more than 350 milliseconds, GNP undershoots significantly. Still,
93% of all evaluated distances are less than 350 milliseconds, so the influence of significant
errors for large distances can be neglected. These large errors result from nodes that are lo-
cated in areas far apart from the monitor nodes, therefore their coordinates can not be computed
precisely.

We are mainly interested in using GNP for calculating transmission times for our simula-
tions. Therefore, we compare the distribution of measured trip times from the Caida dataset
to trip times calculated with GNP (Figure 29). The average transmission times is the same

34

0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

measured trip time [ms]

di
re

ct
io

na
l r

el
at

iv
e

er
ro

r

Figure 28: Directional relative error over measured distances

for all curves. The negative-exponential function has a clearly higher standard deviance (σ =
90.99ms) than the two other distribution based on realisitic topologies, and there are much more
very small (< 25ms) and large (> 200ms) values.

More important, lookups in DHTs are forwarded through the overlay network, until the re-
sponsible node for the queried key is found. This results in a series of packets that are sent over
the network, with trip times adding up until the lookup is resolved. The sums of these trip times
and small additional local processing and queuing delays is the total lookuptime. According
to theCentral Limit Theorem, the sum of infinitely many statistically independent random vari-
ables has a Gaussian distribution, regardless of the elementary distributions.Figure 30 shows
the measured lookup times from simulations with and without using coordinates. As expected,
both lookup time distributions are very similar. They look Gaussian, and have approximately
the same mean value. The curve corresponding to the negative-exponential distribution is a bit
wider, because the standard devince is bit larger for the negative-exponential distribution.

Nevertheless, the network model based on GNP provides us with a more realistic framework,
as the transmission time for an overlay hop between two nodes will approximatelybe the same
for all packets, instead of a negative-exponentially distributed random value. Therefore, we are
able to apply proximity neighbor selection in our finger and search algorithms.Then, lookup
times will be shorter, because a close node can be selected as next hop ofa search request. We
are expecting a significant left shift of the transmission time curve in Figure 30. Nodes can
estimate the transmission times to their neighbors by evaluating existing traffic to this nodes,
or by sending active probe packets. Nodes may also predict the distanceto another node if
network coordinates are applied in the P2P protocol. Network coordinatescan be calculated
by making use of monitor nodes as it is done with GNP [20] or PCA [24], or bysimulating
the positions of the nodes with a distributed algorithm like Vivaldi [25, 26]. Meridian [27] is
a framework for performing node selection based on network location. Weare planning to use

35

0 100 200 300 400 500 600
0

0.005

0.01

0.015

0.02

0.025

trip time [ms]

pr
ob

ab
ili

ty

with coordinates
with negative−exponential
trip time distribution

Figure 29: Trip time distributions

Vivaldi coordinates in the P2P protocol, as the algorithm is fully distributed and computationally
inexpensive. Therefore, it seems particularly suitable for applying it in P2P networks.

Another interesting phenomena is shwon in Figure 31. If our 5-dimensionalcoordinates are
projected in a 2-dimensional coordinate space, a remarkable amount of clustering can be recog-
nized. If we compare the clusters with a worldmap, even ’continents’ may be identified in the
coordinates space. This is astoundingly, as coordinates have been calculated from transmission
times only. We take this as another fact, that the calculated coordinates are a good representation
of the real internet topology.

(a) Worldmap (b) Calculated coordinates

Figure 31: Node distribution in a 2D projection

Concluding we can state, that a topology-based transmission model is a necessary require-
ment for developing and testing P2P protocols that apply proximity neighbor selection. The
coordinates-based method presented in this chapter provides us with a simple, and storage and

36

0 500 1000 1500 2000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

lookup time [ms]

pr
ob

ab
ili

ty

with coordinates
with negative−exponential
trip time distribution

Figure 30: Corresponding lookup time distributions

processing inexpensive way to realistically model network transmisson foroverlay hops.

3.3 Periodic and Market-Based Bandwidth Allocation in eDonkey Networks

A main feature of P2P file sharing applications like BitTorrent and eDonkey isthe multiple
source downloadmode, i.e. peers can issue two or more download requests for the same file
to multiple providing clients1 in parallel and the providing clients can serve the requesting peer
simultaneously. The multiple source download is enabled by dividing files into fixed size pieces,
named chunks, in order to request parts of the file in parallel. Thus, it is possible for peers to
contribute to the P2P network before downloading the complete file.

When an eDonkey client decides to download a file, it asks the providing peers for an upload
slot. Upon reception of this download request, the providing client places the request in its
waiting list. A download request is served as soon as it obtains an upload slot. A very popular
open source implementation of an eDonkey client is the eMule application [28].The source
code shows how the bandwith allocation for the served peers is determined.The eMule client
calculates the number of bytes which should be put into the sending buffersof each served peer
in the next second according to the bandwidth constraint set by the uploading user. If all peers
are able to receive this amount of data everything will stay the same. But if one peer does not
acknowledge the data, it will be suspended for the next second. This algorithm guarantees a fair
bandwidth split for all peers in the active queue. The active queue is the set of peers that are
actually served with data. The maximum size of the active queue is an adjustableparameter of
the eMule client.

For every connection the eMule client first creates a buffer for the requested data to avoid
delays by loading data from a permanent storage. Now every second theclient calculates the

1peer and client are used synonymously in this section

37

available bandwidth in consideration of achieved throughput during the last second and the max-
imum bandwidth allowed by the user. This value is divided by the number of connections in the
active queue. Thereafter this amount of data is enqueued into the sendingbuffers of the TCP
connections for the corresponding peers. Every peer which could not receive the data from the
sending buffer within this second will be ignored for the bandwidth allocationin the next sec-
ond. All peers get the same amount of data as long as everybody is able to receive it. If a group
of peers has lower bandwidth capabilities, they will get as much as they are able to receive and
the surplus of bandwidth will be shared by the remaining peers due to the samecriteria. The
resulting bandwidth allocation is calledmax-min fair share[29].

While in Section 3.1 the system is modeled with a packet oriented approach describing the
transmission of packets sent from a certain source to its destination. Another option is to con-
sider TCP connections as streams between two peers. In the next sectionstwo models for the
stream bandwidth calculations are introduced and compared. The first is theperiodic bandwidth
allocation (PBA). This model is closely tied to the eMules bandwidth calculation algorithm.
Therefore it updates the bandwidth allocation every second. The second approach is calledmar-
ket based bandwidth allocation (MBBA). This model is aligned with the concept of discrete event
simulation and avoids periodical updates.

