University of Wiirzburg
Institute of Computer Science
Research Report Series

Towards Efficient Simulation of Large Scale P2P
Networks

Tobias HoRfeld, Andreas Binzeofer, Daniel Schlossér
Kolja Eger, Jens Oberender, Ivan Dedinskserald
Kunzmand

Report No. 371 October 2005

1 University of Wirzburg
Department of Computer Science
Am Hubland, D-97074 Wirzburg, Germany
{hossf el d, bi nzenhoef er, schl osser} @nf ormati k. uni - wer zbur g. de

2 Hamburg University of Technology (TUHH), Department of Quomication Networks
Schwarzenbergstr. 95, D-21073 Hamburg, Germany.
eger @ uhh. de

3 University of Passau, Chair of Computer Networks and CospQbmmunications
InnstaRe 33, D-94032 Passau, Germany.
{ober ender, dedi nski } @ ni . uni - passau. de

4 Technical University of Munich, Institute of Communicatibletworks
Arcisstr. 21, D-80290 NMInchen, Germany.
geral d. kunzmann@ um de

Presented at: Workshop “P2P Sim”, University ofik¥burg, 20.07.2005






Towards Efficient Simulation of Large Scale P2P Networks

Tobias HoRfeld, Andreas Binzeofer, Daniel SchlossérKolja Eger,
Jens Oberender, Ivan DedingkGerald Kunzmarth

L University of Wirzburg
Department of Computer Science
Am Hubland, D-97074 Wirzburg, Germany
{hossf el d, bi nzenhoef er, schl osser} @nf ormati k. uni - wer zbur g. de

2 Hamburg University of Technology (TUHH), Department of Qoomication Networks
Schwarzenbergstr. 95, D-21073 Hamburg, Germany.
eger @ uhh. de

8 University of Passau, Chair of Computer Networks and CospQbmmunications
InnstalRe 33, D-94032 Passau, Germany.
{ober ender, dedi nski } @ ni . uni - passau. de

4 Technical University of Munich, Institute of Communicatidletworks
Arcisstr. 21, D-80290 NInchen, Germany.
geral d. kunzmann@ um de

Abstract

The algorithms and methods of the Peer-to-Peer (P2P) teathnare often applied to
networks and services with a demand for scalability. In @sitto traditional client/server
architectures, an arbitrary large number of users, caleadg) may participate in the net-
work and use the service without losing any performancerdeico evaluate quantitatively
and qualitatively such P2P services and their correspgnutworks, different possibilities
like analytical apporaches or simulative techniques candeg to improve the implemen-
tation of a simulation in general. This task is even more irtgra for large scale P2P net-
works due to the number of peers, the state space of the P2@Brketind the interactions
and relationships between peers and states.

The goal of this work is to show how large scale P2P networksheaefficiently eval-
uated. Methods are demonstrated how to avoid problems iagciur simulations of P2P
services. Efficient data structures are required to dedl aviarge number of events, e.g.
the application of a calendar queue for the simulation of defalia-based P2P network,
or the priority queue management to simulate eDonkey nésvom order to speed up
computational time the simulation has to be implementedirféicient way, asking for
sophisticated programming. This can be achieved for exaimplsing parallel simulation
techniques which utilize the distribution and autonomyhaf peers in the network.

Appropriate levels of abstraction and models for differ@mplication scenarios also im-
prove the computational time for simulations of large s&2® networks. An example is
the simulation of throughput and round trip times in netvgo/e investigate a BitTorrent
network on packet level, thereby, all details on the diffédayers are taken into account
enabling us to study cross-layer interactions.

Next, we take a look on P2P network for signalling in voicdég over IP systems. In
this context, the round trip time is crucial for the performa of the system. The packet



layer and its most important characteristics are modelender to decrease memory con-
sumption and computational power. Finally, an eDonkey pdtin a mobile telecommu-
nication system is investigated. In that case we can negliextlating packets and instead
use a stream oriented approach for modeling the transmiséidata.

Keywords P2P, eDonkey, Chord, Kademlia, BitTorrent, parallel simulation

1 Introduction

The algorithms and methods of the Peer-to-Peer (P2P) technology arepftked to networks
and services with a demand for scalability. In contrast to traditional cliem&sarchitectures,
an arbitrary large number of users, called peers, may participate in therkeswd use the
service without losing any performance. In order to evaluate quantitatine qualitatively such
P2P services and their corresponding networks, different possiblikéeanalytical apporaches
or simulative techniques can be used to improve the implementation of a simulatiomeirae
This task is even more important for large scale P2P networks due to the nafrgeers, the
state space of the P2P network, and the interactions and relationshipgb@®ezs and states.

However, the analytical description of the mostly very complex networksleagdroblems,
as a lot of interactions and parameters have to be considered. A simulatiomctede all in-
teractions and parameters very easily and may reflect reality as accastabgsible. But the
computational power of machines is exceeded very fast. P2P networka Veithe number of
users also require sufficient memory capacities. It might already belbdepngust to keep the
states of the peers in the main memory. There are several possibilites to irtipeorglemen-
tation of a simulation in general. This task is even more important for large seBle&works.
The work is structured as follows.

e Section 2: Efficient Data Structures
In a P2P network each peer is able to communicate with any other peer.fdrietiee
number of possible end-to-end connections iim?) for a network consisting of:
peers. This complexity results in a large number of events per time unit. Nuserou
additional events arise due to the large number of users in a large scale®&ik and
specific features of the system like priority queues in eDonkey netw&dstion 2.3) or
redundancy mechanisms in Chord networks (Sections 2.1). In this seactishaw how
to create solutions to the corresponding problems using efficient datasésic

e Section 3: Abstractions and Models
P2P networks can be regarded on different levels of abstractionsendag on the in-
vestigated performance measure and the application scencario it is cetpucensider
the packet level. In other cases, the simulation on application layer is snifigie
der given cirumstances. This section deals with the applicability of the diffeneth-
ods. Discussing the advantages and disadvantages of differeeedagjrabstraction, we
show how to find the appropriate level of detail. We present a simulation obBéiit
on the packet-level using ns-2, Section 3.1. Thereby, all details on thezedhif layers
are taken into account enabling us to study cross-layer interactionsior8 inves-
tigates how to model the packet layer and its most important characteristicdantor



signal in voice/video over IP systems using P2P networks. In Section 3.3/e&imate a
stream-oriented approach for a P2P file-sharing network which avioigeging packet
for packet. The bandwidth share of eDonkey is used as an exampleeaapgpsoximate
the bandwidth that a user gets.

e Section 4: Efficient Programming and Parallel Simulation
The capability of simulations is mainly restricted by memory and computational power
This difficulty can be overcome with two approaches: efficient implementatforgec-
tion 2, or parallel simulation. The parallel simulation benefits from distributedurees,
i.e. machines running parts of the simulation, and results in decreasing thiaguime
and increasing the available main memory. This section investigates the applicability
this technique for simulating P2P networks. Problems like synchronisationgafalo
processes and optimizations regarding the signalling overhead betwemachaes are
considered.

2 Efficient Data Structures

One of the most significant characteristics of a large scale P2P simulationni®ite@s com-
plexity. For a network ofx peers the number of possible end-to-end connections is already in
O(n?). The huge number of events, interactions and peer states furthersestiés complex-

ity. Only efficient algorithms and data structures will make fast simulationsigessin this
context the running time of the simulation and the required random access ynbawmmes
particularly important. While, to some extent, it is possible to optimize both at the same time
there is usually a trade-off between running time and required memory. dllogvihg three
factors have the most noticeable influence on this trade-off:

¢ Efficiency of the event queue
¢ Internal representation of a state

e Way events are modeled in the simulation

Depending on the investigated problem different kinds of optimization miglpréterable.
Figure 1 visualizes the arising possibilities. Obviously, the worst case isaletely unopti-
mized simulation as shown at the bottom of the figure. An efficient implementatitre event
gueue on the other hand provides an advantage independent of thef lsingulation. In case
each peer has to memorize a huge state space, like e.g. the fragmentatios iofdilnkey
networks, the optimization of the state representation is especially crucidiovever, each
peer produces a large amount of events, the way events are desagnledaome the determin-
ing factor all of a sudden. In structured P2P networks, e.g., a pedohmaintain events for
the stabilization of the overlay, the maintenance of the redundancy, seaaok the like. A
highly optimized solution as shown on top of Figure 1 incorporates an effidésign of events,
a memory saving representation of states and a fast event queue. liltwéniy, we will
therefore discuss how to optimize large scale P2P simulations with respecthoealifactors.
Section 2.1 discusses the advantages and disadvantages of a sjpatipalqueue when applied



Calendar Queue with

Optimized States

Queue Efficiency

100

80

60

40

20

100

B Optimized

States

50

___--Unoptimized -

Optimized
Simulation

Simulation

T Optimized

endar Queue with
Optimized Events

Events
100

50

State Efficiency Event Efficiency

Figure 1: Different categories of simulation efficiency

to the P2P environment. We will present possibilities to adapt the queue togtificfeatures

of a P2P simulation. Considering the waiting queue in eDonkey-like netwarksample we

will also show how to optimize priority queues with dynamic ranking for specigbpses. Since
the performance of the queues depends on the number of events andrtiparal distribution,

we point out the importance of event design algorithms in Section 2.2. Usidgriléa bucket

refreshes, we will show how to model periodic and dynamic events effigieim Section 2.3

we will introduce two novel approaches to reduce the required memotldaepresentation of
states. The concept of a process handler illustrates how to avoid thedeetty of parallel pro-
cesses as they frequently occur in large scale P2P systems. As a éimgllexwe will describe
how an eDonkey peer can keep track of available and downloadauédrag.

2.1 Priority Queues

A simulative study of the scalability of highly distributed P2P networks automaticaltyves
an immense amount of almost simultaneous events. Due to the large numberspfgpfmy
local events per peer already result in a large number of global evaiitthese events have
to be stored in the event queue. Especially in structured P2P networkgpear generates a
number of periodic events. In order to guarantee a stable overlay ams#sient view of the
data, most P2P algorithms involve periodic maintenance overhead. Chordiseg a periodic
stabilize procedure to maintain the ring structure of its overlay as well asi@erepublish
mechanism to ensure the redundancy of stored resources. Mqremax P2P networks are
mainly used as information mediators, a simulation usually involves a great nwhpessi-
bly parallel searches. The choice of an efficient data structure faevibiet queue is therefore



especially vital to the performance of large scale P2P simulations.

In order to be able to compare two different data structures to each othee&d an appro-
priate measure. The most common measure in this context is the so called "hold tinse”
defined as the time it takes to perform a dequeue operation immediately follgvaaddmqueue
operation. Note that the size of the event queue is the same before artiatteld operation.

It is easy to see that different data structures have different hold tilvesmple sorted list,

e.g., has a hold time aP(n), wheren is the current size of the event queue. While dequeue
operations can be done @(1) (simply take the first element of the list), an average enqueue
operation take$)(n) steps, since the event has to be inserted into the list according to its time
stamp. Similar, structures like trees and heaps have an improved hold titiéog{n)).

It has to be noted that, the hold time only states the order of magnitude of aLdeaoe an
enqueue event. Yet in practice there is a significant difference betsagel00 - log(n) and

log(n).

1000
—Tree
—— Calendar Queue
800 | —— st 1
© O(log(n))
= 600+ 1
|_
o
£ 400} 1
200 oQ) 1
0 1 1 1 1
0 200 400 600 800 1000

Number of Events in Queue

Figure 2: Hold times for different data structures

Especially in small simulations, where there are only a few hundred eveetgrder of
magnitude might not be the only crucial factor. As can be seen in Figure@nding on
the constant factor, a linear increasing hold time might outperform a logariynigrowing
hold time, given that the number of events remains relatively small. In larde sicaulations,
however, the order of magnitude becomes the determining factor in termsfofrpance of
the event queue. An optimal solution therefore is a data structure with a holdfiDél)
independent of the size of the current event queue. Ideally, this holddamebe achieved
without the need for additional computer memory. In the following we theeefammarize the
main idea of a calendar queue, a queue with a hold tim@(af [1]. We discuss its advantages



and disadvantages. In general, the calendar queue can be appligddogarscale simulation.
As an example for a priority queue which is designed for a special perpes introduce a
priority queue with dynamic ranking. This data structure can, e.g., be usedlipe the waiting
gueue of downloading peers in eDonkey. In this context, the incentivéaném is realized
using credit points, that grow with the amount of uploaded bytes. Theitgriguieue for the
waiting upload requests is sorted by peer rankings. After succesafyhént downloads the
credit value is updated. We will draft the corresponding requiremerttdaok into efficient
priority queue management.

2.1.1 Calendar Queue

In any discrete event simulation the hold time of the event queue is extremelytanpas up

to 40 percent of the execution time can be spent enqueuing and deqerairig [2]. There are
numerous proposals to realize efficient priority queues [3]. In this seat@®show how a basic
calendar queue [1] with a hold time 6f(1) operates. The main advantage besides the hold
time is that it is a simple and intuitive data structure. It basically works like a redelsktop
calendar. To schedule a future event (enqueue operation), one simsyto the current day and
writes down a corresponding note. In order to find the next pendingt ¢dequeue operation),
one starts with the current day and moves from day to day in the calentilaneifinds a non-
empty calendar day. This procedure describes exactly the way a catprelse works, except
that a year in the calendar queue has a totaVgfdays and each of these days consistg of
time units. The year is realized as an array of $ize Technically, a year therefore consists of
T, = Ng - T, time units. To cope with the situation of more than one event on one day, multiple
entries can be stored per day using a simple data structure like a linked listisTbantains all
events for that specific day.

Day 1 Da,y 2 Day 3 cee Day Nd Scheduled for:
* * QO current year
g &P next year

& year after
next year

Figure 3: A simple calendar queue

Figure 3 illustrates a simple example of a calendar queue. There are tbrés en day 1, two
events on day 3 and five events on dgy, the last day of the year. This day also demonstrates
that the data structure used for multiple events on one day does not ardgdsave to be a
linked list. In this example we use a tree like structure for dgy Also, note that there does
not necessarily have to be an event on each day. There is, e.g.,m&ekeduled on day 2. To
insert a new event into the calendar queue the time stamp of the event is usddulate the
corresponding day on which it should be scheduled. The index of thespmnding day in the



array is computed as

timestamp
Ty

wheretimestamp represents the time at which the event is due and the starting index of the

array is 1. The event is then added to the corresponding position in the thes apecific day.

For events with a time stamp scheduled after @gya division moduloN, is performed to

determine the day on the corresponding year. The events marked witssaocold, e.g., be

scheduled for next year and the event with the star for the year afteyear. To dequeue the

next event in line one starts at the array entry corresponding to thentwimulation time and

moves through the calendar until the first event is found. Therebygt®wehich are scheduled

for one of the following years, are skipped. Once the final day of tlae, Yy Ny, is reached,

the year will be incremented by one and the dequeuing process is restidegdla

indexr = { J + 1(mod Ny),

Figure 4: A day with too many events increases the enqueue time.

