University of Wlrzburg
Institute of Computer Science
Research Report Series

Throughput Comparison of Professional
JMS Servers

Michael Menth, Robert Henjes,
Sebastian Gehrsitz, and Christian Zepfel

Report No. 380 March 2006

Department of Distributed Systems
Institute of Computer Science, University of Wiirzburg
Am Hubland, D-97074 Wurzburg, Germany
phone: (+49) 931-888 6644, fax: (+49) 931-888 6632
{menthhenjesgehrsitzzepfel @informatik.uni-wuerzburg.de

Throughput Comparison of Professional IMS Servers

Michael Menth, Robert Henjes,

Sebastian Gehrsitz, and Christian Zepfel
Department of Distributed Systems
Institute of Computer Science, University of Wirzburg
Am Hubland, D-97074 Wirzburg, Germany
phone: (+49) 931-888 6644, fax: (+49) 931-888 6632
{menthhenjesgehrsitzzepfell @informatik.uni-
wuerzburg.de

Abstract

The Java messaging service (JMS) facilitates communitaoong distributed soft-
ware components according to the publish/subscribe jplmcif the subscribers install
filter rules on the JMS server, JMS can be used as a messagayrplatform, but it is
not clear whether its message throughput is sufficiently bhigsupport large-scale sys-
tems. In this paper, we investigate the capacity of thre@ pigrformance JMS server
implementations: FioranoMQ, SunMQ, and WebshereMQ. Irtreshto other studies,
we focus on the message throughput in the presence of fiherstaow that filtering re-
duces the performance significantly. We present modelh&ntessage processing time
of each server and validate them by measurement. These sraafend on the number of
installed filters and the replication grade of the messag@spredict the overall message
throughput for specific application scenarios. Finally,ilkestrate the use of these mod-
els by comparing the message throughput of the three sénviengr different application
scenarios.

1 Introduction
The Java messaging service (JMS) is a communication midaéetor distributed software

components. It is an elegant solution to make large softywangects feasible and future-
proof by a unified communication interface which is definedhi®/JMS API provided by Sun
Microsystems [1]. Hence, a salient feature of JMS is thatiegions do not need to know
their communication partners, they only agree on the mestagat. Information providers
publish messages to the JMS server and information conswubscribe to certain message
types at the JMS server to receive a certain subset of thessagees. This is known as the
publish/subscribe principle.

When messages must be reliably delivered only to subssribat are presently online, the
JMS inthe non-durable and persistent mode is an attraaiuéan for the backbone of a large
scale real-time communication applications. For examgdene user devices may provide
presence information to the JMS. Other users can subsaibertain message types, e.g.,
the presence information of their friends’ devices. Forhsacscenario, a high performance

This work was funded by Siemens AG, Munich. The authors atwagesponsible for the content of the paper.

routing platform needs filter capabilities and a high cafyaoi be scalable for many users. In
particular, the throughput capacity of the JMS server ghaot suffer from a large number of
clients or filters.

In this paper we compare the performance of the FioranoMQi2] SunMQ [3], and the
WebsphereMQ [4] JMS server implementation. We evaluate thaximum throughput by
measurement under various conditions. In particular, wesicker different numbers of pub-
lishers, subscribers, and filters, different message ,sdifferent kinds of filters, and filters
of different complexity. We propose a mathematical modg@leteling on the number of fil-
ters and the message replication grade to approximate tvegsing time of a message for
each server type. Finally, we show the usefulness of theskeisiin practice by predicting
and comparing the message throughput of the three serves tgdour different application
scenarios.

The paper is organized as follows. In Section 2 we presentlidtes, that are important for
our study, and consider related work. In Section 3 we exmairntest environment and mea-
surement methodology. Section 4 shows measurement resulither simple experiments
whereas Section 5 proposes quite complex measuremensdetdprive mathematical mod-
els for the message processing time from their results. elimexlels are useful to predict the
server throughput for specific application scenarios wisctlemonstrated in a comparative
study in Section 6. Finally, we summarize our work in Secffon

2 Background
In this section we describe the Java messaging service (AMBJliscuss related work.

2.1 The Java Messaging Service

Messaging facilitates the communication between remaotigvase components. The Java
Messaging Service (JMS) standardizes this message exeh@ing so-called publishers gen-
erate and send messages to the JMS server, the so-calledisetssconsume these messages
— or a subset thereof — from the JMS server, and the JMS sextgeasa relay node [5], which
controls the message flow by various message filtering ogtidhis is depicted in Figure 1.
Publishers and subscribers rely on the IMS API and the JM@rsgecouples them by acting
as an isolating element. As a consequence, publishers dsdrghers do not need to know
each other. The JMS offers several modes. In the persistedemessages are delivered
reliably and in order. In the durable mode, messages aref@aarded to subscribers that
are currently not connected while in the non-durable modessages are forwarded only to
subscribers who are presently online. Thus, the serveiresga significant amount of buffer
space to store messages in the durable mode. In this studgpnggder the persistent but
non-durable mode if not mentioned differently.