The application of the stream oriented approach neglecting TCP behaviouris possible in our
case, since we investigate an eDonkey network in a mobile telecommunication network, like
GPRS or UMTS. The pieces of a file which are exchanged between peersusing the eMule
application have a size of 540 kB. To fully utilize a TCP connection it is necessary that there
is a certain amount of data outstanding in the connection. This value can be calculated by the
bandwidth delay product and is proportional to the RTT. In [30] Sanchez et al. showed that the
RTT is negligible as long as enough data is transferred within the connection,e.g. 400 kB for a
GPRS user of coding scheme 4 and multi-slot class 10. Hence the RTT can beneglected.

3.3.1 Periodic Bandwidth Allocation (PBA)

The basic idea of PBA is a straight forward mapping of the eMule algorithm. The algorithm
works with local changes of the bandwidth allocation. Before we can focus on the PBA it is
necessary to describe the algorithm which computes the fair share bandwidth of a connection at
a peer. Thisfair share bandwidth assignmentneeds the bandwidth which the other peers would
regard as fair shared for its calculation. Therefore thefair share bandwidth for a connection
is defined, which provides this value. These two algorithms work as follows:

38

Calculation of the fair share bandwidth for a connection

Let Φ be the set of all connections,o the maximum upload capacity set by the user,υ the
available, not yet assigned bandwidth,η = o

|Φ| andβ : Φ 7→ R a map that assigns
a connection to its current throughput. The fair share bandwidthϑ

for a connectionc is defined by:ϑ = max(υ,
o−

∑

µ∈{φ∈Φ:β(φ)<η ∧ φ 6=c} β(µ)

|{φ∈Φ:β(φ)≥η}|)
The peer takes a look at the available bandwidth which is yet not assigned toother
connections. For all other connections the fair share bandwidth assignment is already
done. Then it subtracts the bandwidth of all connections slower than the theoretical
mean connection speed, not concerning the connection it was queried for. The rest of
the bandwidth is equally distributed to the rest of the connections.

Fair share bandwidth assignment algorithm

With the definitions from above the fair share bandwidth assignment may be defined
as a recursive function, as follows in pseudo-code:
function fairshare
(List of not assigned ConnectionsLun, List of assigned connectionsLas){

if (Lun = ∅) return
x := ∞
∀c ∈ Lun{

if (β(c) < x){
x := β(c),mincon := c

}
}
if (x < leftBW

|Lun|
){

assign(c,x), return fairshare(Lun \ c,Las ∪ c)
}
else{

∀c ∈ Lun: assign(c, leftBW
|Lun|

)
}

}

Example: In order to get a better understanding of the algorithms a short example is provided
by Figure 32. We consider there is peer 1 with a network link capacity of 40 kbps and four
connected peers. These are named peer 2 to peer 5 and calculate the fairshare bandwidth as
shown in Figure 32. Thus peer 1 determines the link to peer 2 as the connection with minimal
bandwidth, and assigns the 3 kbps for this connection at first. Thereafter it calculates the mean
bandwidth for the remaining connections being 12.333 kbps. Peer 3 provided a value of 11 kbps
which is lower than the calculated mean and the speed for this connection is setto 11 kbps.
Thereafter the new mean value for the remaining peers is 13 kbps. The minimalvalue of the
supposed link speeds is 20 kbps. Thus all remaining connections are calibrated with a speed of
13 kbps, as depicted by Figure 32.

39

Peer 1:

40 kbps

1st iteration:

BW = 3 kbps

2nd iteration:

BW = 11 kbps

3rd iteration:

BW = 13 kbps

3rd iteration:

BW = 13 kbps

Peer 1:

40 kbps

Peer 1:

40 kbps

Peer 2:

3 kbps
Peer 1:

40 kbps

Peer 3:

11 kbps

Peer 1:

40 kbps

Peer 5:

40 kbps
Peer 1:

40 kbps

Peer 4:

20 kbps

Figure 32: Example for PBA fair share algorithm

The PBA works as follows. Every second all active peers are checked for any changes in their
connections to other peers. Either if the number of connections changed or if a connection speed
was changed, the PBA fair share algorithm is applied. If a new connectionhas to be established,
this connection is set up with zero bandwidth and the PBA changes the speedto the correct
value within the next second. If a connection has to be shut down, it will just be deleted and
the PBA will adjust the bandwidth allocation at the affected peers within the next second. This
algorithm is easy to implement but has some disadvantages. First, if a connection is shut down
the surplus of the bandwidth is distributed to the remaining connections. If anyconnected peer
was already updated in this second this may cause temporal overbooking atthe corresponding
network link of that peer. Equivalent adding a new connection may causetemporal underbooking
of a network link, because the corresponding peer is not able to request more bandwidth from
it’s other sources. However the influence on the numerical results is small because these two
inaccuracies cancel each other and the time period of overbooking / underbooking is rather short
compared to the overall length of a connection. E.g. the transfer of standard download unit,
which is 540KB in size, takes about540∗1024∗8 bit

3000 bit s−1 ≈ 24.5 min .
´ It has to be noted again that the PBA algorithm models the bandwidth between all peers in

the network in order to achieve max-min fair share. If we talk about bandwidth allocation this
means that in our model the bandwidth is assigned in such a way that the bandwidth of a peer’s
upload/download connection follows the max-min fair share principle. As a result of the PBA
algorithm max-min fairness is modeled.

Figure 33 visualizes how bandwidth allocation may spread through the network in the worst
case. For example peer 1 has shut down one downlink connection. Therefore it tries to re-
assemble the leak of bandwidth and asks the connected peers to speed up their connections. We
consider all connected peers are able to speed up these connections and all connections marked

40

11
11

11

11

2
2

2

Peer 1

Peer 5Peer 2

Peer 3 Peer 4

Figure 33: Bandwidth reallocation spreading through the network

with ”1” in Figure 33 change their speed. Thus one second later all connections of the connected
peers (marked as ”2” in Figure 33) may possibly be changed. The connections denoted with a
”1” are also recalculated in the second step, but they do not change, because each of them has
already applied the fair share bandwidth.Therefore the bandwidth algorithm does not update the
same connections more than one time in two subsequent seconds. But cyclic net structures may
cause the bandwidth allocation to oscillate. Figure 34 visualizes such a cyclic network structure.
Each connection is augmented with a sign representing the trend for the connection change, and
the delay of the fair share reassignment.