To achieve a hold time aP(1), the parameterd/; andT}; have to be chosen in such a way,
that there are only a few events per day and the majority of events lies withigean. If a day
is too long or the number of days is much smaller than the number of eventspilidrea large
number of events on each day as shown by the overloaded day in Figlireud, the enqueue
time will be excessive because of the time needed to insert an event intatespmnding data
structure (cf. the heap in the figure). If, on the other hand, the nunflaays is much larger
than the number of events (cf. Figure 5), the dequeue time will raise, aadals without
any event have to be examined until the next event is finally found.

P
O O

Figure 5: Too many days increases the dequeue time.

In most P2P simulations, the event distribution is not skewed and doesar@&hignificantly
over time due to periodic events of the participating peers and the like. In ggsit#s easy to



predict the number of events per time unit. The length of a day can then feessteted value in
such a way that there are few, say about three, events per day amghtiher of days in such a
way that most of the events fall within one year. If, however, the distribudf@vents is skewed
or frequently changes over time, it becomes necessary to dynamicallytaddength of a day
and the number of days in a year [4]. An efficient way to restructuredlendar queue on the
fly can be found in [2].

2.1.2 Calendar Queue Results

To study P2P specific effects on the calendar queue, we simulate a Kadghhléesgd network
consisting of an average of 20000 peers. To generate movement (@iam las churn) in the
overlay, each participating peer has an exponentially distributed online timeaw#kerage of

60 minutes. New peers join according to a Poisson arrival processeén taréeep the average
number of peers at 20000. The simulator is written in ANSI-C to be as close toattiware

as possible. Based on previous experiences we use a calendarvgjtieue; = 4096 days
where each day is of length; = 100ms. During the described churn phase a snapshot of the
utilization of the calendar queue is taken. Figure 6 shows all 4096 daysondkis and the
corresponding number of events scheduled at each day on the y-axis.

250

200} Spike at current
" day of the year
c
[¢)]
& 150 1
©
g
= 100} 1
>
p

50 1

0 I I I
0 1000 2000 3000 4000 5000
Day of the year (100ms each)

Figure 6: Snapshot of a calendar queue wth= 4096 and7,; = 100ms.

The spike in the figure corresponds to the day on which the snapshaakeas(day 1793 of
the current year). All events to the left of this day are scheduled ferabthe following years.
All events to the right of the current day either take place this year or erobthe following
years. There are two important details which can be derived from thefigdm the one hand



there are too many events on a single day in general. On the other haredsthdruge number
of events scheduled for the current day. In general we can distimgjuiee different kind of
events in a P2P simulation:

e Events that take place in the near future, especially those scheduledradtsingle over-
lay hop.

e Periodic events, like the stabilize mechanism in Chord.

e Events that take place in a more distant future, like timeouts or buckethefasKadem-
lia.

In our case the events of the first category are responsible for the aptke current day,
since we use an average network transmission time of 20ms in the corregpsidulation
while the length of a day is set to 100ms. The intuitive solution to avoid this spikiédviae to
shorten the length of a day. However, as long as the total number of elagsns unaltered, the
average number of events per day will remain unaltered as well. Thertti®idea is to shorten
the length of a day, while simultaneously increasing the total number of dagsn & global
point of view there are quiet a number of events at each millisecond in aF&g&etwork. We
therefore decided to first of all shorten the length of a day to just 1Imsdahger in increasing
the total number of day#/; is that there might be many days without any event. Since the
average number of events per day in Figure 6 is approximately 25 we deddecrease the
total number of days td096 - 8 = 32768, resulting in a new average of about 3 events per
day. The results of the new run with 32768 days and a length of 1ms perdajustrated in
Figure 7.

As expected, there are approximately 3 events per day now and nodbweeents at the
current day. Furthermore, periodic and more distant events are eglistijyputed among all
days of the calendar queue. The corresponding values for the garaffieand N, therefore
provide a priority queue with a hold time 6f(1).

In some situations, however, the adaptation of the parameters is not thaFeagxample,
an often used method in large scale simulations is to pre-calculate events whiespond to
the behavior of the user. That is, events like joins, searches, or |asheh are triggered by
the user and are independent of the applied P2P algorithm, are calcugfbeel the simulation
and written to a file. This file is then used as input at the beginning of the simuldiimre are
some advantages to this approach:

e The eventfile can be given to different simulators in order to achievéerimemparability
of the corresponding results.

e |t becomes possible to implement new user models without having to changenthater
in any way.

¢ Log files and traces of emulations and applications can easily be translat@tputdiles
for the simulator.

e The simulation time is slightly reduced due to the pre-calculated events.



[EEY
(2]

[ERN
N

[ERN
N
T
Il

[EnN
o

Number of events
(00]

0 0.5 1 15 2 2.5 3 3.5

Day of the year (1ms each) % 10

Figure 7: Snapshot of a calendar queue vNth= 32768 and7,; = 1ms.

However there is a big disadvantage in terms of performance of the exeneq Since all
user specific events are put into the event queue at the start of the simuthdamumber of
events per day increases significantly. Figure 8 illustrates this problentaih. der the sake of
clarity we plotted the moving average with a window size of 40.

The blue curve shows the distribution of all events in the event queue.evédr@s can be
split into those read from the input file (red curve) and those generaigogdthe simulation
(green curve). In this case the increased number of events per dayigsly generated by
user specific events. The enqueue time of an event will therefore nerldreginO(1) since
there are too many events per day now. A solution to this problem is to maintainffexedt
gueues for the two different kind of events. A regular calendar gfmuevents generated by
the simulation and a simple sorted list for the user specific events. With the garamsed in
Figure 8 the calendar queue offers a hold tim&xt) for events generated by the simulation.
Since user specific events are already sorted in the file, the enquenatiapeinto the sorted
list at the beginning of the simulation can also be doné®{in). There are no more enqueue
operations into this queue during the simulation and dequeue operationg clamé inO(1)
as well. To guarantee the functionality of the double queue concept theedewperation is
slightly modified. The simulator simply compares the next scheduled eventsiofjbeues and
executes the one with the smaller time stamp. This way, the advantages mentionegesist
while the management of events remaingifl).

The above example convincingly motivates the need for special evenegusmder given
circumstances. In the following section we therefore present a spedigiiiz@ity queue with
dynamic ranking, which can, e.g., be used to realize the waiting queue irkelpoatworks.

10



50

40§ 1
b
c
()]
3 307 1
= — All events
- —— User specific events
g 20} Simulation events .
>
zZ

10 1

0 1 1 1 1 1 1
0.5 1 15 2 2.5 3 3.5
Day of the year (1ms each) % 10

Figure 8: Composition of the events in the calendar queue.

2.1.3 Priority Queues with Dynamic Ranking

P2P systems head towards equal treatment of all peers using incentibanisames. When
multiple peers request data from a provider, it has to determine bandwidtat&ioc Due to
the average Internet connection restrictions, only a limited number of péebe processed at
a time. During upload a so-callegbload-slotis occupied and will be released after completion.
Then the next upload to another requestor can be processed.

Because many peers request uploads from a peer, there can bani®o$ peers asking to
be served first. P2P applications watch up to three properties:

e time: the duration from first contact request to now. Longest durationldibe served
first.

e resource priority: A peer may share multiple resources, but speedrtgincenes, e.g.
seldom or newly introduced files. Using file priority, a peer can controbbadth usage
between all shared resources.

e peer priority: Peers can have lasting cooperations and therefoer pref/ious partners
to unknown peers. This factor realizes incentive mechanisms.

The eDonkey network realizes an incentive mechanism based on thesdgtiors. They are
linearily combined and make up the so-callediting score The next upload slot will be given
to the requestor with the maximum waiting score. While file priority and waiting time astiyno
static values, the peer priority changes dynamically with any transaction tmthesponding

11



peer. Thecredit pointsreflect this change: with every completed upload the credit grows up to
a value of 10 (high precedence), while any download consumes souiescrentil it reaches

the bottom value of 1 (low precendence). This causes that any tramshetiween two peers
influences the sort order of the waiting queue.

At large, the P2P performance an user experiences is made up of picisipgn for upload-
slots and it influences directly when a resource download is completed.okigéder here an
efficient implementation of picking the next peer by maximum waiting score. @teasts can
be handled in a waiting queue, but resorting this can be expensiveeMglisplays for requests
and their line up due to their waiting score. It shows that an high priorityegigumight be
served in front of an longer waiting request.

Peer A B C D
Time 3 min 9 min 3 min 3 min
Peer Priority | 10 1 1 1
Res. priority |1 1 1.8 1
Waiting Score| 1800 540 324 180

New incoming requests

waiting score = time
* peer priority
* resource priority

next pick for upload-slot

D|C|BJA

Score=180 / Score=1800

Score=324 Score=540

Figure 9: Waiting queue with score computation

The credit point mechanism balances uploads with downloads, suctthetivze cooperation
in both directions is accelerated, but a transfer into one direction only isdlown. Figure
10 shows the local credit computation with three peers that were dowroackes for 2, 5 and
10 MBs.

In a large scale simulation, this means intensive work on the data structurapk sipproach
would have a queue containing all requests and re-compute the scottes fiext pick. Upload-
slots in eDonkey are limited to 1 MB or 5 minutes, resulting j5 = m picks per minute over all
m Simulated peers. The queue sizés restricted (e.gn = 4096 in eMule) and in average all
waiting slots are filled. By sorting the queue, this approach @6ts - - 1og n) per simulation
minute. This forms a bottleneck w.r.t simulation time and therefore we examine gtti@ns

At first we look closely when and how waiting score changes occur. 88farae that the file

12



10)(

credit

max. rate

10MB download

5MB download

2MB download

\

Upload [MB]

Figure 10: Moving an updated value between sorted runs

priority is constant. The waiting time continuously increases, but it grows simedtssly for all
requests. Only the credit is dynamically changing: this is due to parallehtipes and its value
may increase and decrease, but most updates will be minor changes.

We look into two aspects: First, we investigate the characteristics that acogmgaorting.
When a rescheduling event occurs, either one of the three factorshhaged. The massive
operation is there is a slight change of the credit (e.g. decrease byAd.&xample (cf. Figure
11) is the sortingd BeD, where ABD are sorted runs with < B, B < ¢,c < D. If the sort
key of entryc is decreased, its new position is somewhat earlier and some other entries will b
shifted. The end state is therefade’ BD with A < ¢/, ¢ < B. Thus complete reorganization
for a single event is not necessary. Finding the corfeahd the new position af can be found
in O(log n) at worst case. An efficient implementation can take advantage from tinetexs
search field, given from the alteration and the previous position.

——— Sorted run
O Single entry

D |

Figure 11: Incentive-driven Credit Computation

This is why we examine second, how the magnitude of entries can be shownk &imilar
to calendar queuing, we suggest to dissolve this complexity by groupirig®ntlote, that there

13



absolute credit
comparing max. elements

variable factors
(credit)

\)
grouping by constant factors
(file priority, arrival time)

Figure 12: Separating constant and variable ranking influence factors

Job H arrival time] credit value\ result order

A 4th high 1st
B 2nd - 2nd
C 1rd low 3rd
D 3rd high 4th

Table 1: Example download jobs

do not exist disjoint score ranges. Instead, we suggest to disting@siotistant and variable
fractions of the score. We can then easily derive the complete queuejegtisn (which would
be expensive). However, finding the top pick is easy, because wessaa another priority
gueue. We build several queues with a certain range of constant yefuEgyure 12 with Table
1). When an update occurs, only the variable fraction changes. Beeagh queue size is much
smaller than the previous large queue, queuing speeds up.

2.1.4 Dynamic Ranking Measurements

Our experiemnts investigated an efficient datastructure for scoret-beséing queues. Two
parameters impact simulation efficiency. The most important influence famtairhulation
time is themaximum number of stored jab$his essential size decides about the efficiency of
all underlying data structures. Deployed eMule clients limit their siz&0@6and these queues
are usually heavy crowded. We assume, that for each processea jirbetgueue slot will be
immediately occupied by a successor.

The second assumption considers ratio of the update frequencies tortHeetiuency. For
a clear understanding we first sketch both operationgurA picks the top-most element for

14



- = = single queue
—e—16 lines
—&— 64 lines
—»— 256 lines
—6—512 lines

1.5}

throughput [1/sec]
=

0.5

10 10° 10
queue size

Figure 13: Throughput by varied buffer sizes with quota 1:1

processing and removes it from the queue. The free queue slot is fillecvelement that is
newly queued according to its peer and resource priority. A completedidad triggers an
updateof the peer priority (if there is an pending upload). To reflect the newripriin the
queue order, this element must be resorted. Unless otherwise stateduneeas quota of :1,
which is the average behavior in small groups. This corresponds to thedom average in
incentive-supporting P2P systems, as any received byte has beésosewhere else.

Figure 13 compares queue strategies with varied buffer sizes. We radakerthroughput
of credit point alternations with the corresponding waiting queue upddue traditional single
lined queue has exponentially decreasing performance. With large gimmsethis solution is
clearly inferior to the other options. Multiple queue lines can accelerateghpu by the factor
of two. As a rule of thumb, there should be enough lines to keep the queuarsiand 25. In
the range of 300 up to 2000 queue entries a data structure with 64 linespgletter than with
256, which keep than up for larger queues.

Figure 14 compares varied quotas. When insert operation outweighg,isheearly constant
performance. The graph shows, that the lined queues show goodidrelvéh heavy update
characteristics. For 4k queue sizes, the 64 line variant gains the istpence.

Summarizing, queue processing with heavy updating can be acceleratresbl@ion distin-
guishes between constant and variable factors and builds lines of similstaat lines. Then
updates work on much smaller queues. We showed that lined queuing ifostipeall queue
sizes and all quotas.

15



x 10*

10

- - = single queue
—e— 16 lines
sl —=— 32 lines
—»— 64 lines

iy —+— 128 lines

[}

(]

= 6

5

o

5 =

5 4

e
2 L
0 -2 .—1 ' 0 ' 1 2
10 10 10 10 10

quota [updates / insert]

Figure 14: Throughput by quota with queue size 4k

2.2 Event Design Algorithms

The previously discussed performance of the event queue is ofecoatshe only factor, which
influences the efficiency of large scale simulations. It is almost equally impdiniarthe design
of events utilizes the specific features of the queue. The time needed to aletetere events
in the queue might, e.g., play a decisive role. In P2P simulations, howeveofieisnecessary
to erase timeout events or to reorganize a large amount of events in the. diveutherefore
discuss some possibilities to avoid the corresponding problems and shoto lemhance the
performance of a large scale simulation using event design algorithms, afgckell adapted
to queues of discrete event simulation.