Information providers with similar themes may be groupegetber and publish to a so-
called common topic; only those subscribers having sulbsdror that specific topic receive
their messages. Thus, topics virtually separate the IM@sieito several logical sub-servers.
Topics provide only a very coarse and static method for ngessalection. In addition, topics
need to be configured on the JMS server before system stétrsFare another option for
message selection. A subscriber may install a messageofiltdre JMS server, which effects

¢ IMS - 1
i server

[] ’

' - 2
////’

//D\
AN
’ 5-,-,
D =
H
@

Q
2 o

\ 4

. w

-
[I
3
i I

" '~ .
RN .
[] AN
[]
(] » M
[]
Publishers . L [
Filters Replication Subscribers
grade

Figure 1: The JMS server decouples publishers and subsxribe

that only the messages matching the filter rules are forwaiistead of all messages in the
corresponding topic. In contrast to topics, filters arealstl dynamically during the opera-
tion of the server. Figure 2 shows that a JIMS message cowndittisee parts: the message
header, a user defined property header section, and thegegssgoad itself [1]. So-called
correlation IDs are ordinary 128 byte strings that can benstite header of IMS messages.
Correlation ID filters try to match these IDs whereby wildtéltering is possible, e.g., in the
form of ranges likd+#7; #13]. Several application-specific properties may be set in tbp-p
erty section of the JMS message. Application property §iltey to match these properties.
Unlike to correlation ID filters, a combination of differeptoperties may be specified which
leads to more complex filters with a finer granularity. Aftéy@pics, correlation ID filtering,
and application property filtering are three different plodises for message selection with
different semantic granularity and different computagiogffort.

‘ JMS message ‘

Fixed header fields | | Application properties Application data

Header Body

Figure 2: JMS message structure.

2.2 Related Work

A general introduction to publish/subscribe systems cafobad in [6]. It presents a tax-
onomy of existing systems and compares qualitatively tipalo#ities of different concepts.
The SIENA middleware is based on the publish/subscribecimi®@ and has been presented in
[7] with the objective to achieve an Internet-scale scétghiior event notification services.
This and several other papers [8, 9] focus on an efficientgdesf publish/subscribe sys-
tems to build high-performance message routing platforifewever, they do not provide
measurement results or performance models for the medsagrgyhput of publish/subscribe
systems. Another optimization aspect addresses semssities like uncertainties in queries
[10] which obviously leads to a tradeoff between missedrimftion and redundant message
delivery. Several studies address implementation aspédtéers [11, 12]. A JMS server
checks for each message whether some of its filters matchmié of the filters are identical
or similar, filter matching can be optimized [13]. We condoatasurements for the SunMQ
with identical and different filters in Section 5 and the fesshow an increased throughput
for identical filters compared to different filters.

The JMS is a wide-spread and frequently used middlewarentdoyy. Therefore, its
throughput performance is of general interest and seveagns address this aspect already
from a different viewpoint and in different depth. A mathdioal model for publish/subscribe
communication systems in the durable mode is presentednpuit its focus lies rather on
semantic than performance issues. Guidelines for bendmgadistributed publish/subscribe
systems are given in [15] but without measurement resulb& Setup of our experiments is
in line with these recommendations. On the one hand, thererdy a few academic studies
considering the throughput performance by experimentalsmements [16, 17, 18], but they
do not address the server capacity in the presence of mefisagge In [16] the throughput
performance of Tibco Rendezvous and SonicMQ JMS servernigpaoed while [17] con-
trasts two leading JMS products whose names are not revédiecauthors of [18] show that
the throughput of JMS servers suffers tremendously fromaldlersubscriptions when mobile
users hand over. On the other hand, performance studiedb$ipisubscribe systems are of
great interest such that whitepapers compare the througtipiarious commercial servers.
The throughput performance of four different JIMS serversoimpared in [19]: FioranoMQ
[2], SonicMQ [20], TibcoEMS [21], and WebsphereMQ [4]. Theidy focuses on several
message modes, e.g., durable, persistent, etc., but itdbe®nsider filtering, which is the
main objective in our work. The authors of [22] conduct a benark comparison for the
SunMQ [3] and the WebsphereMQ. They tested throughput peeoce in various message
modes and, in particular, with different acknowledgemaegatiams for the persistent message
mode. They also examined simple filters but they did not congarametric studies, and no
performance model was developed.