In Figure 34 peer 1 shuts down a connection at the timet0. At the timet0 +1, the connections
attached to peer 1 is re-calibrated. We consider the connection between peer 5 and peer 1 is not
able to gain a higher bandwidth because of the other links of peer 5. Thus only the connection
between peer 1 and peer 2 is changed and the complete surplus of bandwidth may be added to this
connection. Now the re-calibration spreads through the network. At timet0 + 2 the connection
between peer 2 and peer 3 is slowed down. Peer 3 and peer 4 speed up their connection thereafter
at timet0 + 3. This may cause the connection between peer 4 and peer 5 to slow down at time
t0+4. Now the problem becomes obvious. Peer 5 reallocates its bandwidth at the timet0+5 and
the connection between peer 4 and peer 5 was decelerated before. Nowpeer 5 is able to speed
up the connection between himself and peer 1, but peer 1 has assigned thecomplete bandwidth
it freed by closing the other connection to the link between peer 2 and itself. This allocation was
fair share at the timet0 + 1 but is not at the timet0 + 5. Therefore peer 1 has to recalculate its
bandwidth sharing at timet0 + 6, which will again affect the other peers in the circle.

Although the bandwidth at real eDonkey clients oscillates, our model aims at aperfect max-
min fair share bandwidth allocation in an efficient way. Thus, the oscillation maybe regarded
as a disadvantage with respect to computation time. The periodic character has some drawbacks
concerning discrete time simulation. A discrete time simulation normally steps from oneevent

41

X

1/+

1/+

2/-

3/+

4/-

5/+

Peer 1

Peer 2

Peer 3

Peer 4 Peer 5

Figure 34: Cyclic dependencies may cause network bandwidth oscillate

to the next. Thus it saves computation time by disregarding time intervals in which nochanges
occur. It has to be noted, that the PBA introduces additional events and therefore slows down
the simulation runtime, if the system state does not change over a longer periodof time, e.g. for
1 minute. The second approach which will be described in the next section tries to avoid these
additional events.

3.3.2 Marked Based Bandwidth Allocation (MBBA)

In the last section the PBA algorithm for modeling max-min fair share in a networkwas ex-
plained. The algorithm was executed periodically for each peer such thatfor all peers in the
network the connection’s bandwidth in uplink and downlink connection follows the max-min
fair share principle. In order to avoid periodic bandwidth recalculations itis necessary to reas-
sign the bandwidth of all connections that are influenced. Thus the first step of the MBBA is
to collect all connections that may need to be updated. It is not necessaryto make a list of the
connected peers. Instead it is sufficient to make a list of the network links that are involved.
Thereafter the MBBA recomputes all connection speeds in such a way, that fair share can be
guaranteed. This is done by an auction like bidding system. The peers’ bidsare calculated
equivalent due to the fair share bandwidth assignment at the PBA. And likeabove only if one
peer’s bid is the smallest bid for the connection and the connected peer keeps this bid, they are
in agreement.

42

Marked based bandwidth allocation algorithm

The algorithm iterates through all network links and assigns new bids for the
connections (GenerateNewBids). If a network link has assigned new bandwidth to
all its connections it will return true and will be stored in a list for removal.
Thereafter every connection is checked if it satisfies the constraints fora deal. If
the links are in agreement, the connection will set its speed and return true,
to be collected in another list for removal. Finally all network links and connections
of the removal lists are discarded and set flags on these entities will be deleted.
Flood the connected component and collect all network links inLp and connections
in Lc, label them with a re-calibrating flag and initialize bids to link capacity

number of connetions

while(Lc 6= ∅){
Dp := ∅ // set of peer that can be deleted
Dc := ∅ // set of connections that can be deleted
∀p ∈ Lp : if p.GenerateNewBids() thenDp := Dp ∪ p
∀c ∈ Lc : if c.CheckStatus() thenDc := Dc ∪ c
∀p ∈ Dp : remove flag from p
∀c ∈ Dc : remove flag from c
Lp := Lp \ Dp

Lc := Lc \ Dc

}
∀p ∈ Lp: remove label from p

The algorithm for the bidding is a little tricky. Basically the connections with the lowest bids
are filtered. Next the theoretical mean connection speed is calculated. If the minimum speed is
below or equal to the theoretical mean connection speed, those bids are kept, and the remain-
ing bandwidth is equally shared by the other connections. If the minimum speedexceeds the
theoretical mean connection speed, all connections are assigned with a bidaccording to the the-
oretical mean connection speed. Two modifications are applied in order to prevent oscillation
and low bids for the last connection of one link. First, the bid for the minimal link isnot low-
ered. This prevents that connected network links that both assume their connection as minimal
exchange their speed bids and an infinite loop happens. E.g. network link 1 and network link
2 are connected. Both found the connection to be the minimal link, but networklink 2 has bid
value x and network link 1 has set his bid to y. x and y are not equal and are both below the
theoretical mean connection speed. If the first rule did not prohibit lowering the minimal bid the
bidding in the next turn would be exactly the same as before, only that the bid of network link 1
would bid x and network link 2 would set its bid to y. Thus an infinite loop results.The second
modification is to prevent lower capacities on links last assigned. In order toguarantee the usage
of the complete bandwidth of a network link, it is neccessary to assign the remaining average
connection speed to all the connections, if all actual bids are below this value. E.g. there is a
high bandwidth network link (NL1) connected to at least three low capacity links and one high
capacity link (NL2) with no other connections. The three low ones differ in their bids. Then
NL1 selects the minimum bid, adopts its bid according to this link and distributes the remaining

43

bandwidth equally to the remaining links. Without the second modification NL2 would adopt
its bid to the lower bid of NL1. If the bandwidth assignment of NL1 determines thespeed of
the slow connections in the same round, whereupon minimal bids of the other network links are
accepted, the bid for the connection to NL2 does not contain the bandwidth that is not assigned
at this moment but is bid for the other connections. However NL2 keeps this bid. In the next
round NL1 and NL2 would assign this speed to the connection, because none of them knows
about the unused capacity of the other link. This would lead to unused bandwidth in the network.
This can also be observed in detail in the example provided on page 45. Peer 8 in the example
corresponds to NL2 and peer 2 corresponds to NL1. If peer 8 in the example would adopt its bid
to the bids of peer 2, then the link speed would be set to 31.666 instead of 36.666.