2.2.1 Periodic Events

As long as there are only enqueue and dequeue operations on the theguerformance of the
calendar queue is known to be @(1). However, sometimes there is a need to delete events
from the queue, just like a date in real life might get canceled. A possiborecould be a
timeout event which is no longer needed or has to be moved to another dietesame is true
for already scheduled periodic events of a peer which goes offline. ndst obvious way to
cope with obsolete events is to search for the event in the queue and delétthis. has to
be done frequently, however, the performance of the event quepadiss significantly. In the
worst case the entire calendar has to be searched with a running ti®@:pf This process
can be sped up by investing some computer memory. For timeouts, e.g., aipstreaa flag
indicating whether a search is already done or not. If so, the timeout egaribe discarded
when being dequeued. Periodic events could also check whether tesgmmnding peer is still
online. Otherwise the periodic event will be discarded as well and stagtd the next time

16



the peer goes online. If, however, it is possible for a peer to go offtidepaline before the next
call of the periodic event, the peer ends up having two periodic eventaihsfgust one. Again,
investing some computer memory can solve this problem. For each of its penaditsethe
peer stores a flag stating whether an instance of this periodic event tuseth®r not. When
now a peer goes online again the flags_republish = 1 might, e.g., prevent it from starting a
second instance of its periodic republish procedure. This trade-tifele® computer memory
and simulation running time is not always this easy to solve. The following settterefore
discusses how to handle dynamic events efficiently.

2.2.2 Dynamic Events

Dynamic events frequently have to be moved in the event queue or mighhbeausolete in
the course of the simulation. To be able to maintain the performance of the qrveumnt it is
especially important to find a smart design for those dynamic events. Anstitgrexample

peer X
4380
bucket 1
3960 5820
bucket 2 bucket 3

Figure 15: The next refresh times of three exemplary Kademlia buckets.

in this context is the bucket refresh algorithm in Kademlia-based P2P retwér peer in a
Kademlia network maintains approximately 4dg) different buckets, where is the current
size of the overlay network. Each of this buckets has to be refreshgabasas it has not been
used for one hour. To guarantee this refresh, a peer maintains a timsadorof its buckets.
The timer is reset to one hour every time the peer uses the correspondka,lmug. if it issues
a search for a peer or a resource which fits into this bucket.

Figure 15 shows three exemplary buckets for a pg€eand the next time they will be re-
freshed. The next bucket which has to be refreshed is buckeiralasion time 3960. The last
bucket to be refreshed is bucket 3 at simulation time 5820. This examplescased to show
how to develop a good event design step by step. Assuming we do notanaxést any com-
puter memory, we have to move a bucket refresh event in the queuetemers peer uses the
corresponding bucket as illustrated in Figure 16. That is, each time aipegone of its buckets
for searches and the like, we have to delete the old bucket refreshfremirghe queue and add
a new entry at the time when the new refresh is due. This, however, &z execution time
drastically, since deleting an event from a calendar queue requiressteps.

To reduce the running time, we should therefore invest some computer mefmrgach

17



bucket 7 m
>

Figure 16: Refresh event moved every time peer uses bucket

bucket of a peer, we could store the time stamp of its next refresh. Thesesttimps are
updated every time a peer uses the corresponding bucket and additeonallyrefresh event is
inserted into the event queue. Instead of removing the obsolete evantifeoqueue, however,
it is simply skipped when being dequeued as indicated by the dotted arroiguie A7. That
is, every time a refresh event is dequeued, we can compare its time stamp to tiseatimpeof
the next refresh as stored by the peer. A refresh is only executedtifithiime stamps match,
otherwise the event is obsolete and discarded.

bucket 7 l l
\ AN >

Figure 17: Obsolete refresh events are being skipped

This solution, however, requires more computer memory than actually segeEspecially
if there are a lot of searches in the network and consequently a lot ofatbsefresh events. A
more sophisticated solution would be to again memorize the time of the next rafrighpeer,
while only using one single event per bucket. Each time the peer uses et bilngktime stamp
of the next refresh is updated locally at the peer. However, there ism@vent inserted into the
event queue nor is any old entry moved in the event queue. When slrefrent is dequeued its
time stamp is compared to the time stamp of the next refresh as stored locally a¢thi the
time stamps match, the refresh is performed otherwise the refresh eveimsgred at the time
of the next bucket refresh as indicated in Figure 18. This way, the meneadgenl to store the
obsolete refresh events can be avoided completely. The problem, hoigetvet there is still
one event for each bucket of each peer. In a Kademlia network ohsieach peer maintains
logz(n) buckets on average. This still leaves us with a total of(og- n refresh events in the
event queue. For a peer population of 100000 peers, this adds upttblaB million events!

bucket 7 l/\1
>

Figure 18: Obsolete refresh events are completely avoided

Considering that bucket refreshes can only be moved forward in timesawedevelop an
optimized solution in terms of needed memory. As before, we memorize the time oéxhe n
refresh for each bucket locally at the peer. This time, however, weus#yne single refresh
event for the entire peer. This refresh event is scheduled at the minirhtime aext refresh
times of all buckets of the peer. When dequeued, it calculates the cori@nmium of all bucket

18



refresh times and compares it to its own time stamp. Note, that there are only $sibipties
now. Either its time stamp is smaller then the current minimum or the two time stamps match.
In case of a match the event triggers the refresh of the correspondakgtb Otherwise, it
sets its own time stamp to the current minimum and is re-inserted into the event ajubaé
specific time as illustrated in Figure 19. Since this procedure takes exactlgobaheéime, it

bucket 1 l\ l
>

A current
bucket 2 l minimum
>
bucket 3 l
>

Figure 19: Refresh event scheduled at minimum next refresh times afcdéts

can be done irO(1) for the calendar queue. As an example, consider a refresh event with a
time stamp smaller then the current minimum in Figure 15. Comparing its own time stamp, say
3700, to the current minimum 3960 (bucket 2), it recognizes that thesfeft was scheduled for
became obsolete. It therefore re-enqueues itself into the calendae gugme 3960. If none

of the buckets is used by the peer, before the refresh event is dmtjagain, bucket 2 will be
refreshed. The new refresh time of bucket 2 will be se3360s + 3600s = 7560s and the
refresh event scheduled at the current minimum 4380.

2.3 State Representation

To achieve scalability of large scale P2P simulations, the peer cost museatstremely lean
in terms of computational complexity and memory consumption. Therefore, a sedpdifid
compact state representation is essential. In this section we introduce tleptoha process
handler, a mechanism, which can be used to reduce the amount of compuaterymmeeded
to represent the state of a distributed process. We will also go into the iauaulti-source
download protocol (MSDP). Such a protocol is able to receive coffitermt multiple suppliers
simultaneously. For this purpose, a file is divided into fixed length blocksnist). Each of
these chunks can then be requested from a different uploader. imbkaton keeps track of
already downloaded chunks of the file. This information is then used toeledicth chunk will
be requested in the next download process. We establish some assunitaiow for lean
and efficient management of already downloaded chunks at eacidinalipeer.

2.3.1 Process Handlers

As stated above, in large scale P2P simulations computer memory is an almasaligsreblem
as running time. Due to the highly distributed nature of such systems, hqwleser are many
processes that involve more than one peer. To model those procaskesf ¢he participating
peers has to store some representation of the process. The resultegjafdpe process descrip-

19



tion at the individual peers are usually highly redundant. We therefinedince the concept of
a process handler to reduce the amount of computer memory neededetsergpa distributed
process.

Day 1| Day 2| Day 3| +ee | Day Ny

I I I I
v v v v

process handler

R, =3

a

xyz = 48

Figure 20: Example of a process handler with 3 remaining accesses

A process handler is a well defined part of the computer memory, whéuedant informa-
tion about a distributed process is stored. Each event or peer partigipathe process stores a
pointer to the process handler. The process handler includes a vakjaileich determines the
number of remaining accesses, i.e. the number of events or peers still gamttn Figure 20
shows a process handler with, = 3 remaining accesses, as there are still three events pointing
toit. Each time an event does no longer participate in the process, it destbak, counter by
one and deletes its pointer to the process handler. An event, which ugeedtlss handler for
the first time accordingly increases tRg counter by one and stores a pointer to the handler. The
last event pointing to the process handler finally frees the memory as sabteeminates the
process. From a global point of view, there are, e.g., many distributedhsss in a large scale
structured P2P network. Thereby, each search process could ledethoding a search handler.
The search handler could store redundant information like the soudcthamlestination of the
search, the global timeout of the search, and the number of alreadye@emswers.

2.3.2 Modeling Resource Allocation

Content distribution spreads data from some to many locations. Bandwiddr@amdates affect
the process of completing the transfer and its duration. The intermediate fataiges is given
by the resource allocation. Many protocols divide resources into blgeksEDonkey chunks),
which are validated on a sub-resource level. Locally stored data falls intcdtegoriesver-
ified blocksare actually published and redistributed, whibertial datawaits for completion to
become verified.

Many protocols use concurrent transfers that head towards comptatidisjoint blocks.

20



Peerp1  INNENEEIHINE
Peerpz (NN
Peerps NN
peerra  [ENITIMATAL]

Figure 21: Resource allocation example (darkness = availability, blackad) loc

Transfers can be aborted at any time and some nodes might store incomplate fir a long
time. The resulting state is called allocation (cf. Figure 21). Allocation stratbgiad towards
completing partial data and thus share it. However odd allocation could firehéring new
fragments and block further downloads [6]. In large-scale simulatidia, starage is expensive
and must be kept at a minimum. Therefore, we deal with the question how rpach will be
allocated and how efficient allocation storage is.

Odd fragment distribution can lead to poising downloads [7], caused hghartumber of
started downloads, but without any complete source. Aberer et. al ldoknmproved data
access in P2P networks [8], but do not mention their data structuresddilet. al examined
simulation of dynamic data replication in GRIDs [9], but represent the statastieee and did
not focus on memory effectiveness.

Modeling such effects in large scale simulators is storage-intensive. Hsaarp EDonkey
client that acquires 10 movies results in a total of 1000 blocks. Due to rietimoitations,
received partial data might be heavily fragmented. Modeling the allocationsiteen-byte-
boundaries and a 150 connections with 64 transfer windows causestecase of 10 MB status
information per peer. This raises the question, what effects can be simulakedlternative
models and at what costs. We search for an approximation that maps thet@iate into an
efficient data structure. We will sketch several solutions, determine tioeaige complexity and
discuss weaknesses.

During the upload process two peers negotiate fragments to be transmiteettaiiéimission
might be disturbed either by peer disconnects, packet loss, or sessio e receiving peer
acknowledges incoming data for completion check. A session end oaghes the sender
cancels the upload slot to serve another queued receiver. Thesewam®l causes to abort a
session. In the current eMule implementation a session is restricted by timatanebthme.

In the simulation environment, each peer needs to keep track of availableenas. An
uploading peer will freely choose a size and offset to be transmitted.llysusession will not
complete a block, so partial data remains until the next upload. Peers wilsbahg blocks that
have been verified, i.e. that are completely available at the local site.

e Storing thepercentagef received data only, is the most simple approach. It is sufficient
to model the delay, when no bottlenecks of block sources exist. With théepnalj free-
riders we cannot assume high block availability. The total cost per pseumee is Qn)
for n blocks, with a low constant factor — stored in a word variable. The examglgdwv
occupy 1 kB per node.



sliding window n=8

chunk data
- -
\ I @ O 1 /@
acknowledgeddata ! 1 1 1 1 1 | | |
I T O O O A
N T Y Y Y O A
I T T Y O I A
bttt received fragment
23 RY Ry RY | missing fragments

(at most n blocks)

Figure 22: Worst case scenario for chunk availability after sessiort abo

e A more accurate approach uses detailed information restricted on publikiwid only.
This is the minimum set for download negotiation. It can be achieved eitherravitie
lists or a bit vector. A range list (of missing blocks) has the advantage thatiitkshto-
wards completion, and as such a huge allocation with few gaps is efficieptlysented.
Range lists depend on the number of parallel threads, a large numbearsshissions can
result in discontinuous blocks. The cost i&O m) for n blocks andn concurrent trans-
fers. When we assume a limited number of 16 concurrent transfers agh prbbability
of completing previous blocks, the example request is 32 kB of memory iageeilhe
worst case is that new upload slots cannot complete previously starteal gata and the
number of partial data blocks increase continuously. In average largbers of partial
filled blocks will occur only at the very end, when all other blocks are deteg. While
this is a pretty good option, you cannot simulate protocol effects, whichbserged in
the EDonkey protocol (described later).

e Due to weak implementations some EDonkey implementations (e.g. JMule) create their
own fragmentation within blocks. The receiver sends a request corgaiizie and offset
of a missing fragment. The sender may choose any size up to the given &atae-
ple: receiver asked for 1500 Byte from offset 0. Sender retu#s® Bytes only. Correct
implementations will fill the 50 Bytes and adjust the maximum packet size. Bad imple-
mentations gain partial data with worst case memory allocation. A simulation cast inve
tigate this usingange lists on byte levelThe memory usage is expensive(7Ok) where
k = blocksizereceiversize the maximum number of gaps created by a bad impd¢ioen
(cf. Figure 22). In the example this would be 27 kB per block, with a waseof 27 MB

22



status for a single peer. Clearly, this variant is not applicable for lamge sanulations.

Study of resource allocation in large-scale systems is crucial to undetb&dynamic behav-
ior of these platforms. We have seen that in-depth simulation is intensivergocdn learn from
well-behaving peers with much easier methods. Range lists of blocks comfbithguercentage
per block will reveal major effects and allows for collecting data in largdessimulations. This
method accommodates 100,000 peers in 1 GB while allowing four concupkrads.

3 Abstractions and Models

The need for different abstraction levels and models for differentiGgijpn scenarios is ob-
vious. On the one hand detailed information is necessary to study the tfadfiaateristic in
the network, thereby measurements below the application layer (e.g. atrtbedralayer) is in-
evitable, on the other hand scalability properties are of interest, e.g. guotarol prototyping,
and computation complexity should be reduced.