The objective of our work is a comparison of the throughpufgyenance of the Fiora-
noMQ, the SunMQ, and the WebsphereMQ JMS server in variopbcagion scenarios. In
particular, we focus on the impact of filters and develop dgoerance model for the server
capacity to predict the maximum message throughput forispapplication scenarios.

3 Test Environment

Our objective is the assessment of the message throughphe ¢gioranoMQ, SunMQ, and
WebsphereMQ JMS server by hardware measurement undeusaamditions. For compa-
rability and reproducibility reasons we describe our tedilihe server installations, and our
measurement methodology in detail.

3.1 Testbed

Our test environment consists of five computers that arstithtied in Figure 3. Four of them
are production machines and one is used for control purpesgs controlling jobs like set-
ting up test scenarios and starting measurement runs. Thiepfoduction machines have
a 1 Gbit/s network interface which is connected to one exatu§igabit switch. They are
equipped with 3.2 GHz single CPUs and 1024 MB system memdngiroperating system
is SuSe Linux 9.1 in standard configuration. To run the JMSrenment we installed Java
SDK 1.4.0, also in default configuration. The control maehsiconnected over a 100 Mbit/s
interface to the Gigabit switch. In our experiments one nrals used as a dedicated JMS
server, the publishers run on one or two exclusive publish&chines, and the subscribers
run on one or two exclusive subscriber machines dependirtheexperiment. If two pub-
lisher or subscriber machines are used, the publishershscebers are distributed equally
between them. We implemented test clients such that eadlspebor subscriber is realized
as a single Java thread, which has an exclusive connectithre tdMS server component. A
management thread collects the measured values from eaeld thnd appends these data to
a file in periodic intervals.

Server
(3.2GHz, 1GB RAM)

— \
Measurement / \ Measurement
(3.2GHz, 1GB RAM)

(3:2GHz, 1GB RAM)

—

Controlling

Figure 3: Testbed environment.

3.2 Server Installation

We briefly describe the installation of the three conside&der types.

We installed the FioranoMQ [2] version 7.5 server composiestJMS server software. We
used the vendor’s default configuration as delivered wightést version. We start the server
in the superuser mode; otherwise user restrictions can thei number of simultaneously
connected clients to the FioranoMQ kernel.

We installed the Sun Java System Message Queue 3 2005Qdrrlatlition (Version
3.6) [3], which is shipped with a trial license including &htures of the enterprise edition.
We use its default configuration except for the following nficdtions. To enable the pub-
lish/subscribe mode we set up a customized default topiomidity, a large buffer is reserved
for incoming messages. However, it is too large for our expents, so we limit it to a maxi-
mum of 10000 messages and switch on the flow control to avogbage loss at the incoming
buffer. Like above, we increased the maximum threshold ifoukaneously connected pub-
lishers from 100 to 400.

We installed the the IBM Websphere MQ 6.0 Trial version [4]tba server machine with
the default configuration except for the following modificats. For performance reasons we
deactivated the security module because our experimentstdfocus on security issues. We
raised the internal restriction regarding the number oélbarconnections to the queue man-
ager from the default value 100 to 500. To conduct our expamis) we used WebshereMQ'’s
integrated publish/subscribe feature instead of an amtditibroker.

3.3 Measurement M ethodology

Our objective is the measurement of the IMS server capddigrefore, we load the server in
all our experiments closely to 100% CPU load and verify tieabther bottlenecks like system
memory or network capacity exist on the server machine that they have a utilization of at
most 75%. The publisher and subscriber machines must notttleriecks, either, and they
must not run at a CPU load larger than 75%. To monitor these cdhditions, we use the
Linux tool “sar”, which is part of the “sysstat” package [23Ye monitor the CPU utilization,

I/0, memory, and network utilization for each measuremant rWithout a running server,
the CPU utilization of the JMS server machine does not ex2égdand a fully loaded server
must have a CPU utilization of at least 96%.