Peer::GenerateNewBids

Let Φ be the set of all connections,Ψ the set of connections marked with a
re-calibration label,o the maximal available bandwidth, andβ : Φ 7→ R a map
that assigns a connection to its actual speed bid of the other peer. With these
definitions the GenerateNewBids procedure can be described as folows:

if (|Ψ| = 0) return true
C := {c ∈ Ψ|∀j ∈ Ψ : β(j) ≥ β(c)}

x :=
o−Σx∈(Φ\Ψ)β(x)

|Ψ| //the mean remaining bandwidth
if (|C| = |Ψ| or |{c ∈ Ψ : β(c) ≤ x} = |Ψ|)

min := x
otherspeed :=x

else{
if (β(c)) < x, c ∈ C){

min := β(c), c ∈ C

otherspeed :=
o−Σx∈(Φ\Ψ)β(x)

Φ−(|Φ\Ψ|+|C|)

}
else{

min := x
otherspeed :=x

}
∀c ∈ C: bid(c):= min, set minimal flag for c
∀c ∈ (Φ \ Ψ): bid(c):= otherspeed
}

Against the other parts of the algorithm CheckStatus is rather simple. The connection speed will
be set if the lower bid is marked as minimal and is repeated.

44

Connection::CheckStatus

if (the lower bid is marked as minimal and is repeated){
set connection speed to the lower bid
return true

}
else{

return false
}

Example: In order to explain the algorithm in detail, Figure 35 shows a small network ex-
ample on which the algorithm is applied. Figure 36 depicts the calculated fair share bandwidth
allocation.

Uploading

network links

Downloading

network links

network link 0:

10 kbps

network link 1:

10 kbps

network link 2:

80 kbps

network link 3:

40 kbps

network link 4:

30 kbps

network link 5:

10kbps

network link 6:

10kbps

network link 7:

10kbps

network link 8:

40kbps

Figure 35: Example for the market based
bandwidth allocation

3.333

3.333

3.333

5

5

6.667

26.667

10

36.666

Uploading

network links

Downloading

network links

network link 0:

10 kbps

network link 1:

10 kbps

network link 2:

80 kbps

network link 3:

40 kbps

network link 4:

30 kbps

network link 7:

10kbps

network link 8:

40kbps

network link 5:

10kbps

network link 6:

10kbps

Figure 36: Fair share bandwidth allocation for
the example network

During the initial flooding every network link bids its capacity divided by the number of active
connections. Thus network link 0 sets its bids to 3.333 kbps, network link 1 andnetwork link
6 bid 5 kbps and so on. In the first round network link 1 and network link 2 notice that all bids
of the other peers are higher than their possibilities for fair sharing and therefore keep up there
bids. Network link 8 keeps up its bid, because the last minimum connection rule applies for
the connection. All other peers find a minimum bid, which is below their fair share possibilities
and assign this value to the corresponding connection. Thus network link 0and network link 1

45

capacity

Downloading

network links

Uploading

network links

capacity<<

Figure 37: Bipartite character of the network graph

can allocate fair share bandwidth for all its connections within the first turn.In the following
the algorithm is applied to the other network links until a solution is found. It hasto be noticed
that peer 8 shows the need of the last minimum connection rule as mentioned above. It has
to be noted, that the uplink and the downlink of a peer do not influence eachother. Therefore
the network graph is always bipartite, because uplinks are only connected to downlinks and the
other way round. A peer can belong to both of the partitions, if it uploads and downloads data
at the same time.

However the uplink of a peer is never connected to its downlink, because the peer does only
request data it does not have. Thus the network will always look like Figure 37. Due to this
restriction and to the fact, that the upload capacity is rather small compared to the download
capacity, further optimization of the algorithm can be applied. A connection witha capacity
value below the actual and foreseen mean link speed is restricted by the other peer. Therefore it
is not necessary to re-calculate its capacity and flooding through this link is not required. Also
nodes, which use only such a small part of their capacity that a new connection can not exceed
this volume, do not need to propagate flooding. The re-calculation will not change anything in
the other network parts. Finally if a link is shut down the re-calibration is calledfor each of the
further connected peers. This could be avoided if the algorithm would recognize that both peers
belong to one connected component.

3.3.3 Comparison between PBA and MBBA

In the previous sections two models for the bandwidth allocation were described in detail,
the periodic bandwidth allocation (BPA) algorithm and the market-based bandwidth allocation
(MBBA) algorithm. In order to compare these two algorithms we consider five long simulation
runs containing each about 35.000 completed downloads. The download timedepends heavily
on all other downloads before, because on the one hand downloads ofthe same file increase
the number of sources but on the other hand downloads of other files may reduce the num-
ber of sources according to the file replacement strategy. Additionally the random streams for

46

0 100 200 300 400 500 600

0

0.2

0.4

0.6

0.8

1

time [min]

C
C

D
F

Figure 38: CCDFs of the download time for a mp3 file of 5 MB with a significance level of 95%

generating events in time differ and therefore it is impossible to avoid small differences in the
complementary cumulative distribution functions (CCDFs) of the download time for both al-
gorithms. Figure 38 depicts the CCDFs with confidence intervals at a significance niveau of
95%. Both curves stay within the confidence intervals of the other curve. We can conclude
that both algorithms are equivalent and produce similar simulation results. Fortoo small files,
the stream-oriented approach with neglecting the TCP behavior for modeling the bandwidth of
peers in the eDonkey network is not applicable, as depicted in Figure 23. Furthermore, the
download times of smaller files are heavily dependent on the waiting time, i.e. if there are serv-
ing peers with short waiting queues. E.g. if in one simulation there are some peers with short
waiting queues and in the other there are none, the experienced download timediffers much.
Additionally the bandwidth oscillations of the PBA effects the download of the small files much
more than the downloads of files with a larger size. Although this can be avoided by decreasing
the time interval between two executions of the PBA algorithm, this would result in asignif-
icantly high computational time. Nevertheless, much more simulation runs are needed to get
acceptable small confidence intervals for the smaller file classes, which requires again enormous
computational costs.

Anyway the computational costs of both algorithms differ a lot. In situation in whichseveral
file requests are sent within one second and the number peers in each connected component is
large, the PBA is faster than the MBBA. The PBA updates the connection speed of the network
links each second and saves therefore computations. Additionally the high connectivity causes
the MBBA to recalculate some connections more often than needed. On the other hand, if there

47

are only a few requests each minute and the ratio of uplink bandwidth to downlink bandwidth is
small, the MBBA has a better computational performance.

A simulation in which the stream-oriented approach can be applied can be further optimized
with respect to computational time by using a dynamic model. During a simulation run,the
bandwidth allocation algorithm which requires less computational time should be used. The
decision whether the PBA or the MBBA algorithm is more efficient simply depends on the
number of events per time unit; we only take into account events which changethe current
bandwidth allocation of at least a single network link. However, the problemis that this number
of events for the next time unit has to be estimated a priori in order to increasesimulation
speed. Certainly, the method for estimating this number must not be very complex, as we would
increase again computation time and loose the benefit of switching between the PBA and MBBA
algorithm on the fly. This task is very interesting and will be investigated in future.