Model Abstraction | Accuracy | Computation & Description

grade memory costs
NS2 simulation low high high simulate all network layers
Overlay model middle middle middle model transmission times
Stream approach high low low streams instead of packets

Table 2: Comparison of different simulation approaches

By adopting different simplifications validity of the simulation has to be ensufedexam-
ple, Figure 23 shows the goodput of the download of a file of 540 kB usiegiransmission
Control Protocol (TCP). While thnroughputis defined as the number of bits per second trans-
mitted by the source host, tlgodputrepresents the number of bits per second received by the
destination port. We consider different access bandwidths for diffeoeind trip times without
packet loss. In that case, the throughput and the goodput are iderifica results are ob-
tained by an ON/OFF simulation with a full implementation of the TCP Reno stackdingdo
4.4BSD-Lite. The ON/OFF simulation reproduces the packet transfer &lPCayer in order
to determine when a user is actively transmitting, i.e. a packet is transmitted exardbss net-
work. The packet arrivals for each user are determined exactlydingato the TCP/IP stack.
The flow control mechanism of TCP tries to adapt the bandwidth to the cioigés the net-
work. This means that TCP’s flow control mechanism influences the givddpdownloading
a file. Influence factors are the round trip time (RTT), the network adzasdwidth of the user,
packet losses, and the volume of the file. In Figure 23, the goodput isglattthe the access
bandwidth of the user in downlink direction, i.e. the maximum throughput phijsigassible
on the particular link, which is denoted dewnlink capacity We can see that for some given
scenarios (here: for download capacities up to 50 kbps) the googptaches the downlink
capacity. This means that we do not need to differ between the goodusrinéd by TCP and

23



400

—— RTT =100ms .
—— RTT = 200ms e

3501« RTT = 300ms R

T

300

goodput [kbps]
N N
o a
2

'_\

a1

o
T

100

T

50

T

0 50 100 150 200 250 300 350 400
downlink capacity [kbps]

Figure 23: Goodput for the download of a 540 kB file via TCP without ptldss

the downlink capacity. As a consequence, it is not required to simulate T&Erd are no re-
markable differences. However, this assumption is not true if the volumeafahsmitted file
is too low or the downlink capacity is such large that the number of currentigtnited bits on
the downlink is below the network’s bandwidth-delay product. In that,casetailed ON/OFF
simulation is required for determining the goodput. The resulting mean go¢affggveral sim-
ulation runs) for such a scenario can then be used for simulations ofrtieeszenario without
mimicing TCP’s behaviour. This approach reduces the overall computhtifiods and enables
to generate statistically ensured simulation results.

Figure 23 shows that round trip times have an influence on the throughgrefore, it
may be necessary to model transmission times for certain applications. Rangdimes,
e.g. negative-exponentially distributed, are a simple way to model it, but sonsettisas not
sufficient. In our current research, we are working on improvingckes in P2P networks by
e.g. applying proximity neighbor selection. Thus, it is mandatory that trangmisises are
modeled in more detail. On the other hand, simulating the whole packet-layer vealuide the
network size we are able to handle in the simulations.

In the following we present a simulation of BitTorrent on the packet-levieuss-2. Thereby,
all details on the different layers are taken into account enabling us tg stads-layer inter-
actions. Section 3.2 presents a coordinates-based transmission time modelwé&hare still
able to apply given transmission times and jitter effects on distinct overlayections, without
the need to model lower network layers. The proposed model may not enhgdd for P2P
simulations, but in all kind of overlay networks. In Section 3.3 we investigateeam-oriented

24



approach for a P2P file-sharing network which avoids simulating paoketacket at all. This
is possible since in the investigated scenarios the goodput and the dowatiakity are equal
(otherwise we could use the mean goodput as downlink capacity). Thiwizith share of
eDonkey is used as an example and we approximate the bandwidth thageisser

3.1 Packet-based Simulation

BitTorrent is a popular P2P application for a fast dissemination of exac#yfimin a P2P net-
work. We investigated the performance of packet-based simulation of ther&tik protocol
based on the well-known network simulator ns-2 [10].

In BitTorrent each peer controls to whom it uploads data. This is calledaking. Roughly
speaking, the main principle in BitTorrent is that a peer uploads to the feus péth the highest
upload rates to it measured every 10 seconds. When a peer has conipetdedvnioad of the
file, unchoking is based on the download rate of the connected peess tfzth the upload rate.
Details about the BitTorrent protocol can be found in [11].

Since data in BitTorrent is transferred over TCP, one reason to simula&ciet-level is to take
the exact behavior of TCP into account. The influence of TCP on Bititsranchoking algo-
rithm can be notable. E.g. the TCP throughput depends on the round tripRifiig between
the peers. The achieved throughput increases with decreasing BTilcah be reasoned that
a peer unchokes other peers which are near to it with respect to theldgilagen the peers.
This means that the performance of a peer does not only depend on isl walpacity and the
number of peers it knows, but also on the RTT to other peers. To proxtate such cross-layer
interactions packet-based simulation is inevitable. Other reasons are tdrsiffidyaggregation
caused by P2P applications at the core and edge routers of the nefwothermore, packet-
based simulations can be used to validate abstraction models like that degti@sstion 3.3.
In the following we present a user and a network topology model to simulaterBatit file-
sharing networks. These are not only applicable for packet-basethtiomg. In the last part of
this section we present results about the computation complexity of ourtgaesed simulation
with respect to simulation time and memory consumption.

3.1.1 User behavior model

BitTorrent differentiates between two types of peers. On the one harnedbieer, a peer which
has completed none or a few pieces of the file. On the other hand the daeldhas completed
its download and provides its resources purely altruistically to the netwdklifEtime of a peer
in BitTorrent is depicted in Figure 24. When a peer enters the network widrgucompleted
chunk it has to wait until other peers have uploaded altruistically the da&n Whh one or more
completed chunks a peer participates actively in the network by also upfpddia to others
until it finally completes the whole file. For simulation we need to model most importantly
the leecher arrival process and the seed leaving process. Foriladietpresentation also the
download pauses of a leecher and its leaving process, which is initiatetdyeegror or by an
unsatisfied user and which can depend on the progress of the dowhéedto be taken into
account. Additionally, also seeds rejoin the network although a user hrastia@tion to do that.
This is due to the implementation of specific clients, where the software automaticatigcts

25



Peer aborts
the download
Peer leaves with
Peer enters

complete file
the P2P net Leecher with
Leecher one or more Seed
complete chunks
W Peer pauses W Seed rejoins

Figure 24: Lifetime of a peer in BitTorrent

to the network after start-up and serves the file. For the sake of simplicitpmeentrate in the
following on the leecher arrival process and the seed leaving praocelsseglect the others.
The first approach is to study the worst case scenario for file dissenmnathuch is called
the flash crowd effect. Thereby, initially only one seed and a number ohégs are in the
network. This represents an extraordinary burden on the netwodubemnly one peer can
upload data to the others. In our opinion this is an interesting scenario to diftehent rules
for file dissemination because these protocols must be designed suclethaaillable capacity
is used as efficient as possible. This incorporates the case wheral g@ars have nothing or
nothing of interest for the others to share.

In the second approach the leecher arrival is modeled according tiesoR@rocess with mean
A. This can be expanded to a non-stationary Poisson process with wliiffaean values for
different intervals in the simulation. By studying real peer populations in Bi€ft networks,
e.g. in [12], it was observed that especially during the first days afteasing new content the
peer population is much higher than in the following time.

The seed leaving process can also be modeled as worst case and casendh the worst case
a peer leaves the network immediately after it has completed the download. dthrecase a
seed stays for a negative exponential distributed time with mdaefore leaving the network.
Furthermore, it is highly probable that the original provider of the file alswfions as a seed
which does not leave the network at all.

A recent study [13] confirmed the assumption of negative exponentiatijluiged inter-arrival
times of peers for their inspected tracker log files of BitTorrent. Furthezntbey observed a
power-law distributed lingering time, which is the time a peer stays in the netwtakiahas
completed its download. For our investigated small number of peer populatipos/er-law
distribution is not applicable, but should be considered for large andl&stig simulations.
To model the access speed of an user it should be noted that it doeslyatepend on the
connection type, but also on the willingness-to-share of that user. afgsications offer to
limit the capacity of the uplink. Because of asymmetric access lines (e.g. AB®Luser
behavior we assume that the bottleneck in wired networks is the capacitygflthk of a peer.
When altruistic behavior is noticeable also download capacity has to be takeatsount since

26



Peer 1
For N, =3

Access Router 1

Access Router 3 Access Router 2

Peer 3 Peer 2

Figure 25: Simplified topology for three peers

in this case a peer receives data from numerous other peers.

3.1.2 Network Topology

Based on the assumption that the bottleneck of the network is at the acces¥ line users and
not at the routers, we use a simplified topology in our simulations. We modekthwrk with
the help of access lines and overlay links. Each peer is connected wislyim@meetric line to its
access router. All access routers are connected directly to eachhwadefing only an overlay
link. This enables us to simulate different upload and download capacitigslbas different
end-to-end (e2e) delays between different peers. As an examplarpified topology for a
fully-connected peer population of 3 is depicted in Figure 25.

One disadvantage of this model is the required number of linksMgapeers in the network the
number of links in the topology i = (Np + 1) - Np/2. This means, that the number of links
increases quadratically with the number of peers in the network causing argnproblem for
large peer populations.

One possible solution to overcome this problem is to neglect the differene2e telay between
the peers. This would result in omitting the overlay links in the already simplifieddgpo
resulting in a star topology witll’ = Np links. A more sophisticated solution for simulations
with different e2e delays between peers is presented in Section 3.2.

3.1.3 Simulation complexity

To measure the complexity of the packet-level implementation we ran a simulatidBiidfos-
rent P2P network for a file of 10 MB. The chunk size was set to the tefalue of 256 KB. At
the beginning of the simulation a flash crowd enters the network, whereg®plsation was
varied from 10-60 peers. Furthermore, only one peer holds the configedethe start.

We used a Pentium Il (Tualatin) PC with 1400 MHz and 2 GB RAM runningiBeBNU/Linux
3.0 (Woody) for the simulation. The simulation time for the different number ef$i&s shown
in Figure 26.

An exponential increase of the simulation time can be clearly seen from RRguihereas the

27



x 10"

35

25

Simulation Time [s]

0.5

i | I I I I I
10 15 20 25 30 35 40 45 50 55 60
No. of Peers

Figure 26: Simulation time for different number of peers

simulations for 40 or less peers can be completed in less than one hour, simtifagdor 50
peers is around 5 hours and for 60 peers even around 11 houssindiicates that packet-level
simulation does not scale for even medium sized P2P networks when thewihdodal is simu-
lated.

The memory consumption with this peer populations is uncritically. During simulafi@® o
peers only 2.6% of the 2 GB RAM was used.

In spite of the high computation cost, the detailed simulation on packet-leveldpsoan in-
sight into cross-layer interactions and is necessary to validate abstrdeisfor large scale
simulations.

3.2 Modeling packet delay with global network coordinates

Our current research on applying P2P mechanisms in Voice-OverdlP)golutions leads to
two oppositional requirements. On the one hand, we want to simulate a huigesde network
with hundreds of thousands or even some million participants. On the othirtharsimulations
should be as realistic as possible, to be able to develop a protocol thates/dast and highly
reliable. Therefore, it is, amongst other things, necessary to taketieaiiernet transmission
times into account. Participants in different countries and on differeritrmonis lead to a wide
range of average round-trip times (Table 3) and packet loss valueke @Hd14]. We think it is,
in our area of application, not sufficient to model packet loss and nktiremsmission by using
an analytical distribution function (e.g. negative exponential distributioedause lookups in
P2P networks can be performed more efficiently if the protocol can relgyaximity neighbor
selection [15]. The network transmission model we are going to preserisiauthsection was
mainly developed by Robert Nagel in his diploma thesis. [16].

28



Russia| Europe| N America| S Asia | E Asia | Latin America
Russia 55.88 | 93.46 224.38 | 502.99| 264.64
Europe 120.58| 40.55 155.46 | 452.87| 298.05 256.22
North America | 256.75| 146.91 50.71 341.67| 188.05 258.96
Balkans 130.74| 49.17 177.43 480.15| 299.09
South Asia 630.23| 414.67 | 143.85 583.10
East Asia 262.02| 326.51| 215.80 | 387.95| 34.98 484.65
Latin America | 441.90| 328.20 297.25 | 597.74| 514.87 81.53
Middle East | 234.26| 214.83 285.79 504.49| 332.19 445.95
Oceania 423.60| 398.87| 278.88 | 440.10
Africa 581.91| 724.72 522.37
Baltics 91.01 | 50.36 173.30 | 486.21| 309.29
Central Asia 682.71 736.53
South East Asig 604.19 439.48
East Europe 148.82 273.96
Caucasus 692.76

Table 3: Inter-continental average round-trip times (in milliseconds)

Russia| Europe| N America| S Asia| E Asia | Latin America
Russia 1.39 0.84 0.52 1.99 0.22
Europe 1.56 0.27 0.30 0.80 0.30 1.42
North America | 2.11 1.11 0.47 0.56 0.34 1.35
Balkans 2.88 3.91 3.07 2.23 3.12
South Asia 3.68 2.72 3.58 5.95
East Asia 1.29 0.81 0.54 1.16 0.44 9.65
Latin America | 1.98 2.56 2.57 2.01 1.01 2.31
Middle East 2.10 1.09 1.70 1.48 1.25 2.40
Oceania 1.67 0.68 0.64 0.55
Africa 5.05 4.97 3.10
Baltics 1.27 0.08 0.09 0.28 0.12
Central Asia 4.02 3.10
South East Asig 5.28 5.96
East Europe 0.77 1.21
Caucasus 2.30

Table 4: Inter-continental packet loss (in percent)

29




3.2.1 Modeling network transmission times

Table 5 gives a short overview on different approaches to modedrtrizsion times for one
overlay hop.

Model Computation cost Memory Comment
Analytical function simple, 0(1) no geographical information
inexpensive high jitter unavoidable
Lookup table simple, O(N?) high precision
inexpensive problematic data acquisition
Network topology complex high problematic data acquisition
Coordinates-based inexpensive, O(N) data available
expensive offline comp| good precision

Table 5: Different approaches for modeling network transmission times

The simplest way is to use analytical distribution functions, e.g. negativenexyial distri-
butions. They do not require difficult computations and huge amount of meind they do not
consider the geographical network topology. Worst, a different nétévansmission time be-
tween two nodes is calculated for every packet, and therefore, high giltezs/are unavoidable.
Thus, packets that are transmitted back-to-back will arrive in a randder.o

Storing all inter-node transmission times in a lookup table would lead to very hégtision,
but this method is not applicable in huge networks, as the size of the table quadratically
with the number of nodes. Also, acquisition of the data may be very problematic.

Modeling the network topology with routers, autonomous systems and links asnanon
method to build complex models of the internet, and therefore is applied by maolpdgyp
generators as Inet-3.0 [17] or BRITE [18]. Yet, drawbacks for gisiis method could be: it
may be problematic to acquire real internet topologies, still a large amountobmes required
for huge networks and the computation of routing paths and transmission ticwajgex.

We will present a topology model, that is based on network coordinatescHaracterized by
a relatively high precision, but low memory and computation costs during thdatioru The
required memory scales linear with the number of nodes in the network. Thputation of
the network coordinates is expensive, but is done offline and the icated may be re-used in
different simulations. Real internet measurements are available from A A8} which allows
a simulation that is as close to real network conditions as possible. The beaigsidising
network coordinates for estimating the transmission time between two nodesntéhaode
transmission time is directly proportional to the geometrical distance in the catedipace.
In Chapter 3.2.2 we describe the “Global Network Positioning GNP” methadvibause to
construct the coordinate space. Chapter 3.2.3 explains how GNP is usedsimulations and
Chapter 3.2.4 shows results that could be obtained by using this network. iiéeleonclude
this section with a short outlook.