Experiments are conducted as follows. The publishers rinsaturated mode, i.e., they
send messages as fast as possible to the JMS server. Hotheyeare slowed down if the
server is overloaded because publisher side message queuised. Each experiment takes
100 s but we cut off the first and last 5 s due to possible warnmdipcaoldown effects. We
count the overall number of sent messages at the publisheétha overall number of received
messages by the subscribers within the remaining 90 s aitercalculate the server’'s rate
of received and dispatched messages. For verification paspee repeat the measurements
several times, but their results hardly differ such thaficemce intervals are very narrow even
for a few runs.

4 Measurement Results

In this section we investigate the maximum throughput offteeanoMQ, SunMQ, and Web-

sphereMQ JMS servers. The objective is to assess and atr@zacthe impact of specific

application scenarios on their performance. In particuar consider filters since they are
essential for the use of a JMS server as a general messagerolatform.

4.1 Impact of the Number of Publishers

In our first experiment, we study the impact of the number dflishers on the message
throughput. Two machines carry a varying number of pubtsiamd one machine hosts a
single subscriber. Figure 4 shows the received messagegtpat at the JMS server in the
persistent mode, i.e., lost messages are retransmittdeelhMS server and messages are pre-
liminarily written on a disk for recovery purposes. Fiord@Q achieves the highest received
message throughput with 32000 msgs/s, followed by SunM@ @500 msgs/s and Web-
sphereMQ with 1000 msgs/s. Thus, the message throughpus spaeral orders of magni-
tude. FioranoMQ requires 40 publishers to achieve its marirthroughput whereas SunMQ
and WebsphereMQ need only 5 publishers to achieve a typicaighput. As a consequence,
we use in the following experiments at least 5 or more publish

x 10

w
3]
P
)

ey — —~
n N — m)
@ a3l jf-r \ - 5 .
‘ \ 10t
3 Fiorano MQ 2 ‘5 T -
Es al £ L ~ T
5 | = 8" “Fiorano MQ
o3 | o
= 2’3 el
S = ol
O 1sf o |
E Sun MQ E
- L p S AF Sun MQ
O 1f=— o
.% .% \ Websphere MQ
g osr Websphere MQ S 2r \
g m [ag N

(=]

o

20

% 8 8 100 1o
Number of publishers

140

160

20

o e 8 10 10
Number of publishers

140 160

Figure 4. Impact of the number of publishefsigure 5: Impact of the number of publishers
on the received message throughput

in the persistent mode.

on the received message throughput
in the non-persistent mode.

To assess the impact of the persistent mode, we conduct the saperiments in the
non-persistent mode and the results are collected in Figur&he received throughput is
about 100000 msgs/s for FioranoMQ, 13500 msgs/s for SunM@ 9800 msgs/s for Web-
sphereMQ. Thus, the message throughput is significantieased, in particular for Web-
sphereMQ. However, especially for WebsphereMQ we obsemghgpacket loss rate of about
8% under full load.

We repeated both experiment series several times and adihe 95% confidence inter-
vals on this basis. They are shown in both figures. Obviotisgy are very narrow which
results from hardly varying results. Therefore, we omintha the following figures for the
sake of clarity.

4.2 Impact of the Number of Subscribers

Similarly to the above, we investigate the impact of the namtf subscribers on the JMS
server throughput. To that end, we have 5 publishers thiregeisng on one machine and vary
the number of subscribers on two other machines. Figure @shtize received, dispatched,
and the overall message throughput for the SunMQ. The redeivessage rate decreases
significantly with an increasing number of subscribersThis can be explained as follows.
No filters are applied and all messages are delivered to dsgcaber. Thus, each message is
replicatedn times and we call this a replication graderefn. This requires more CPU cycles
for dispatching messages and increases the overall progdsae of a single message. As a
conseqguence, the received message rate is reduced bdwaoserall throughput capacity of
the server stays constant. Hence, the replication gradebruonsidered when performance
measures from different experiments are compared.