4 Efficient Programming and Parallel Simulation

Ivan Dedinski:One of the main challenges of parallel discrete event simulators (PDES) is the
efficient synchronization of logical processes. Synchronization is needed, since if the local time
of two processes drifts away, the process with the higher time could send a “message from
the future” to the other process. This kind of errors cannot be toleratedby any discrete event
simulation, since they can cause effects, that can not happen in a real environment. Efficient syn-
chronization in PDES is not a trivial task. The potential for optimizations without knowledge of
the nature of the application are very limited. On the other hand, for some kindsof applications it
is possible to gain a significant speedup by using application specific optimizations. This chap-
ter presents an optimization approach suitable for simulating a variety of network topologies,
typically spanned by P2P applications.

4.1 Motivation and Related Work

The simulation of P2P overlays has some specific requirements and properties that need to be
considered. The most obvious one is that a P2P simulation is only meaningful for a large number
of peers. The higher the number of simulated peers, the higher the significance and reliability of
the results. Another important feature, that is making parallel simulations for P2P attractive, is
the autonomy of the P2P agents. That means, that they will act fairly independently from each
other and thus provide a parallelization potential.

Todays research on PDES often concentrates on optimizations in terms of execution speed.
However a PDES would also make resources other than CPU power available to the simulated
P2P network. A common problem that arises for bigger simulation scenarios isthe memory
usage. Todays Java machines have the limitation of 2G memory. But even if this constraint
would be removed, one still would need a powerful and expensive server machine to provide
the required memory banks for large and complex experiments. The PDES makes the usage
of already available resources possible like CIP pools, or already existing department labs, that
are normally unused out of work times. P2P simulation scenarios could greatlybenefit, if using
these resources.

48

Much research on PDES has been done, mainly on the speed optimization by increasing the
amount of parallelization in the system. The main problem here is the so called Local Causal-
ity Constraint: A discrete event simulation, consisting of logical processes (LPs) that interact
exclusively by exchanging time stamped messages, obeys the local causalityconstraint if and
only if each LP processes events in nondecreasing time stamp order. Obeying to this constraint
will definitely prevent causality errors, but would not always be necessary, thus causing certain
events, which can be executed in parallel, to be executed sequentially.

There are two main classes of PDES mechanisms, that try to increase the parallelism in a
simulation. Conservative approaches definitely avoid causality errors, but try to detect events,
which can be executed in parallel, in advance, so that no bottlenecks appear in the system.
Optimistic approaches on the other hand discover causality errors that have already happened
and recover from them. [31] provides a comprehensive study on the different mechanisms of
these two classes. One property of all described mechanisms is their general purpose. They
are mechanisms applicable to all kinds of simulation scenarios. This chapter introduces a new
conservative PDES method that uses knowledge about the simulation scenario and also may
influence the simulation up to a certain predefined degree (which implies the non-repeatability
of the scenario). On the other hand it may greatly outperform generic conservative and optimistic
mechanisms and is simple and verifiable.

4.2 Simulation architecture (requirements)

Developing a P2P Simulation that should consider the specific properties of the simulated net-
work, one needs to design its topology first. Afterwards a partitioning of thetopology and a
mapping to simulator machines (or LPs) has to be made. The choice of the topology, the parti-
tioning and the LP mapping influence the performance of a parallel simulation to ahigh degree.
One should mainly consider two points: the LPs should be equally (as equal as possible) loaded
and the inter-LP communication should be kept at minimum. In this chapter we only discuss
static topology partitioning. Dynamic partitioning has much higher complexity and is not cov-
ered.

For our P2P simulations we used a topology consisting of some small scale, highly intercon-
nected networks of equal or at least similar size. The links in these networks may have high
capacities and small delays. The networks are interconnected with links, that should have low
capacities, and delays as high as possible. The partitioning and mapping of the topology to simu-
lator LPs is straightforward and shown on Figure 39 Every small-scale interconnected network is
mapped on a single simulator LP, the logical links between the small-scale networks are mapped
to physical links between the corresponding LPs. Higher delays on the LP-interconnecting links
improve the simulation performance, since the LPs need to synchronize less frequently. Note,
that even if a LP-link is not used at all, synchronization is necessary, because of the possibility
of sending a packet, which could lead to a causality error. The frequentusage of a LP-link would
cause real network traffic, it will however reduce the need of transferring null messages.

This topology construction approach is well suited to model todays Internet,where total in-
terconnection can be found on the backbone, but the edge networks are mainly organized in
a hierarchic manner. It is possible to construct, exactly as in the Internet, links with different
capacities and delays, which allows the development and the performance evaluation of P2P

49

LP A

LP B

LP C

Figure 39: Example physical topology, suitable for simulation.

applications depending on the topology.

4.3 Topology specific optimizations

Exchanging high number of messages on a small-scale network is not a problem, since, accord-
ing to our partitioning, all small-scale networks are completely located at a singlesimulator LP.
Causality errors may occur when small-scale networks are exchanging messages. Normally,
when a message leaves a simulator LP, it receives the current virtual time T1of that LP as a
time stamp. When it arrives at its destination, it may not be processed beforethe time T1 + Dl,
where Dl is the minimum link delay. If T1 + Dl is greater than the time T2 of the receiving
simulator LP, then everything is fine and the event may be processed, whenT2 reaches T1 +
Dl. A problem occurs when T1 + Dh is less than T2, where Dh is the maximal link delay. One
solution would be to drop this packet, but then the system would loose packetsdepending on the
load situation of the LPs, which is not desirable in most cases. Another solution is not to allow
T2 to get higher then T1 + Dh by using synchronization (The destination LP has to wait, if its
time gets too high). Consequently one can conclude, that the difference between Dm and Dh in-
fluences the frequency of the synchronizations between the two LPs - thebigger this difference,
the longer the two LPs can run without synchronization (having the same virtual time jitter).

Our approach uses such a variable link delay scheme. We specify a minimum and maximum
link delay Dm and Dh of a link. Messages may receive a delay that is betweenDm and Dh
depending on the current difference between the virtual times of the two LPs. The message
delays will be minimal if the LPs are equally “virtually” loaded, so that their virtual timers
advance at the same speed. The upper bound of the link delay between them would act as a
buffer for small, non-constantly growing variations of the timer difference. But if the LPs are
not equally loaded, the faster LP has to wait for the slower and the effectof the delay disappears.

The synchronization between two LPs may be described as follows:

• At the beginning of the simulation each of the LPs has virtual time 0 and sets its synchro-

50

nization deadline to the min(D2a, D2b,D2x), where D2a - D2x are the upperdelays of
all links La - Lx and are currently also the deadlines for these links.