30



3.2.2 Global Network Positioning (GNP)

Global Network Positioning [20] was originally developed for predictingked delays from
one host to another. Each node therefore periodically pings a seowitors(or landmark3
and measures the required round trip times (RTT). In this section we de$mib nodes are
able to compute their own position in the geometrical space with this information ekdovn
monitor coordinates.

Creating a newd-dimensional coordinate space at first requires calculating the cotediof
the landmarks. To achieve a high precision, it is suggested to choose Iksdimaz are as far
apart as possible. All round-trip-times between the monitors must be knasvtha number of
monitorsn must be greater then the number of dimensiéris > d). The error between the
measurecﬂistanceEH1 1, and thecalculateddistancet 7, 7, between the two noded; and H,
is defined as:

(1)

The coordinates of the monitors can then be computed by minimizing the followjagtivie
function for every moniton\/:

~ 2
tHlHQ - tH1H2>

6(tH1H27£H1H2> = < tH o
1412

fovgnr(en, -y emy) = > e(tnr,0;5 tasina;) )
My, M;€{ M., My }i>j

After measuring the RTT to at least (d + 1 < m <= n) monitors, a node can compute its
own coordinates by minimizing the following objective function:

fovj,H(cH) = Z e(tas b, tarp) (3)

]\/L;E{Ml,...,MN}

The estimated transmission timg, 7, between two arbitrary noded; and H, with co-
ordinates(cy, 1, ..., ¢H,,d) and (cu, 1,-..,cH,,q) can finally be obtained by computing the
geometric distance between the two nodes in the coordinate system:

tH Hy = \/(cth - CH271)2 +- (CHl,n - CHW%)Z (4)

3.2.3 Applying GNP for modeling network transmission

We use GNP coordinates in a slightly different way in combination with ping nmeasnts
acquired from CAIDAs skitter project [19]. There are 14 monitorsilamde in the dataset
(Table 6), that are mostly positioned at DNS roots. These monitors do dallyri€Bsurements
to a list of selected nodes that are spread over the entire IP space e\Wetajoing to use all
monitor nodes for the computation of the coordinates, as good values eadyalre gained with
d+1 monitors and the computation duration increases significantly if more monitausede As
mentioned above, it is important to carefully select the monitors. A lot of rekdes been done
in this area [20, 21]. We select our monitors with help of@@ximum separatioalgorithm, i.e.
we try to select monitors that have a maximized inter-monitor distance (by metassrhission
times). This maximization can be solved very easily, as there are only 14ediffaronitors

31



available, and it leads to good results. Another promising, but more computtjmensive,
method is theGreedy algorithmthat chooses the set of monitors that minimizes the average
distance error (Equation 1) between all monitors.

Monitor name Location IP address
arin Bethesda, MD, US 192.149.252.8
b-root Marina del Rey, CA, US  129.9.0.109
cam Cambridge, UK 128.232.97.8
cdg-rssac Paris, FR 195.83.250.10
d-root College Park, MD, US 128.8.7.4
e-root Moffett Field, CA, US | 192.203.230.250
i-root Stockholm, SE 192.36.144.117
ihug Auckland, NZ 203.109.157.20
k-peer Amsterdam, NL 193.0.4.51
k-root London, UK 195.66.241.155
nrt Tokyo, JP 209.249.139.254
riesling San Diego, CA, US 192.172.226.24
uoregon Eugene, OR, US 128.223.162.38
yto Ottawa, CA 205.189.33.78
Table 6: CAIDA monitor hosts
b-root d-root i-root k-root nrt ihug
b-root 68.882 186.476 172.536 127.812 185.123
d-root | 68.882 118.987 95.266 208.739 229.618
i-root | 186.476 118.987 36.523 315.139 319.436
k-root | 172.536 95.266 36.523 275.874 312.360
nrt | 127.812 208.739 315.139 275.874 138.511
ihug | 185.123 229.618 319.436 312.360 138.511

Table 7: Inter-monitor round trip times (in milliseconds)

Table 7 shows the symmetric RTT matrix achieved from a subset of 6 monitdra¢hase
to build a 5-dimensional coordinate space. The monitor’'s coordinatesosabeacalculated by
minimizing Equation 2 for all monitors.

The skitter data set comprises no inter-node RTT measurements, butidggos with RTT
measurements from each monitor to ab®.000 hosts (Table 8). Coordinates for these hosts
can by computed by minimizing Equation 3 for all hosts. This computationally ekymulti-
dimensional minimization problem is solved offline. Currently, we are usingithpl&x Down-
hill Method proposed by Nelder and Mead [22], because it is very gasyplement. Coordi-
nates for the Caida dataset have to be computed once, and can thegdukfoe@ll simulations,
without any further computation costs. The mean transmission time for the Casdauraeents

is about 80 milliseconds.

The following paragraph presents the structure of our simulator and thevaantegrated
GNP. Scenarios we are simulating are describedsauace file where parameters like number

32



b-root d-root i-root k-root nrt ihug
18.166.0.1 84.055 10.535 117.495 85.541 210.628 251.454
81.165.0.1 | 146.550 85.889  36.159 9.554  284.824 291.408
198.31.255.254 8.777 98.625 177.254 145.013 127.879 196.591
200.63.11.1 | 249.277 184.413 1060.883 309.182 376.213 523.068
217.200.12.1 | 172.939 107.576 75.661 27.682 309.860 321.287

Table 8: Host-monitor round trip times(in milliseconds)

of total participants, number of online nodes and average online timestafergm it, a traffic
generator computes all join, leave and search events, as well as thé hbdes and content.
We call its outpuevent file The event file can then by put into ocwordinates toqglthat assigns
a random host from the Caida dataset to each node in the event file. dlh&ldo adds the
appropriate coordinates to the event file. Our simulator automatically detectsrifinates are
set or not, and uses the coordinates or a negative-exponential distribncompute transmis-
sion times, respectively. Transmission times between nodes are calculatdehwittion 4, but
would be constant for each transmission between the same two nodesfofégea log-normal
distributed jitter is added to the transmission times, if coordinates are used. robeeding is
based on real internet measurements [23]. A lognormal distribution igetbas)(y, o2), and
its probability density function (PDF) is expressed as:

_ 1 (In(z)—m 2 :
o exp( 2( . >> ifx>0 5)

0 otherwise

The parameters: ands can be calculated from measurements where the minimum transmis-
sion time#, the mean transmission timeand the standard deviatienare known:

_ (1 —0)?
m-ln( 02_'_(#_9)2) (6)

5= ln(<ui0>2+l> @)

At the moment, we are doing jitter measurements in the Internet to evaluate timecpers
m(u) ands(u) as a function of mean transmission time. We expect narrow lognormal distribu-
tions for nodes in close distance and a higher deviation if the foreign nddeher away.

3.2.4 Results

To evaluate the quality of our coordinates, i.e. how exact can we estimatd Treebietween the
nodes compared to the real measurements, we use the directional retaiheetric:

Ay, — dryrs (8)
min(dH1H27 dH1H2)

33



Therefore, we select two monitors, that have not been used to computedidinates, and
calculate the relative error between them &m0 random hosts from our dataset. A direc-
tional relative error of plus (minus) one means, that the calculated diswlarger (smaller) by
a factor of two than the measured value, whereas a error of zero ifegtdér Figure 27 shows
the performance of both algorithms. Maximum separation with 6 monitors pesfoompara-
bly to the Greedy algorithm with 9 monitor81% of the calculated round trip times reveal a
relative error of less thab0%. On the other hand,0% of the calculated round trip times have
a relative rror of less thai2.3%. We use maximum separation, as it requires significantly less
computation effort.

cumulative probability

| —— 6 monitors, maximum separation
0.55F —— 6 monitors, greedy algorithm

—— 9 monitors, greedy algorithm
L L

05 \“‘ I I
0 05 1 15 2 25

relative error
percentile max. sep.\ 10 20 30 40 50 60 70 80 90
relative error< (in %) \ 1.83 384 6.20 890 1235 17.68 26.93 4757 111.23

Figure 27: Monitor selection method comparison

To evaluate the precision of calculated round trip times with respect to the radasues,
we have grouped the measured times and the corresponding calculated thiressah50 mil-
liseconds and plotted the directional relative error of each pair on aa#itie (Figure 28). The
mean directional relative error is indicated by squares, the 25th and &&térile are indicated
by the outer whiskers of the line. The figure also shows that GNP perfguite well for dis-
tances under 350 milliseconds. A general trend to undershoot in cattutatees in apparent;
especially for distances of more than 350 milliseconds, GNP undershoaotBcsigtly. Still,
93% of all evaluated distances are less than 350 milliseconds, so the ieflaEsignificant
errors for large distances can be neglected. These large erratsfrem nodes that are lo-
cated in areas far apart from the monitor nodes, therefore their catedinan not be computed
precisely.

We are mainly interested in using GNP for calculating transmission times for outasimu
tions. Therefore, we compare the distribution of measured trip times from dfda @ataset
to trip times calculated with GNP (Figure 29). The average transmission times isuthe s

34



0.5F

o

HTTTT

-0.5F

directional relative error

15 ‘ ‘ ‘ ‘ L,
0 200 400 600 800 1000
measured trip time [ms]

Figure 28: Directional relative error over measured distances

for all curves. The negative-exponential function has a clearly higteedard deviancer(=
90.99ms) than the two other distribution based on realisitic topologies, and there afenmre
very small & 25ms) and large & 200ms) values.

More important, lookups in DHTs are forwarded through the overlay niétwantil the re-
sponsible node for the queried key is found. This results in a serieckétsathat are sent over
the network, with trip times adding up until the lookup is resolved. The sums séting times
and small additional local processing and queuing delays is the total ldokep According
to theCentral Limit Theoremthe sum of infinitely many statistically independent random vari-
ables has a Gaussian distribution, regardless of the elementary distribuignse 30 shows
the measured lookup times from simulations with and without using coordinasesxpgected,
both lookup time distributions are very similar. They look Gaussian, and hgw®@mately
the same mean value. The curve corresponding to the negative-expbdestribution is a bit
wider, because the standard devince is bit larger for the negativaerpal distribution.

Nevertheless, the network model based on GNP provides us with a mbsticdamework,
as the transmission time for an overlay hop between two nodes will approxinhat¢fe same
for all packets, instead of a negative-exponentially distributed randduev Therefore, we are
able to apply proximity neighbor selection in our finger and search algoritfitnen, lookup
times will be shorter, because a close node can be selected as nexténeparth request. We
are expecting a significant left shift of the transmission time curve in FigQreNbdes can
estimate the transmission times to their neighbors by evaluating existing traffic toothes,n
or by sending active probe packets. Nodes may also predict the didtamacmther node if
network coordinates are applied in the P2P protocol. Network coordicate®e calculated
by making use of monitor nodes as it is done with GNP [20] or PCA [24], osibyulating
the positions of the nodes with a distributed algorithm like Vivaldi [25, 26].riMan [27] is
a framework for performing node selection based on network locationaré/planning to use

35



0.025 T

T T

—— with coordinates
with negative—exponential
\ trip time distribution
0.02 B

o
o
=
&)

probability

0.01

0.005

0 100 200 300 400 500 600
trip time [ms]

Figure 29: Trip time distributions

Vivaldi coordinates in the P2P protocol, as the algorithm is fully distributetdcamputationally
inexpensive. Therefore, it seems particularly suitable for applying 2 ietworks.

Another interesting phenomena is shwon in Figure 31. If our 5-dimenstmmadinates are
projected in a 2-dimensional coordinate space, a remarkable amounstfrirlg can be recog-
nized. If we compare the clusters with a worldmap, even 'continents’ mayduifigd in the
coordinates space. This is astoundingly, as coordinates have beelatealdrom transmission
times only. We take this as another fact, that the calculated coordinates@urd segresentation
of the real internet topology.

28
i

Australia

(a) Worldmap (b) Calculated coordinates

Figure 31: Node distribution in a 2D projection
Concluding we can state, that a topology-based transmission model is ssalgce2quire-

ment for developing and testing P2P protocols that apply proximity neigtédect®on. The
coordinates-based method presented in this chapter provides us with a simpktorage and

36



T
— with coordinates
with negative—exponential| -
trip time distribution

0.018

0.0161

0.014r

probability
o 3
2 K

©
=}
=}
o

0.006
0.004 1

0.002F /

0 500 1000 1500 2000
lookup time [ms]

Figure 30: Corresponding lookup time distributions

processing inexpensive way to realistically model network transmissavéslay hops.

3.3 Periodic and Market-Based Bandwidth Allocation in eDonkey Netwiks

A main feature of P2P file sharing applications like BitTorrent and eDonkegasnultiple
source downloadnode, i.e. peers can issue two or more download requests for the same file
to multiple providing clientsin parallel and the providing clients can serve the requesting peer
simultaneously. The multiple source download is enabled by dividing files ired §ize pieces,
named chunks, in order to request parts of the file in parallel. Thus, itssilge for peers to
contribute to the P2P network before downloading the complete file.

When an eDonkey client decides to download a file, it asks the providiews fjer an upload
slot. Upon reception of this download request, the providing client placeseifuest in its
waiting list. A download request is served as soon as it obtains an upldadisiery popular
open source implementation of an eDonkey client is the eMule application [B28. source
code shows how the bandwith allocation for the served peers is determiheceMule client
calculates the number of bytes which should be put into the sending boffeash served peer
in the next second according to the bandwidth constraint set by the indoaser. If all peers
are able to receive this amount of data everything will stay the same. Bu¢ ipeer does not
acknowledge the data, it will be suspended for the next second. Thistalg guarantees a fair
bandwidth split for all peers in the active queue. The active queue isthaf peers that are
actually served with data. The maximum size of the active queue is an adjuséaaiaeter of
the eMule client.

For every connection the eMule client first creates a buffer for theested data to avoid
delays by loading data from a permanent storage. Now every secomtighecalculates the

!peer and client are used synonymously in this section

37



available bandwidth in consideration of achieved throughput during thedaend and the max-
imum bandwidth allowed by the user. This value is divided by the number ofextions in the
active queue. Thereafter this amount of data is enqueued into the sdndiers of the TCP
connections for the corresponding peers. Every peer which cotiictoeive the data from the
sending buffer within this second will be ignored for the bandwidth allocatidhe next sec-
ond. All peers get the same amount of data as long as everybody is abteieerit. If a group
of peers has lower bandwidth capabilities, they will get as much as theyplkréoaeceive and
the surplus of bandwidth will be shared by the remaining peers due to thesder@a. The
resulting bandwidth allocation is calledax-min fair sharg29].