25

_~——«Received and dispatched messages i ——No filters
/; R W » 61 - = - Application property filters -
> 25/ | ()]
~ il \ A 5
[%2) |1 | S
2 b Dispatched messages =
Lx S 4l -— 00
é | a2’ F [N
5 ! '% ! Fiorano MQ
Q | S 3t Mo -
< 1k o
= ‘r < la)
s | _ ST |
< | Received messages © | Sun MQ
o5 1 o Websphere M
| > 1t — P Q 1
' e} 2 —
O o el e e S Sy S [O

0 50 100 150 200 25 7300320 50 100 150 260_ 250 300320
Number of subscribers Number of subscribers

o

Figure 6: SunMQ: Impact of the numbéFigure 7: Impact of filter activation and the

of subscribers on the received, number of subscribers on the mes-
dispatched, and overall message sage throughput.
throughput.

4.3 Impact of Filter Activation

We evaluate the impact of filter activation on the messageutftrput. Figure 7 shows the
overall message throughput depending on the number of shescwith and without filters.
We used 5 publishers in all experiments. FioranoMQ achiggeaaximum throughput for 5
subscribers, about 40000 msgs/s for many subscribers wtifitiers, but only 25000 msgs/s

with application property filters. Correlation ID filtersae to 33000 msgs/s, which is omitted
in the graph for the sake of clarity. SunMQ and WebsphereMfire both 20 or 40 sub-
scribers to reach their maximum throughput of 23000 msgsid 000 msgs/s, respectively.
In contrast to FioranoMQ, they show the same capacity withwathout filters. Thus, they
are hardly slowed down by the filtering engine in this expernin However, this finding is
only valid if the message replication grade increases wighnumber of subscribers, which
is a rather artificial case. In Section 5, we study the joimawt of filters and the replication
grade for each server type in more detail. After all, we Idesm these results that at least 5
subscribers are required for future experiments to getr@septative value for the maximum
overall message throughput.

4.4 Impact of the M essage Size

The throughput of a JMS server can be measured in messagesqoerd (message through-
put) or in transmitted data per second (data throughpug.riiéssage body size has certainly
an impact on both values. We test the maximum throughputraipg on the message size.
For each server type we use such an experiment set up thartrex achieves a sufficiently
high throughput, i.e. 10 publishers threads on two maclsead messages to the FioranoMQ
and WebsphereMQ, and 5 are sufficient for the SunMQ serverud®eone subscriber on a
single machine for the FioranoMQ, 2 for the SunMQ, and 5 fer\WebsphereMQ. Figure 8
shows the overall throughput depending on the payload sidelee corresponding message
body size. The throughput in msgs/s is measured, but thaghput in Mbit/s is derived from
these data. The calculation of the corresponding overadbage size takes into account vari-
ous message headers, i.e., 40 bytes JMS header, 32 bytesa@& 20 bytes IP header, and
38 bytes Ethernet header, as well as TCP fragmentation.

Total message size (bytes) < 10°

9> ® 0 & E s S ‘ ‘ -
—_ xlo“\,b‘ P 'b‘b S S S —~ N -
w7 Message throughput 700 9 o4 r=20

5 !
%e‘,b e - *Datathroughput - 4600 @ 9,)357 \ /Florano MQ
o : N
55* Fiorano MQ \ 1500 = - 3} N —
5 3 3
%
Sar sun MQ ‘M ‘ {400 225t
o) , / «Q [=) Sun MQ
> \,/ > S o >
3r ’ % //,300 S e o
e Websphere MQ ¥ A , = o - } 7
S o — \ /200 = S 15 Y S]
s " T § ® Websphere MQ ,
ot . P {100 S 5 F-- p
Rl -7z ¢ » ~
S S e s s s ssag & OO | —
AR A DGR LS RN 4 o ‘ ‘
. he 12345 10 .15 20
Message body size (bytes) Number of topics

Figure 8: Impact of the message body size Bigure 9: Impact of the number of topics on
the message and data throughput. the message throughput for different
replication grades.

Figure 8 shows that an increasing message body size destbasaessage throughput and
increases the data throughput significantly. For small agessodies of O bytes, the message
throughput is limited by 61000 msgs/s for FioranoMQ, 21008ysis for SunMQ, and 6000
msgs/s for WebsphereMQ. For large message bodies of 16384, ltlye throughput is limited
by 4400 msgs/s, 3800 msgs/s, and 2400 msgs/s. Thus, thatgap#io between the server
types changes. The performance degradation of the seagdifferent shapes and this shape
depends also on the application scenario of the server,the.number of publishers and
subscribers, the message replication grade and the filtbesoverall consumed bandwidth is
614 Mbit/s, 525 Mbit/s, and 336 Mbit/s for the three differsarver types. This is very large,
but it does not yet reach the bidirectional TCP transmisksioit of the network for which we
measured simultaneously 350 Mbit/s each in both directiomsur experiments, the default
value for the message body size is 0 bytes.