• When a synchronization deadline is reached, the LP stops and sends its current time (via
a null message) to the link with the minimal deadline Lx. A response should come with
the current time Tx of the opposite LP. The new deadline of the link Lx is set to Tx + D2x.
The new minimal deadline is calculated and the simulation is continued until it is reached.

• When a LP receives a null message, indicating that the opposite LP has reached its sync
deadline, it recomputes its deadline on that link and answers with its current time. The
answer can eventually be delayed according to a strategy that is not described here. The
purpose of the delay of the reply is to avoid sending too many messages if the sync dead-
lines are increased by too small advances.

• When a LP receives a normal message (not a null message), it uses its time stamp to
correct the deadline of the receiving link. When enough normal messages are sent, the
need for null messages can be drastically reduced

One nice effect of this approach, is the delay aggregation across the network topology. Only
simulator LPs that are direct neighbors (and are connected by a link) need to be synchronized.
Thats why, the virtual timer difference between two arbitrary LPs may be as high as the ag-
gregated maximum delay of the links along the shortest path (in terms of delay) between the
LPs. The usefulness of this effect can be illustrated by looking at locality increasing activities
in P2P networks. If for some reason a certain region of the network shows an increased activity,
due to network outages, new node arrivals, social phenomenas, etc., the simulation load on its
simulator LPs increases and their virtual timers get slower. But due to the delay aggregation
effect, regions that are far away from that increased activity may continue doing their calcula-
tions without having to wait for synchronization. Figure 40 shows such a scenario. The network
partition simulated by LP A has increased load due to some locally caused activity. The activity
spreads to LP B, but does not cause the same load amount. LP C is not influenced by the activity.
Consequently the clock of LP C will advance faster as the clock of LP B andmuch faster as the
clock of LP A, which is possible when using the link delays. If this situation lasts, it will become
necessary for LP C to wait for the other two LPs. Eventually, however, the local activity at LP A
will be over before that time. Another local activity at LP C would reduce theclock differences.

4.4 Evaluation results

A parallel discrete event simulator with the described delay behavior was implemented and
tested on two machines with 3 GHz CPUs and 1G Memory, connected to the same LAN segment.
Each of the machines was running a single LP, the two LPs were connected with a full-duplex
virtual link. Each LP was simulating 15 network nodes, which were receiving and processing
packets from other nodes. Each of the 30 nodes could send packets to all other nodes, even if
they were running at the other LP.

At virtual time (VT) 1.0s all network nodes received a packet. Only one type of packet with
a process time of 0.01s was used for simplicity. After processing a packet, the processing node

51

LP A

LP B

LP C

Figure 40: Example of local activity.

immediately sends the same packet to a random node between 1 and 30. One can see, that
the total packet count in the system was always 30. The total packet count processed by a
single LP however was a random number between 0 and 30. The number ofpackets currently
processed on the LP determines the load of that LP and also the advance rate of its virtual timer.
Conclusively, the advance rate of the timers of the two LPs was equal in average, but for short
periods variations could occur. Figure 41 shows how the synchronization overhead (in terms
of null messages) depends on the load between the two LPs. It also compares the overhead for
delays of 0.1s and 0.001s on the virtual link between the LPs. One can see,that with a delay
of 0.1s (10 times higher than the duration of a single packet processing), an increase of the null
message curve occurs only in the very low regions of the command curve, which demonstrates
the buffering properties of the chosen delay. A delay of 0.001s is 10 times lower than the
processing time of a single packet, which causes the two LPs to synchronize10 times between
each time advance of 0.01s. This causes an enormous overhead in terms ofsynchronization,
which is almost not dependent on the current load situation at the LP. The overhead is especially
high in the beginning of the simulation (before VT 1.0) because there are no packets in the
system and the only job of the two LPs is to send a null message at every 0.01sVT.

To investigate the influence of aggregated delays on the VT difference between LPs, the ex-
periment was extended with one additional physical machine and LP, running 15 nodes, each
being responsible for an additional packet. The packets were delivered by the same scheme: to
a random node from 0 to 45, packet processing time was the same. Two of the three LPs (LP1
and LP3) did not have a direct connection, the packet delivery to a notdirectly connected LP
had to be routed by the intermediate LP2 (over two 0.1 delay virtual links). Figure 42 shows the
VT difference behavior between the LPs depending on the aggregated delay on all links between
them. One can see, that the maximum delay difference between LP1 and LP3 isalmost 0.2s,
but the delay between LP1 and LP2 or between LP2 and LP3 never exceeds 0.1s, which is the
desired effect of our strategy.

52

 1

 5

 25

 125

 625

 3125

 0 20 40 60 80 100 120

co
un

ts

real time [s]

null messags for delay 0.1
null messags for delay 0.001

command count, delay 0.1

Figure 41: Null messages for LP 1 with delays 0.1s and 0.001s.

−0.2

−0.15

−0.1

−0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 10 20 30 40 50 60 70 80 90

v
ir

tu
a
l

ti
m

e
 d

if
f

[s
]

real time [s]

sim1 − sim2
sim2 − sim3
sim1 − sim3

Figure 42: Delay aggregation across 3 LPs

53

5 Conclusions

In this technical report we investigated how large scale P2P networks canbe efficiently evalu-
ated. The algorithms and mechanisms of the P2P technology are often applied tonetworks and
services with a demand for scalability, i.e. a large number of peers. Some approaches were
presented showing the possibilites in the simulation of large scale P2P networks. We brought
together the experience of different researchers of the P2P community and showed that effi-
cient approaches for simulations can be applied with respect to compuational costs and memory
consumption:

• efficient data structures,

• appropriate abstractions and models,

• clever parallel simulation techniques.

However, the different possibilities to increase simulation efficiency can only be applied for
appropriate scenarios and applications. A general improvement can notbe formulated, different
scenarios and applications also require different simulation approaches. While one simulation
might still be accurate when neglecting the physical layer, the outcome of another simulation
might heavily depend on such mechanisms.

Nevertheless, this work presents some ideas, methods and algorithm, which greatly help to
improve the scalability of any large scale P2P simulation. For example, we showed efficient
data structures, which are able to cope with the number of events generatedin a huge overlay
network. In the majority of cases, finding the appropriate abstraction and models is already a big
step forward. In this context, we presented examples for different levels of application in order
to show how to approach a given problem. If the mere logic of a simulation is already highly
optimized, a parallelization of the evaluation step sometimes does the trick. In this sense, this
technical report was intended to provide insight into the real issues of large scale P2P simulation
and to present approaches of how to solve them.