While in Section 3.1 the system is modeled with a packet oriented approadibdegsthe
transmission of packets sent from a certain source to its destination. Amgtien is to con-
sider TCP connections as streams between two peers. In the next stwttomedels for the
stream bandwidth calculations are introduced and compared. The firspisribdic bandwidth
allocation (PBA) This model is closely tied to the eMules bandwidth calculation algorithm.
Therefore it updates the bandwidth allocation every second. Thedeappnoach is callechar-
ket based bandwidth allocation (MBBAhis model is aligned with the concept of discrete event
simulation and avoids periodical updates.

The application of the stream oriented approach neglecting TCP beh&vipossible in our
case, since we investigate an eDonkey network in a mobile telecommunicatioorkelike
GPRS or UMTS. The pieces of a file which are exchanged between psiexg the eMule
application have a size of 540 kB. To fully utilize a TCP connection it is necggbat there
is a certain amount of data outstanding in the connection. This value carichéated by the
bandwidth delay product and is proportional to the RTT. In [30] Sanett@l. showed that the
RTT is negligible as long as enough data is transferred within the conneetgprd00 kB for a
GPRS user of coding scheme 4 and multi-slot class 10. Hence the RTT ocagleeted.

3.3.1 Periodic Bandwidth Allocation (PBA)

The basic idea of PBA is a straight forward mapping of the eMule algorithne algorithm
works with local changes of the bandwidth allocation. Before we cansfocuthe PBA it is
necessary to describe the algorithm which computes the fair share bamdfvedconnection at

a peer. Thidair share bandwidth assignmentneeds the bandwidth which the other peers would
regard as fair shared for its calculation. Thereforeftieshare bandwidth for a connection

is defined, which provides this value. These two algorithms work as follows:

38



Calculation of the fair share bandwidth for a connection

Let @ be the set of all connectiorsthe maximum upload capacity set by the usethe
available, not yet assigned bandwidihs= ﬁ andg : ® — R a map that assigns
a connection to its current throughput. The fair share bandwidth

for a connectiort is defined by = max(v, ofz“efg’;é’gg’g;)@nff” 5(”))

The peer takes a look at the available bandwidth which is yet not assigoéueto
connections. For all other connections the fair share bandwidth assigmsaready
done. Then it subtracts the bandwidth of all connections slower than tbeetloal
mean connection speed, not concerning the connection it was quetiddhéorest of

the bandwidth is equally distributed to the rest of the connections.

Fair share bandwidth assignment algorithm

With the definitions from above the fair share bandwidth assignment mayfinede
as a recursive function, as follows in pseudo-code:
function fairshare
( List of not assigned Connectiods,,, List of assigned connectiors,;){

if (Lyy, = 0) return

r =00

Ve € Lyn{

if (B(c) < 2){
xX .

= B(c), mincon := ¢
}

if (2 < ST
assign(c,x), return fairshate(,, \ ¢,Lqs U c)

}
els¢g

Ve € Ly,: assigné, le‘fgﬁ‘f/)
}

Example: In order to get a better understanding of the algorithms a short examplavidead
by Figure 32. We consider there is peer 1 with a network link capacity ofof3 land four
connected peers. These are named peer 2 to peer 5 and calculate #arfaibandwidth as
shown in Figure 32. Thus peer 1 determines the link to peer 2 as the comedtiominimal
bandwidth, and assigns the 3 kbps for this connection at first. Ther@aftdculates the mean
bandwidth for the remaining connections being 12.333 kbps. Peer 3 prbaidalue of 11 kbps
which is lower than the calculated mean and the speed for this connectionts Eetkbps.
Thereafter the new mean value for the remaining peers is 13 kbps. The mirdhaal of the
supposed link speeds is 20 kbps. Thus all remaining connections anatalilvith a speed of

13 kbps, as depicted by Figure 32.

39



Figure 32: Example for PBA fair share algorithm

The PBA works as follows. Every second all active peers are clidokany changes in their
connections to other peers. Either if the number of connections changedomnnection speed
was changed, the PBA fair share algorithm is applied. If a new conndwi®io be established,
this connection is set up with zero bandwidth and the PBA changes the &pé#wsal correct
value within the next second. If a connection has to be shut down, it wilbjesieleted and
the PBA will adjust the bandwidth allocation at the affected peers within thesesond. This
algorithm is easy to implement but has some disadvantages. First, if a connsctiut down
the surplus of the bandwidth is distributed to the remaining connections. E@myected peer
was already updated in this second this may cause temporal overbookirgarresponding
network link of that peer. Equivalent adding a new connection may d¢augsoral underbooking
of a network link, because the corresponding peer is not able to repees bandwidth from
it's other sources. However the influence on the numerical results is sewube these two
inaccuracies cancel each other and the time period of overbookingvhouking is rather short
compared to the overall length of a connection. E.g. the transfer of sthddanload unit,
which is 540KB in size, takes aboé%%ﬁgf{” ~ 24.5min .

" It has to be noted again that the PBA algorithm models the bandwidth betWerees in
the network in order to achieve max-min fair share. If we talk about bartbwaitbcation this
means that in our model the bandwidth is assigned in such a way that theidindfxa peer’s
upload/download connection follows the max-min fair share principle. Asualtref the PBA
algorithm max-min fairness is modeled.

Figure 33 visualizes how bandwidth allocation may spread through the neifvtire worst
case. For example peer 1 has shut down one downlink connectionefdteeit tries to re-
assemble the leak of bandwidth and asks the connected peers to speeid oprihections. We
consider all connected peers are able to speed up these connectiaiscamnections marked

40



Figure 33: Bandwidth reallocation spreading through the network

with "1” in Figure 33 change their speed. Thus one second later all ctions of the connected
peers (marked as "2" in Figure 33) may possibly be changed. The ctong denoted with a
"1” are also recalculated in the second step, but they do not changadeeach of them has
already applied the fair share bandwidth.Therefore the bandwidth algodites not update the
same connections more than one time in two subsequent seconds. But eysliuotures may
cause the bandwidth allocation to oscillate. Figure 34 visualizes such a ogtkionk structure.
Each connection is augmented with a sign representing the trend for theatimmchange, and
the delay of the fair share reassignment.

In Figure 34 peer 1 shuts down a connection at the tymét the timet, + 1, the connections
attached to peer 1 is re-calibrated. We consider the connection betwereh ged peer 1 is not
able to gain a higher bandwidth because of the other links of peer 5. Tiyighe connection
between peer 1 and peer 2 is changed and the complete surplus of bdrmdaydbe added to this
connection. Now the re-calibration spreads through the network. At#jme2 the connection
between peer 2 and peer 3 is slowed down. Peer 3 and peer 4 speeit aprihection thereafter
at timety + 3. This may cause the connection between peer 4 and peer 5 to slow down at time
to+4. Now the problem becomes obvious. Peer 5 reallocates its bandwidth at thg-fifhand
the connection between peer 4 and peer 5 was decelerated beforgoeldo® is able to speed
up the connection between himself and peer 1, but peer 1 has assigmedplete bandwidth
it freed by closing the other connection to the link between peer 2 and itdetf allocation was
fair share at the timé& + 1 but is not at the timeéy + 5. Therefore peer 1 has to recalculate its
bandwidth sharing at timg + 6, which will again affect the other peers in the circle.

Although the bandwidth at real eDonkey clients oscillates, our model aimpeatfect max-
min fair share bandwidth allocation in an efficient way. Thus, the oscillation Imearegarded
as a disadvantage with respect to computation time. The periodic charastsmrha drawbacks
concerning discrete time simulation. A discrete time simulation normally steps froraveme

41



Figure 34: Cyclic dependencies may cause network bandwidth oscillate

to the next. Thus it saves computation time by disregarding time intervals in whichamges
occur. It has to be noted, that the PBA introduces additional events arefdare slows down
the simulation runtime, if the system state does not change over a longer pktiioe, e.g. for
1 minute. The second approach which will be described in the next sedtsridravoid these
additional events.

3.3.2 Marked Based Bandwidth Allocation (MBBA)

In the last section the PBA algorithm for modeling max-min fair share in a netwask ex-
plained. The algorithm was executed periodically for each peer sucliothall peers in the
network the connection’s bandwidth in uplink and downlink connection fadltiee max-min
fair share principle. In order to avoid periodic bandwidth recalculatioissriecessary to reas-
sign the bandwidth of all connections that are influenced. Thus the tistas the MBBA is
to collect all connections that may need to be updated. It is not necessaigke a list of the
connected peers. Instead it is sufficient to make a list of the network ligtsatle involved.
Thereafter the MBBA recomputes all connection speeds in such a wayathahare can be
guaranteed. This is done by an auction like bidding system. The peersatadsalculated
equivalent due to the fair share bandwidth assignment at the PBA. Andbitee only if one
peer’'s bid is the smallest bid for the connection and the connected pger tkee bid, they are
in agreement.

42



Marked based bandwidth allocation algorithm

The algorithm iterates through all network links and assigns new bids for the
connections (GenerateNewBids). If a network link has assigned negnbdth to
all its connections it will return true and will be stored in a list for removal.
Thereafter every connection is checked if it satisfies the constraingsdeal. If
the links are in agreement, the connection will set its speed and return true,
to be collected in another list for removal. Finally all network links and cotioes
of the removal lists are discarded and set flags on these entities will beddelete
Flood the connected component and collect all network linkis,iand connections
in L, label them with a re-calibrating flag and initialize bids tg-j"tciracty
while(L. # 0){

D, := 0/l set of peer that can be deleted

D, := () I/ set of connections that can be deleted

Vp € L, : if p.GenerateNewBids() theR, := D, U p

Ve € L. : if c.CheckStatus() thep. := D.Uc

Vp € D, : remove flag from p

Ve € D, : remove flag from ¢

L,:=L,\D,

L.:=1L.\ D,

}

Vp € L,: remove label from p

The algorithm for the bidding is a little tricky. Basically the connections with the &hwels
are filtered. Next the theoretical mean connection speed is calculated. rfitimum speed is
below or equal to the theoretical mean connection speed, those bidsparate the remain-
ing bandwidth is equally shared by the other connections. If the minimum sp@egds the
theoretical mean connection speed, all connections are assigned with@brding to the the-
oretical mean connection speed. Two modifications are applied in ordeevergroscillation
and low bids for the last connection of one link. First, the bid for the minimal lirkoislow-
ered. This prevents that connected network links that both assume thegation as minimal
exchange their speed bids and an infinite loop happens. E.g. network limk deawork link
2 are connected. Both found the connection to be the minimal link, but netin&rR has bid
value x and network link 1 has set his bid to y. x and y are not equal antdah below the
theoretical mean connection speed. If the first rule did not prohibit iogehe minimal bid the
bidding in the next turn would be exactly the same as before, only that the betwork link 1
would bid x and network link 2 would set its bid to y. Thus an infinite loop resdlte second
modification is to prevent lower capacities on links last assigned. In ordgrai@antee the usage
of the complete bandwidth of a network link, it is neccessary to assign thémeigaverage
connection speed to all the connections, if all actual bids are below this.v&lg. there is a
high bandwidth network link (NL1) connected to at least three low capacig imd one high
capacity link (NL2) with no other connections. The three low ones differ @irthids. Then
NL1 selects the minimum bid, adopts its bid according to this link and distributesriegriag

43



bandwidth equally to the remaining links. Without the second modification NLAdvadopt

its bid to the lower bid of NL1. If the bandwidth assignment of NL1 determinesgie=d of
the slow connections in the same round, whereupon minimal bids of the otharkdinks are

accepted, the bid for the connection to NL2 does not contain the bandwidils that assigned
at this moment but is bid for the other connections. However NL2 keepsithidibthe next

round NL1 and NL2 would assign this speed to the connection, becaunseafithem knows
about the unused capacity of the other link. This would lead to unuseavidthdn the network.

This can also be observed in detail in the example provided on page 458 Pethe example
corresponds to NL2 and peer 2 corresponds to NL1. If peer 8 in tr@gbe would adopt its bid
to the bids of peer 2, then the link speed would be set to 31.666 instead 6636.6

Peer::GenerateNewBids

Let ® be the set of all connectiong, the set of connections marked with a
re-calibration labelp the maximal available bandwidth, apd ¢ — R a map
that assigns a connection to its actual speed bid of the other peer. With these
definitions the GenerateNewBids procedure can be described as folows

if (]| = 0) return true
C:={ceV|Vje¥:p(j) = B(c)}
T = %W /lthe mean remaining bandwidth
it (IC] = W] or [{c € ¥ : B(c) < 2} = |¥])

min := x

otherspeed :=x
elsg

if (B(c)) <z,ce C)

min:= G(c),ce C

0= c@\v)B(T)

otherspeed = (CVZES()E
}
elsg

min := x

otherspeed :=x
}

Ve € C: bid(c):= min, set minimal flag for c
Ve € (@ \ ): bid(c):= otherspeed
}

Against the other parts of the algorithm CheckStatus is rather simple. Thecion speed will
be set if the lower bid is marked as minimal and is repeated.

44



Connection::CheckStatus

if (the lower bid is marked as minimal and is repeated)
set connection speed to the lower bid
return true

}
elsg
return false
¥
Example: In order to explain the algorithm in detail, Figure 35 shows a small network ex-

ample on which the algorithm is applied. Figure 36 depicts the calculated fag bhadwidth
allocation.

Downloading
network links

Uploading network link 3:
network “nks/ 40 kbps
network link 0:
10 kbps

network link 4:

network link 1: 30 kbps

10 kbps

network link 5:
network link 2:9 10kbps

Downloading
network links

Uploading
network links

network link 0:
10 kbps
network link 1:
10 kbps
network link 2:9
80 kbps

network link 3:
40 kbps

b

network link 4:
30 kbps

network link 5:
10kbps

network link 6:
10kbps

80 kbps
\ network link 6:
10kbps

network link 7:
10kbps
network link 8:
40kbps

36.66

network link 7:
10kbps

PO p p B

network link 8:
40kbps

Figure 35: Example for the market basedFigure 36: Fair share bandwidth allocation for
bandwidth allocation the example network

During the initial flooding every network link bids its capacity divided by thenbver of active
connections. Thus network link O sets its bids to 3.333 kbps, network link hetvebrk link
6 bid 5 kbps and so on. In the first round network link 1 and network linktka that all bids
of the other peers are higher than their possibilities for fair sharing ameftine keep up there
bids. Network link 8 keeps up its bid, because the last minimum connection pplees for
the connection. All other peers find a minimum bid, which is below their fairespassibilities
and assign this value to the corresponding connection. Thus network &inkl @etwork link 1

45



Uploading Downloading
network links network links

capacity

Figure 37: Bipartite character of the network graph

can allocate fair share bandwidth for all its connections within the first tlnriihe following
the algorithm is applied to the other network links until a solution is found. Itthd® noticed
that peer 8 shows the need of the last minimum connection rule as mentionesl dbbas
to be noted, that the uplink and the downlink of a peer do not influenceaheh Therefore
the network graph is always bipartite, because uplinks are only comhtect®wnlinks and the
other way round. A peer can belong to both of the partitions, if it uploadsdawnloads data
at the same time.