4.5 Impact of Topics

Messages published to a specific topic are only dispatcheahtsumers who have subscribed
to this particular topic. Thus, topics allow a very coarserf@f message selection. In this
section, we evaluate the impact of the number of topics omingesage throughput for different
replication grades. In our next experiment, 5 publishezdlds are installed on one publisher
machine and two machines host the subscribers. We vary tideruof topics on the JMS
server. Each publisher is connected to every topic and seadsages to them in a round robin
manner. A replication gradeis obtained by registeringsubscribers for each topic.

Figure 9 shows the message throughput for all 3 server typesanoMQ achieves the
highest throughput followed by SunMQ and by WebsphereM@ @moughput converges
asymptotically to a value that is specific to the messagecamn grade. This value in-
creases mostly with the replication grade. That finding sidd all server types. The limiting
throughput for many topics and a replication grade largan thand amounts to 28000 msgs/s
for FioranoMQ, 15000 msgs/s for SunMQ, and 4000 msgs/s fdrspMeereMQ. Hence, topics
can be used for coarse message selection with a moderaperpanice loss for many topics.
In particular, this impact is weaker than the one of the ngesseplication grade.

4.6 Impact of Complex OR-Filters

A single client may be interested in messages with diffeapptication property values. There
are two different options to get these messages. The cinup subscribers

(1) with a simple filter for each desired message type.
(2) with a single but complex OR-filter searching for all dedimessage types.

We assess the JMS server performance for both options. Wethkeereplication grade at
r=1. The publishers send IDs from #1 to #n in a round robin fashion

(1) To assess simple filters, we set up for each different I&cty one subscriber with a
filter for that ID.

10

(2) To assess complex filters, we set up 5 different subgsrilnembered from 0 to 4. Sub-
scriber;j searches for the IDs(#- ¢ +-i) with i € [1;] using an OR-filter.

We use in this experiment one publisher machine with 5 phétithreads and one subscriber
machine with a varying number of subscribers or 5 subsajlvespectively.

16000

160007 : : : ‘ : ‘ ;
1 —— Complex filters —— Filter differs in first component
’\(/7 140007\ - = -Simple filters | ’\U-T 14000k - = —Filter differs in last component |
1
%) \ %) Websphere MQ
)] \)]
9 12000 ‘% Fiorano MQ ¥ 12000f)
é (N / é Fiorano MQ
= 3 10000f |
3 = Sun MQ
= Websphere MQ = T |
[=)) o 80001 ' <
S > \
2 2 000 T
© @ 4000} !
S S
$ 2 o
o) S 2000+ -
0 P R P o \ : _
0 50 100 150 200 250 300320 0 5 10 15 20 25
OR-filter complexity AND-filter complexity

Figure 10: Impact of simple filters and contfigure 11: Impact of an early non-match de-

plex OR-filters on the message cision for AND-filters on the mes-
throughput for a replication grade sage throughput depending on the
of r=1. filter complexity.

Figure 10 shows the message throughput dependiriy arich is the number of compo-
nents in the complex OR-filter complexity or the number ofedént simple subscribers per
client. Firstly, we observe that the message throughputdses significantly for an increas-
ing number of installed simple filters. This is unlike in Figu7 and the difference comes
from the smaller replication grade whichris= 1 instead ofr =n. Thus, the number of filters
decreases the message throughput considerably if the gessaee not forwarded to all sub-
scribers, which is usually intended to avoid with filters.c&adly, we observe that complex
filters (2) lead to a larger throughput than simple filtersk{d) the extent of the performance
gain depends strongly on the server type. For FioranoMQ ptexfilters lead to a slightly
larger throughput than multiple simple filters per clienbr SunMQ, complex filters yield
a performance gain of roughly 100%, and for WebsphereMQ ptexrfilters even avoid the
performance loss that is observed for simple filters. Thus,handling of simple and com-
plex filters by WebsphereMQ takes the same computationtefffmwever, this finding holds
certainly only to a certain extent.