Acknowledgments

The authors would like to thank Prof. Phuoc Tran-Gia, Prof. Hermann deMeer, Prof. J̈org
Ebersp̈acher, and Prof. Ulrich Killat for enabling and supporting this work. Furthermore, we
would like to thank Dr. Kurt Tutschku for the help in organizing joint research work and the
fruitful discussions during the course of this work. A part of this work issponsored under grant
IST-50190293.

54

References

[1] R. Brown, “Calendar queues: a fast 0(1) priority queue implementation for the simulation
event set problem,”Commun. ACM, vol. 31, no. 10, pp. 1220–1227, 1988.

[2] K. L. Tan and L.-J. Thng, “Snoopy calendar queue,” inWSC ’00: Proceedings of the
32nd conference on Winter simulation, (San Diego, CA, USA), pp. 487–495, Society for
Computer Simulation International, 2000.

[3] R. Rönngren and R. Ayani, “A comparative study of parallel and sequential priority
queue algorithms,”ACM Trans. Model. Comput. Simul., vol. 7, no. 2, pp. 157–209, 1997.

[4] J. Ahn and S. Oh, “Dynamic calendar queue,” inSS ’99: Proceedings of the Thirty-Second
Annual Simulation Symposium, (Washington, DC, USA), p. 20, IEEE Computer Society,
1999.

[5] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer information system based on
the xor metric,” inIPTPS 2002, (MIT Faculty Club, Cambridge, MA, USA), March 2002.

[6] H. Jin, Y. Pan, N. Xiao, and J. Sun, eds.,Grid and Cooperative Computing - GCC
2004: Third International Conference, Wuhan, China, October 21-24, 2004. Proceedings,
vol. 3251 ofLecture Notes in Computer Science, Springer, 2004.

[7] N. Christin, A. S. Weigend, and J. Chuang, “Content availability, pollution and poisoning
in file sharing peer-to-peer networks,” inEC ’05: Proceedings of the 6th ACM conference
on Electronic commerce, (New York, NY, USA), pp. 68–77, ACM Press, 2005.

[8] K. Aberer, M. Punceva, M. Hauswirth, and R. Schmidt, “Improving data access in p2p
systems,”IEEE Internet Computing, vol. 6, no. 1, pp. 58–67, 2002.

[9] H. Lamehamedi, Z. Shentu, B. Szymanski, and E. Deelman, “Simulation of dynamic data
replication strategies in data grids.”

[10] ns-2 (The Network Simulator). Sources and Documentation from
http://www.isi.edu/nsnam/ns/.

[11] B. Cohen, “Incentives build robustness in BitTorrent,” inWorkshop on Economics of Peer-
to-Peer Systems, (Berkeley, CA), June 2003.

[12] M. Izal, G. Urvoy-Keller, E. W. Biersack, P. Felber, A. A. Hamra, and L. Garćes-Erice,
“Dissecting BitTorrent: Five months in a torrent’s lifetime.,” inPassive and Active Mea-
surements, pp. 1–11, April 2004.

[13] D. Stutzbach and R. Rejaie, “Characterizing Churn in Peer-to-Peer Networks,” Technical
Report CIS-TR-05-03, University of Oregon, June 2005.

[14] “The pingER project,” 2005.
http://www-iepm.slac.stanford.edu/pinger.

55

[15] M. Castro, P. Druschel, Y. Hu, and A. Rowstron, “Exploiting network proximity in dis-
tributed hash tables,” inInternational Workshop on Future Directions in Distributed Com-
puting (FuDiCo), (Bertinoro, Italy), June 2002.

[16] R. Nagel, “??,” Master’s thesis, Munich University of Technology (TUM), Munich, Ger-
many, 2005.

[17] J. Winick and S. Jamin, “Inet-3.0: Internet topology generator,” Tech. Rep. CSE-TR-456-
02, Department of EECS, University of Michigan Ann Arbor, 2002.

[18] “Brite: Boston university representative internet topology generator.”
http://www.cs.bu.edu/brite/index.html.

[19] “Cooperative association for internet data analysis (CAIDA).”
http://www.caida.org.

[20] T. E. Ng and H. Zhang, “Towards global network positioning,” inInternet Measurement
Workshop, Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement
2001, (San Francisco, CA, US), pp. 25–29, November 2001.

[21] L. Tang and M. Crovella, “Geometric exploration of the landmark selection problem,” in
Lecture Notes in Computer Science 3015, Proceedings of Passive and Active Measurement
Workshop (PAM2004), (Juan-les-Pins, FR), pp. 63–72, April 2004.

[22] J. Nelder and R. Mead, “A simplex method for function minimization,”The Computer
Journal, vol. 7, no. 4, pp. 308–313, 1965.

[23] T. Hoßfeld, A. M̈ader, K. Tutschku, P. Tran-Gia, F.-U. Andersen, H. de Meer, and I. Dedin-
ski, “Comparison of Crawling Strategies for an Optimized Mobile P2P Architecture,” Tech.
Rep. 356, University of Ẅurzburg, 4 2005.

[24] L. Tang and M. Crovella, “Virtual landmarks for the internet,” inInternet Measurement
Conference, Proceedings of the 3rd ACM SIGCOMM Conference on Internet Measurement
2003, (Miami Beach, FL, USA), pp. 143–152, October 2003.

[25] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris, “Designing a DHT
for low latency and high throughput,” inProceedings of the 1st USENIX Symposium on
Networked Systems Design and Implementation (NSDI ’04), (San Francisco, CA, USA),
March 2004.

[26] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized network coor-
dinate system,” inProceedings of the ACM SIGCOMM ’04 Conference, (Portland, OR,
USA), August 2004.

[27] B. Wong, A. Slivkins, and E. G. Sirer, “Meridian: a lightweight network location service
without virtual coordinates,”SIGCOMM Comput. Commun. Rev., vol. 35, no. 4, pp. 85–96,
2005.

56

[28] T. eMule Project, “eMule Source Code.” URL:http://prdownloads.
sourceforge.net/emule/, October 2003.

[29] T. Hoßfeld, K. Leibnitz, R. Pries, K. Tutschku, P. Tran-Gia, andK. Pawlikowski, “Infor-
mation Diffusion in eDonkey Filesharing Networks,” inATNAC 2004, (Sydney, Australia),
p. 8, 12 2004.

[30] R. Sanchez, J. Martinez, J. Romero, and R. J”arvel”a, “TCP/IPPerformance over EGPRS
network,” in IEEE Vehicular Technology Conference (VTC 2002 fall), September 2002.

[31] R. Fujimoto, “Parallel discrete event simulation,”Commun. ACM, vol. 33, no. 10, pp. 30–
53, 1990.