However the uplink of a peer is never connected to its downlink, becaageettr does only
request data it does not have. Thus the network will always look liker€igd. Due to this
restriction and to the fact, that the upload capacity is rather small compared tiwmload
capacity, further optimization of the algorithm can be applied. A connection avithpacity
value below the actual and foreseen mean link speed is restricted by th@eéneTherefore it
is not necessary to re-calculate its capacity and flooding through this lirdt iequired. Also
nodes, which use only such a small part of their capacity that a new ctimmean not exceed
this volume, do not need to propagate flooding. The re-calculation will mge anything in
the other network parts. Finally if a link is shut down the re-calibration is cétiedach of the
further connected peers. This could be avoided if the algorithm woutdyreze that both peers
belong to one connected component.

3.3.3 Comparison between PBA and MBBA

In the previous sections two models for the bandwidth allocation were dedciibdetalil,
the periodic bandwidth allocation (BPA) algorithm and the market-basedabditdallocation
(MBBA) algorithm. In order to compare these two algorithms we consider fivg fimulation
runs containing each about 35.000 completed downloads. The downloaddpeads heavily
on all other downloads before, because on the one hand downlodkds s&me file increase
the number of sources but on the other hand downloads of other files edage the num-
ber of sources according to the file replacement strategy. Additionallyatislom streams for

46



CCDF

0 100 200 300 400 500 600
time [min]

Figure 38: CCDFs of the download time for a mp3 file of 5 MB with a significaneel lef 95%

generating events in time differ and therefore it is impossible to avoid smalteliites in the
complementary cumulative distribution functions (CCDFs) of the download timédth al-
gorithms. Figure 38 depicts the CCDFs with confidence intervals at a sigmiécaiveau of
95%. Both curves stay within the confidence intervals of the other curve.cald conclude
that both algorithms are equivalent and produce similar simulation resultgsod-emall files,
the stream-oriented approach with neglecting the TCP behavior for modedingatidwidth of
peers in the eDonkey network is not applicable, as depicted in Figure @8heffmore, the
download times of smaller files are heavily dependent on the waiting time, i.e. é #herserv-
ing peers with short waiting queues. E.g. if in one simulation there are some \pitk short
waiting queues and in the other there are none, the experienced downloadiffere much.
Additionally the bandwidth oscillations of the PBA effects the download of thdldies much
more than the downloads of files with a larger size. Although this can be avbiddecreasing
the time interval between two executions of the PBA algorithm, this would resulisigref-
icantly high computational time. Nevertheless, much more simulation runs arecheedet
acceptable small confidence intervals for the smaller file classes, whiginegqgain enormous
computational costs.

Anyway the computational costs of both algorithms differ a lot. In situation in wiéskeral
file requests are sent within one second and the number peers in eagttwoshcomponent is
large, the PBA is faster than the MBBA. The PBA updates the connecti@dsgdhe network
links each second and saves therefore computations. Additionally the driglectivity causes
the MBBA to recalculate some connections more often than needed. On thdatik if there

47



are only a few requests each minute and the ratio of uplink bandwidth to dévirdimdwidth is
small, the MBBA has a better computational performance.

A simulation in which the stream-oriented approach can be applied can berfaptimized
with respect to computational time by using a dynamic model. During a simulatiorttren,
bandwidth allocation algorithm which requires less computational time shouldda: urhe
decision whether the PBA or the MBBA algorithm is more efficient simply depesrd the
number of events per time unit; we only take into account events which chiegeurrent
bandwidth allocation of at least a single network link. However, the proldehat this number
of events for the next time unit has to be estimated a priori in order to incraameation
speed. Certainly, the method for estimating this number must not be very cqrapler would
increase again computation time and loose the benefit of switching betweeBAtenB MBBA
algorithm on the fly. This task is very interesting and will be investigated inéutur

4 Efficient Programming and Parallel Simulation

Ivan Dedinski:One of the main challenges of parallel discrete event simulators (PDES) is the
efficient synchronization of logical processes. Synchronizationedeg, since if the local time

of two processes drifts away, the process with the higher time could sentessage from

the future” to the other process. This kind of errors cannot be toletatethy discrete event
simulation, since they can cause effects, that can not happen in avieahement. Efficient syn-
chronization in PDES is not a trivial task. The potential for optimizations witkaowledge of

the nature of the application are very limited. On the other hand, for someddagplications it

is possible to gain a significant speedup by using application specific optinmgafitis chap-

ter presents an optimization approach suitable for simulating a variety of netaologies,
typically spanned by P2P applications.

4.1 Motivation and Related Work

The simulation of P2P overlays has some specific requirements and prepleatienced to be
considered. The most obvious one is that a P2P simulation is only meaningdubfge number
of peers. The higher the number of simulated peers, the higher the sigodiead reliability of
the results. Another important feature, that is making parallel simulation2f@ratractive, is
the autonomy of the P2P agents. That means, that they will act fairly indeptiy from each
other and thus provide a parallelization potential.

Todays research on PDES often concentrates on optimizations in termecoitien speed.
However a PDES would also make resources other than CPU power &vaddbe simulated
P2P network. A common problem that arises for bigger simulation scenaribe imemory
usage. Todays Java machines have the limitation of 2G memory. But even ibtiggaint
would be removed, one still would need a powerful and expensivesarachine to provide
the required memory banks for large and complex experiments. The PDESs ek usage
of already available resources possible like CIP pools, or already exdipartment labs, that
are normally unused out of work times. P2P simulation scenarios could gbesfit, if using
these resources.

48



Much research on PDES has been done, mainly on the speed optimizatiardasing the
amount of parallelization in the system. The main problem here is the so calladl Caasal-
ity Constraint: A discrete event simulation, consisting of logical proceddes) (that interact
exclusively by exchanging time stamped messages, obeys the local cacsatyaint if and
only if each LP processes events in nondecreasing time stamp ordein@bethis constraint
will definitely prevent causality errors, but would not always be ng@egs thus causing certain
events, which can be executed in parallel, to be executed sequentially.

There are two main classes of PDES mechanisms, that try to increase tHeliparan a
simulation. Conservative approaches definitely avoid causality ernorsrybto detect events,
which can be executed in parallel, in advance, so that no bottleneckaraippthe system.
Optimistic approaches on the other hand discover causality errors treaahready happened
and recover from them. [31] provides a comprehensive study on tferadift mechanisms of
these two classes. One property of all described mechanisms is theinlgpngrose. They
are mechanisms applicable to all kinds of simulation scenarios. This chaptehio#s a new
conservative PDES method that uses knowledge about the simulationiscamé also may
influence the simulation up to a certain predefined degree (which implies theepeatability
of the scenario). On the other hand it may greatly outperform generseceative and optimistic
mechanisms and is simple and verifiable.

4.2 Simulation architecture (requirements)

Developing a P2P Simulation that should consider the specific properties sintlulated net-
work, one needs to design its topology first. Afterwards a partitioning ofdpelogy and a
mapping to simulator machines (or LPs) has to be made. The choice of the tgpblgarti-
tioning and the LP mapping influence the performance of a parallel simulatiohighaegree.
One should mainly consider two points: the LPs should be equally (as exjpakaible) loaded
and the inter-LP communication should be kept at minimum. In this chapter we mulysd
static topology partitioning. Dynamic partitioning has much higher complexity andtisaov-
ered.

For our P2P simulations we used a topology consisting of some small scally, intgincon-
nected networks of equal or at least similar size. The links in these netwaaly have high
capacities and small delays. The networks are interconnected with linkshitnild have low
capacities, and delays as high as possible. The partitioning and mappiegabtiogy to simu-
lator LPs is straightforward and shown on Figure 39 Every small-scalearteected network is
mapped on a single simulator LP, the logical links between the small-scale nstaverknapped
to physical links between the corresponding LPs. Higher delays on theteRonnecting links
improve the simulation performance, since the LPs need to synchronizedgserfitly. Note,
that even if a LP-link is not used at all, synchronization is necessacguse of the possibility
of sending a packet, which could lead to a causality error. The freggage of a LP-link would
cause real network traffic, it will however reduce the need of transfenull messages.

This topology construction approach is well suited to model todays Intestete total in-
terconnection can be found on the backbone, but the edge netwerksaanly organized in
a hierarchic manner. It is possible to construct, exactly as in the Internet, iith different
capacities and delays, which allows the development and the performaaicaten of P2P

49



Figure 39: Example physical topology, suitable for simulation.

applications depending on the topology.

4.3 Topology specific optimizations

Exchanging high number of messages on a small-scale network is notlarpraince, accord-
ing to our partitioning, all small-scale networks are completely located at a simgldator LP.
Causality errors may occur when small-scale networks are exchangirgagess Normally,
when a message leaves a simulator LP, it receives the current virtual tiroéthat LP as a
time stamp. When it arrives at its destination, it may not be processed hieéotiene T1 + DI,
where DI is the minimum link delay. If T1 + Dl is greater than the time T2 of the r&ogi
simulator LP, then everything is fine and the event may be processed, Mhesaches T1 +
DI. A problem occurs when T1 + Dh is less than T2, where Dh is the maximal ktéyd One
solution would be to drop this packet, but then the system would loose paefeading on the
load situation of the LPs, which is not desirable in most cases. Another solstimt to allow
T2 to get higher then T1 + Dh by using synchronization (The destinationdsRdwait, if its
time gets too high). Consequently one can conclude, that the differetveedseDm and Dh in-
fluences the frequency of the synchronizations between the two LP®&igter this difference,
the longer the two LPs can run without synchronization (having the sameirue jitter).
Our approach uses such a variable link delay scheme. We specify a miningumaximum
link delay Dm and Dh of a link. Messages may receive a delay that is betl@seand Dh
depending on the current difference between the virtual times of the two IRe message
delays will be minimal if the LPs are equally “virtually” loaded, so that their virtirmers
advance at the same speed. The upper bound of the link delay betweemvthad act as a
buffer for small, non-constantly growing variations of the timer differerBat if the LPs are
not equally loaded, the faster LP has to wait for the slower and the efféot delay disappears.
The synchronization between two LPs may be described as follows:

¢ Atthe beginning of the simulation each of the LPs has virtual time 0 and sets @hkreyn

50



nization deadline to the min(D2a, D2b, ....D2x), where D2a - D2x are the ugbays of
all links La - Lx and are currently also the deadlines for these links.

e When a synchronization deadline is reached, the LP stops and sendséts time (via
anull messaggto the link with the minimal deadline Lx. A response should come with
the current time Tx of the opposite LP. The new deadline of the link Lx is set to D2x.

The new minimal deadline is calculated and the simulation is continued until it is kache

e When a LP receives a null message, indicating that the opposite LP lthedets sync
deadline, it recomputes its deadline on that link and answers with its current Tihee
answer can eventually be delayed according to a strategy that is noibeeseere. The
purpose of the delay of the reply is to avoid sending too many messagesyhihdead-
lines are increased by too small advances.

e When a LP receives a normal message (not a null message), it uses itdaingete
correct the deadline of the receiving link. When enough normal messagesent, the
need for null messages can be drastically reduced

One nice effect of this approach, is the delay aggregation acrosstierkdopology. Only
simulator LPs that are direct neighbors (and are connected by a lin&)tod® synchronized.
Thats why, the virtual timer difference between two arbitrary LPs may baeghsds the ag-
gregated maximum delay of the links along the shortest path (in terms of dedaygdn the
LPs. The usefulness of this effect can be illustrated by looking at localitgasing activities
in P2P networks. If for some reason a certain region of the networkshovncreased activity,
due to network outages, new node arrivals, social phenomenas, etsipthlation load on its
simulator LPs increases and their virtual timers get slower. But due to thg dgtaegation
effect, regions that are far away from that increased activity may agntioing their calcula-
tions without having to wait for synchronization. Figure 40 shows sudenario. The network
partition simulated by LP A has increased load due to some locally caused adhgtactivity
spreads to LP B, but does not cause the same load amount. LP C is natdefiusy the activity.
Consequently the clock of LP C will advance faster as the clock of LP Braunch faster as the
clock of LP A, which is possible when using the link delays. If this situation J&@sisll become
necessary for LP C to wait for the other two LPs. Eventually, howevelgoital activity at LP A
will be over before that time. Another local activity at LP C would reducectbek differences.

4.4 Evaluation results

A parallel discrete event simulator with the described delay behavior wasnmepted and
tested on two machines with 3 GHz CPUs and 1G Memory, connected to the savrse=gAent.
Each of the machines was running a single LP, the two LPs were conneitited full-duplex
virtual link. Each LP was simulating 15 network nodes, which were recgiaimd processing
packets from other nodes. Each of the 30 nodes could send packdtsttteanodes, even if
they were running at the other LP.

At virtual time (VT) 1.0s all network nodes received a packet. Only one tyfpacket with
a process time of 0.01s was used for simplicity. After processing a packgirdbessing node

51



Figure 40: Example of local activity.

immediately sends the same packet to a random node between 1 and 30. n"Gsee cthat
the total packet count in the system was always 30. The total packat poacessed by a
single LP however was a random number between 0 and 30. The numpbeackats currently
processed on the LP determines the load of that LP and also the advenecEitawvirtual timer.
Conclusively, the advance rate of the timers of the two LPs was equal iagejebut for short
periods variations could occur. Figure 41 shows how the synchronizatierhead (in terms
of null messages) depends on the load between the two LPs. It also eatiparoverhead for
delays of 0.1s and 0.001s on the virtual link between the LPs. One cathae®iith a delay
of 0.1s (10 times higher than the duration of a single packet processimigcr@ase of the null
message curve occurs only in the very low regions of the command cuimieh Wemonstrates
the buffering properties of the chosen delay. A delay of 0.001s is 10 tinvesr [than the
processing time of a single packet, which causes the two LPs to synchidhtzaes between
each time advance of 0.01s. This causes an enormous overhead in tesymetufonization,
which is almost not dependent on the current load situation at the LP.vEnkead is especially
high in the beginning of the simulation (before VT 1.0) because there areckefs in the
system and the only job of the two LPs is to send a null message at ever)MI.01s

To investigate the influence of aggregated delays on the VT differenteeée LPs, the ex-
periment was extended with one additional physical machine and LP, gudbimodes, each
being responsible for an additional packet. The packets were delibgrthe same scheme: to
a random node from 0 to 45, packet processing time was the same. Twethfde LPs (LP1
and LP3) did not have a direct connection, the packet delivery to direttly connected LP
had to be routed by the intermediate LP2 (over two 0.1 delay virtual links) ré&#gishows the
VT difference behavior between the LPs depending on the aggregagdanh all links between
them. One can see, that the maximum delay difference between LP1 and ar®i 0.2s,
but the delay between LP1 and LP2 or between LP2 and LP3 neverdsx@dies, which is the
desired effect of our strategy.