57

Appendix A: Example of the Market-Based Bandwidth Allocation Algorithm

The bandwidth allocation example for the MBBA algorithm in Section 3.3.2 is depicted in detail
here. In this example we consider a bipartite network graph consisting of nine peers. Every peer
has several logical network links in upload and download direction to otherpeers. The totally
available capacity of each peer (for each direction) is printed beside the peer. Connections with
an unassigned bandwidth are drawn as solid black lines. The bids of a peer for a connection
(between an uploading and a downloading peer) are depicted by dark green numbers at the
connection link nearby the peer. If the connected peers have agreed on a bandwidth the color of
the connection is changed and the bandwidth is specified with the same color in the middle of
the connecting line.

Figure 50 depicts a situation in which the constraints for the bid of the last connection become
evident. The assignment of the bandwidth for the connection between network link 2 and 4 is
done because the connection is minimal in terms of the MBBA for network link 4. If network
link 8 adjusted its bid to the bids of network link 2, this would result in a lower connection speed
in the next bidding round and therefore the bandwidth assignment in the next round would be
31.666 kbps instead of 36.666 kbps.

Uploading

network links

Downloading

network links

network link 0:

10 kbps

network link 1:

10 kbps

network link 2:

80 kbps

network link 3:

40 kbps

network link 4:

30 kbps

network link 5:

10kbps

network link 6:

10kbps

network link 7:

10kbps

network link 8:

40kbps

Figure 43: Considered example network for
market-based bandwidth allocation algorithm

3.333

3.333

3.333

20

20

15

15

10

5

5

5

5

10

20

20

20
20

40

Uploading

network links

Downloading

network links

network link 0:

10 kbps

network link 1:

10 kbps

network link 2:

80 kbps

network link 3:

40 kbps

network link 4:

30 kbps

network link 7:

10kbps

network link 8:

40kbps

network link 5:

10kbps

network link 6:

10kbps

Figure 44: Initialization phase: At the begin-
ning for all network links their capacity is di-
vided by the number of active network con-
nections. The initial bids are set to these val-
ues.

58

26.667

3.333

6.667

3.333

3.333

3.333

3.333

5

5

25

5

10

40

25
25

Uploading

network links

Downloading

network links

network link 0:

10 kbps

network link 1:

10 kbps

network link 2:

80 kbps

network link 3:

40 kbps

network link 4:

30 kbps

network link 7:

10kbps

network link 8:

40kbps

network link 5:

10kbps

network link 6:

10kbps

20

20

10

Figure 45: Bids at the first round: Network
link 8 keeps the bid, although the bid of net-
work link 2 is lower. This corresponds to the
fact that his is the only and therefore last con-
nection to be assigned for network link 8.

3.333

3.333

3.333

5

5

3.333

3.333

3.333

5

5

5

25

25
25

Uploading

network links

Downloading

network links

network link 0:

10 kbps

network link 1:

10 kbps

network link 2:

80 kbps

network link 3:

40 kbps

network link 4:

30 kbps

network link 7:

10kbps

network link 8:

40kbps

network link 5:

10kbps

network link 6:

10kbps

26.667

3.333

6.667

3.333

10

40

20

20

10

Figure 46: Connection speeds assigned af-
ter first bidding round: The bandwidth for all
connections of network link 0 and network
link 1 are assigned.

6.667

3.333

3.333

3.333

5

5

26.667

10

6.667

40

24.444

24.44424.444

Uploading

network links

Downloading

network links

network link 0:

10 kbps

network link 1:

10 kbps

network link 2:

80 kbps

network link 3:

40 kbps

network link 4:

30 kbps

network link 7:

10kbps

network link 8:

40kbps

network link 5:

10kbps

network link 6:

10kbps

Figure 47: Bids at the second round: The net-
work links 0, 1, 3, and 5 are no longer consid-
ered, since values to all their connections were
already assigned. The MBBA is only applied
to the remaining links and connections.

6.667

3.333

3.333

3.333

5

5

26.667

6.667

24.444

24.44424.444

10

6.667

40

Uploading

network links

Downloading

network links

network link 0:

10 kbps

network link 1:

10 kbps

network link 2:

80 kbps

network link 3:

40 kbps

network link 4:

30 kbps

network link 7:

10kbps

network link 8:

40kbps

network link 5:

10kbps

network link 6:

10kbps

Figure 48: Connection speeds assigned after
second bidding round: Only the connection
between network link 2 and network link 6 can
be assigned. There are no other links which
are set to be minimal in terms of the MBBA.

59

network link 8:

40kbps

3.333

3.333

3.333

5

5

26.667

6.667

31.666

10
31.666

10

40

Uploading

network links

Downloading

network links

network link 0:

10 kbps

network link 1:

10 kbps

network link 2:

80 kbps

network link 3:

40 kbps

network link 4:

30 kbps

network link 7:

10kbps

network link 5:

10kbps

network link 6:

10kbps

Figure 49: Bids at the third round: Only net-
work links 2, 4, 7, and 8 have to be considered.

3.333

3.333

3.333

5

5

26.667

6.667

31.666

10
31.666

10

26.667

10

40

Uploading

network links

Downloading

network links

network link 0:

10 kbps

network link 1:

10 kbps

network link 2:

80 kbps

network link 3:

40 kbps

network link 4:

30 kbps

network link 7:

10kbps

network link 8:

40kbps

network link 5:

10kbps

network link 6:

10kbps

Figure 50: Connection speeds assigned after
third bidding round: The connection speed be-
tween network link 2 and 4 and the connection
speed between network link 2 and 7 is deter-
mined.

3.333

3.333

3.333

5

5

6.66736.666

26.667

10

40

Uploading

network links

Downloading

network links

network link 0:

10 kbps

network link 1:

10 kbps

network link 2:

80 kbps

network link 3:

40 kbps

network link 4:

30 kbps

network link 7:

10kbps

network link 8:

40kbps

network link 5:

10kbps

network link 6:

10kbps

Figure 51: Bids at the fourth bidding round:
Only network link 2 and network link 8 bid
for their connection.

3.333

3.333

3.333

5

5

6.667

26.667

10

40

36.666

36.666

Uploading

network links

Downloading

network links

network link 0:

10 kbps

network link 1:

10 kbps

network link 2:

80 kbps

network link 3:

40 kbps

network link 4:

30 kbps

network link 7:

10kbps

network link 8:

40kbps

network link 5:

10kbps

network link 6:

10kbps

Figure 52: Final bandwidth assignment: The
bandwidth of the connection between network
link 2 and 8 are established with the remaining
capacity of network link2.

60