52



3125 T T
null messags for delay 0.+——
L null messagigggley .00t— |
625 //// -
125 *
j2]
€
3
o
o
251 -
5l _
1 | | | | |
0 20 40 60 80 100 1z

real time [s]

Figure 41: Null messages for LP 1 with delays 0.1s and 0.001s.

0.2

T T
siml — sim2 ———

sim2 — sim3 ———
0.15 - 3
0.1 — _
A v
= W/ ' i
Z 005 V 'v ‘. I\ ‘\
=] |
Qo -
g "
g -0.05 - 3
g
-0.1 - *
-0.15 - 3
—02 | | | | | | | |
0 10 20 30 40 50 60 70 80 90

real time [s]

Figure 42: Delay aggregation across 3 LPs

53



5 Conclusions

In this technical report we investigated how large scale P2P networkiecafficiently evalu-
ated. The algorithms and mechanisms of the P2P technology are often appietd/toks and
services with a demand for scalability, i.e. a large number of peers. Someaapps were
presented showing the possibilites in the simulation of large scale P2P netwideksrought
together the experience of different researchers of the P2P commuueitghewed that effi-
cient approaches for simulations can be applied with respect to compua&ictseand memory
consumption:

o efficient data structures,
e appropriate abstractions and models,
e clever parallel simulation techniques.

However, the different possibilities to increase simulation efficiency cay o applied for
appropriate scenarios and applications. A general improvement che fatmulated, different
scenarios and applications also require different simulation approaétigite one simulation
might still be accurate when neglecting the physical layer, the outcome tieargimulation
might heavily depend on such mechanisms.

Nevertheless, this work presents some ideas, methods and algorithm, watly gelp to
improve the scalability of any large scale P2P simulation. For example, we dhefiigent
data structures, which are able to cope with the number of events generatéaige overlay
network. In the majority of cases, finding the appropriate abstraction addlmig already a big
step forward. In this context, we presented examples for differentslef@pplication in order
to show how to approach a given problem. If the mere logic of a simulation iachireighly
optimized, a parallelization of the evaluation step sometimes does the trick. In tisis, $bis
technical report was intended to provide insight into the real issuesgef $amale P2P simulation
and to present approaches of how to solve them.

Acknowledgments

The authors would like to thank Prof. Phuoc Tran-Gia, Prof. Hermankleler, Prof. drg
Ebersgcher, and Prof. Ulrich Killat for enabling and supporting this work. tikemmore, we
would like to thank Dr. Kurt Tutschku for the help in organizing joint reseawvork and the
fruitful discussions during the course of this work. A part of this workpsnsored under grant
IST-50190293.

54



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

R. Brown, “Calendar queues: a fast 0(1) priority queue implememtdtiothe simulation
event set problemCommun. ACMvol. 31, no. 10, pp. 1220-1227, 1988.

K. L. Tan and L.-J. Thng, “Snoopy calendar queue,”"WSC '00: Proceedings of the
32nd conference on Winter simulatigidan Diego, CA, USA), pp. 487—-495, Society for
Computer Simulation International, 2000.

R. R&#246;nngren and R. Ayani, “A comparative study of parallel aaquential priority
gueue algorithms ACM Trans. Model. Comput. Simwol. 7, no. 2, pp. 157-209, 1997.

J. Ahn and S. Oh, “Dynamic calendar queue, S8 '99: Proceedings of the Thirty-Second
Annual Simulation SymposiyrfWashington, DC, USA), p. 20, IEEE Computer Society,
1999.

P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer infdiomesystem based on
the xor metric,” inlPTPS 2002(MIT Faculty Club, Cambridge, MA, USA), March 2002.

H. Jin, Y. Pan, N. Xiao, and J. Sun, ed$syid and Cooperative Computing - GCC
2004: Third International Conference, Wuhan, China, October 212084. Proceedings
vol. 3251 ofLecture Notes in Computer Scien&pringer, 2004.

N. Christin, A. S. Weigend, and J. Chuang, “Content availability, gluand poisoning
in file sharing peer-to-peer networks,” #C '05: Proceedings of the 6th ACM conference
on Electronic commercéNew York, NY, USA), pp. 68—-77, ACM Press, 2005.

K. Aberer, M. Punceva, M. Hauswirth, and R. Schmidt, “Improvirefalaccess in p2p
systems,1IEEE Internet Computingvol. 6, no. 1, pp. 5867, 2002.

H. Lamehamedi, Z. Shentu, B. Szymanski, and E. Deelman, “Simulatiogrardic data
replication strategies in data grids.”

ns-2 (The Network Simulator) Sources and Documentation from
http://www.isi.edu/nsnam/ns/.

B. Cohen, “Incentives build robustness in BitTorrent,Vilorkshop on Economics of Peer-
to-Peer System¢Berkeley, CA), June 2003.

M. Izal, G. Urvoy-Keller, E. W. Biersack, P. Felber, A. A. Hamand L. Garés-Erice,
“Dissecting BitTorrent: Five months in a torrent’s lifetime.,” Rassive and Active Mea-
surementspp. 1-11, April 2004.

D. Stutzbach and R. Rejaie, “Characterizing Churn in Peer-todRe&vorks,” Technical
Report CIS-TR-05-03, University of Oregon, June 2005.

“The pingER project,” 2005.
http://ww- i epm sl ac. st anf ord. edu/ pi nger.

55



[15] M. Castro, P. Druschel, Y. Hu, and A. Rowstron, “Exploiting netkvproximity in dis-
tributed hash tables,” imternational Workshop on Future Directions in Distributed Com-
puting (FuDiCo) (Bertinoro, Italy), June 2002.

[16] R. Nagel, “??,” Master’s thesis, Munich University of Techngld@gUM), Munich, Ger-
many, 2005.

[17] J. Winick and S. Jamin, “Inet-3.0: Internet topology generata¢hl Rep. CSE-TR-456-
02, Department of EECS, University of Michigan Ann Arbor, 2002.

[18] “Brite: Boston university representative internet topology gataer”
http://ww. cs. bu. edu/brite/index. htm .

[19] “Cooperative association for internet data analysis (CAIDA).”
http://ww. cai da. org.

[20] T. E. Ng and H. Zhang, “Towards global network positioning,lihernet Measurement
Workshop, Proceedings of the 1st ACM SIGCOMM Workshop on Ettédfeasurement
2001, (San Francisco, CA, US), pp. 25—-29, November 2001.

[21] L. Tang and M. Crovella, “Geometric exploration of the landmark s&lagroblem,” in
Lecture Notes in Computer Science 3015, Proceedings of Passivectind Measurement
Workshop (PAM2004)Juan-les-Pins, FR), pp. 63—72, April 2004.

[22] J. Nelder and R. Mead, “A simplex method for function minimizationtie Computer
Journal, vol. 7, no. 4, pp. 308-313, 1965.

[23] T. Hoflfeld, A. Mader, K. Tutschku, P. Tran-Gia, F.-U. Andersen, H. de Meer, abddin-
ski, “Comparison of Crawling Strategies for an Optimized Mobile P2P Archite¢tliech.
Rep. 356, University of Wirzburg, 4 2005.

[24] L. Tang and M. Crovella, “Virtual landmarks for the internet,” lmernet Measurement
Conference, Proceedings of the 3rd ACM SIGCOMM Conference amétteleasurement
2003 (Miami Beach, FL, USA), pp. 143-152, October 2003.

[25] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and Rrisld'Designing a DHT
for low latency and high throughput,” iRroceedings of the 1st USENIX Symposium on
Networked Systems Design and Implementation (NSD] {&8n Francisco, CA, USA),
March 2004.

[26] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A datralized network coor-
dinate system,” irProceedings of the ACM SIGCOMM '04 Conferen(ieortland, OR,
USA), August 2004.

[27] B. Wong, A. Slivkins, and E. G. Sirer, “Meridian: a lightweight netik location service
without virtual coordinates SIGCOMM Comput. Commun. Rexol. 35, no. 4, pp. 85-96,
2005.

56



[28] T. eMule Project, “eMule Source Code.” URLhttp://prdownl oads.
sour cef or ge. net/ emul e/, October 2003.

[29] T. Hof¥feld, K. Leibnitz, R. Pries, K. Tutschku, P. Tran-Gia, #dPawlikowski, “Infor-
mation Diffusion in eDonkey Filesharing Networks,”ATNAC 2004(Sydney, Australia),
p. 8,12 2004.

[30] R. Sanchez, J. Martinez, J. Romero, and R. J"arvel’a, “TCPdFormance over EGPRS
network,” in[EEE Vehicular Technology Conference (VTC 2002 f&bptember 2002.

[31] R. Fujimoto, “Parallel discrete event simulatio@dmmun. ACMvol. 33, no. 10, pp. 30—
53, 1990.

57



Appendix A: Example of the Market-Based Bandwidth Allocation Algorithm

The bandwidth allocation example for the MBBA algorithm in Section 3.3.2 is depictdetail
here. In this example we consider a bipartite network graph consistingepeiers. Every peer
has several logical network links in upload and download direction to @éers. The totally
available capacity of each peer (for each direction) is printed besidestire onnections with
an unassigned bandwidth are drawn as solid black lines. The bids of dopeeconnection
(between an uploading and a downloading peer) are depicted by daek gumbers at the
connection link nearby the peer. If the connected peers have agreedandwidth the color of
the connection is changed and the bandwidth is specified with the same colerrmidtie of
the connecting line.

Figure 50 depicts a situation in which the constraints for the bid of the lasection become
evident. The assignment of the bandwidth for the connection betweennkdinlo2 and 4 is
done because the connection is minimal in terms of the MBBA for network link detivork
link 8 adjusted its bid to the bids of network link 2, this would result in a lower eation speed
in the next bidding round and therefore the bandwidth assignment in theawexd would be
31.666 kbps instead of 36.666 kbps.

Downloading Downloading
network links network links

Uploal?ilrlgk network link 3: UploakdiPQk network link 3:
networ 'y 40 kbps networ |r/ Ll; 40 kbps
network link 0: network link 0:
g; 10 kbps [j

10 kbps E-_r'
g network link 4: l network link 4:
network link 1:(~ 30 kbps network link 1 59 30 kbps
10 kbps = 10 kbps —
F network link 5: network link 5:
network link 2: 10kbps network link 2: 10kbps
80 kbps 80 kbps
N
3 network link 6: f network link 6:
10kbps 10kbps
,=7£=‘; P é P
network link 7: I network link 7:
10kbps &7 10kbps
l network link 8: ]I network link 8:
557 aokbps 557 aokbps

Figure 43. Considered example network forFigure 44: Initialization phase: At the begin-

market-based bandwidth allocation algorithmning for all network links their capacity is di-
vided by the number of active network con-
nections. The initial bids are set to these val-
ues.

58



Downloading Downloading
network links network links

Uploading 20 network link 3:

r Uploading 20 network link 3:
network links 40 kbps network links 40 kbps
3.3 20 3.333 20
network link og network link og o

10 kbps 333 10 kbps
3.333

233 network link 4: 5 22 network link 4:
network link 13 g 30 kbps network link 1 g 30 kbps
10 kbps 26.667 10 kbps s 26.667

10 10
network link 5: 25 network link 5:
network link 2: 10kbps network link 2: 10kbps
80 kbps S

80 kbps
3.333 3.333
network link 6: network link 6:
10kbps 10kbps
6.667 6.667
10 10
network link 7: network link 7:
10kbps 10kbps
40 40
network link 8: network link 8:
40kbps 40kbps

Figure 45: Bids at the first round: Network Figure 46: Connection speeds assigned af-
link 8 keeps the bid, although the bid of net-ter first bidding round: The bandwidth for all
work link 2 is lower. This corresponds to the connections of network link 0 and network
fact that his is the only and therefore last con-link 1 are assigned.

nection to be assigned for network link 8.

Downloading Downloading
network links network links
Uploading network link 3: Uploading network link 3:
network links 40 kbps network links 40 kbps

network link 0: network link 0:
10 kbps 10 kbps

g network link 4: 9 network link 4:
network link 1| 30 kbps networlk link 11 30 kbps
10 kbps 26.667 10 kbps 26.667
24.44, network link 5: 24.44, network link 5:
network link z:g 10kbps network link z:g 10kbps
6.

80 kbps 80 kbps

667 g
24.442) a3 24.443 447
network link 6: network link 6:
10kbps 10kbps
6.667 6.667

Figure 47: Bids at the second round: The netFigure 48: Connection speeds assigned after
work links 0, 1, 3, and 5 are no longer consid-second bidding round: Only the connection
ered, since values to all their connections werdetween network link 2 and network link 6 can

already assigned. The MBBA is only applied be assigned. There are no other links which
to the remaining links and connections. are set to be minimal in terms of the MBBA.

59



Downloading Downloading
network links network links
Uploading

‘ network link 3: Uploading network link 3:
network links 40 kbps network links 40 kbps
network link 0: network link 0:
10 kbps 5 10 kbps 5
g network link 4: g network link 4:
network link 19 30 kbps 30 kbps

network link 1:|
10 kbps 26.667 10 kbps 26.667
0
31.66

network link 5:
10kbps
31.660
network link 6: 10 network link 6:
10kbps 10kbps

10 !

network link 7: i .
9 10kbps g network link 7:

31.66/ network link 5: 31.66
network link 2: 10kbps network link 2;,
80 kbps

80 kbps
0

°

10kbps
40 40
network link 8: )
network link 8:
g 40kbps 9 40kbps

Figure 49: Bids at the third round: Only net- Figure 50: Connection speeds assigned after

work links 2, 4, 7, and 8 have to be consideredthird bidding round: The connection speed be-
tween network link 2 and 4 and the connection
speed between network link 2 and 7 is deter-

Downloading Downloading
network links network links
Uploading network link 3: Uploading network link 3:
network links 40 kbps network links 40 kbps
network link 0: network link 0:
10 kbps S 10 kbps 3,

network link 4:
30 kbps

g network link 4:
network link 1: 30 kbps network link 1
10 kbps 10 kbps
5 5
6.667 6.667
network link 5: network link 5:
network link 2;

10kbps network link ZQ 10kbps
80 kbps 80 kbps

36.66/ 36.66
10 network link 6: 10 network link 6:
10kbps 10kbps
36.66!
g network link 7: network link 7:
10kbps 10kbps
40 40

9 network link 8: 9 network link 8:
40kbps

40kbps

T ¥

L

Figure 51: Bids at the fourth bidding round: Figure 52: Final bandwidth assignment: The
Only network link 2 and network link 8 bid bandwidth of the connection between network

for their connection. link 2 and 8 are established with the remaining
capacity of network link2.

60