4.7 Impact of Complex AND-Filters

In the application header section of a message, multiplpegsties, e.g. P, ..., P, can be
defined. Complex AND-filters may be used to search for spemfissage types. In the

11

following, we assess the JMS server throughput for compEAilters. Note that complex
AND-filters are only applicable for application propertyédils but not for correlation ID filters.
We use one machine with 10 publisher threads and one machihemw= 10 subscriber
threads that are numbered bhye [1;m]. We design two experiment series with different
potential for optimization of filter matching. The subsenib set up the following complex
AND-filters of different lengthn:

(1) for subscribey: P, =#j, P,=%#0, ..., P,=#0
(2) for subscribey: P, =#0, P,=#0, ..., B, =#j

The corresponding messages are sent by the publishers imé robin fashion to achieve
a replication grade of = 1. Then, the filters can already reject non-matching mesdages
looking at the first filter component (1) or only by looking #ta filter components (2). The
experiments are designed such that both the replicatiategrad the number of subscribers
is constant, and that only the filter complexityvaries. To avoid any impact of different
message sizes in this experiment series, we défia@5 properties in all messages to get the
same length.

Figure 11 shows the message throughput depending on threcbiteplexityn. The filter
complexity reduces the server capacity significantly far&noMQ and SunMQ. Experiment
(1) yields a considerably larger message throughput thperarent (2). Thus, an early reject
decision of the filters shortens the processing time of a aggsand increases thereby the
server capacity. As a consequence, practitioners showddf@athe order of individual com-
ponents within AND-filters: components with the least mgtobbability should be checked
first. For WebsphereMQ, the message throughput is neitfestadl by the filter complexity
nor by the position of the component which is decisive forrijection of a message. As a
consequence, we assume that the filter logic of WebspheredéCa hmelatively high general
filter overhead without optimization for complex AND-fileesince simple filter expressions
take the same filtering effort as complex filter expressions.

5 Performance Models for the Joint Impact of the Number of Filtersand
the Replication Grade

We know from Section 4.3 and Section 4.6 that both the numb#ters and the replication
grade influence the capacity of JMS servers. In this sectvennvestigate their joint impact
on the message throughput for each server type in detail mwlde mathematical approxi-
mation models. To that end, we design first experiments witlmaing number of filters and a
varying replication grade. We take measurements, suggestematical models that are able
to capture the gained throughput curves, and fit the modahpeters by a least squares ap-
proximation. The measured and the analytical throughprgeagery well for all three server
types such that the performance models can be used to pileelieerver capacity for specific
application scenarios.

12

5.1 Performance Model for FioranoM Q

We describe the experiment series for the FioranoMQ, suggesitable mathematical ap-
proximation model for the server throughput, and fit the egponding model parameters.

5.1.1 Experiment Setup and M easurement Results

We use one publisher and one subscriber machine. Five paldisre connected to the IMS
server and send messages with correlation ID #0 or apmitptioperty value #0 in a saturated
way. Furthermoren +r subscribers are connected to the JIMS semwerf them filter for
application property value #0 while the othersubscribers filter for value #1. Hence;

r filters are installed altogether. This setting yields a ragssreplication grade of. We
choose replication grades o {1, 2, 5, 10, 20,40} andn € {5, 10, 20, 40, 80, 160} additional
subscribers.

— Measured throughput
- - - Analytical throughput

—Measured throughput
9000¢ - - - Analytical throughput

r=1,2,5,10,20,40

r=1,2,5,10,20,40

Received throughput (msgs/s)
Overall throughput (msgs/s)

50 . 160 150 . 200 00 50 . 160 1é0 . 200
Number of application property filters Number of application property filters

Figure 12: FioranoMQ: Impact of the numFigure 13: FioranoMQ: Impact of the num-

ber of filtersn s, and the message ber of filters ns,, and the mes-
replication grader on the over- sage replication gradeon the re-
all message throughput — measure- ceived message throughput — mea-
ments and analytical data. surements and analytical data.

Figures 12 and 13 show the received and overall messagegtipatfor application prop-
erty filters depending on the number of installed filterg, = n+r and on the replication
grader. The solid lines show the measured throughput. An incrgasimber of installed fil-
ters reduces obviously the message throughput of the se&mancreasing replication grade
decreases the received message throughput, but it insreaseall message throughput of
the server to a certain extent. We obtain similar measuremewes with about 100% more
throughput for correlation ID filters. In addition, we comtithe same experiment series with
then non-matching filters set to #1, ...n# They lead to the exactly same results as in Fig-
ures 12 and 13. Thus, we cannot find any throughput improverequal filters are used
instead of different filters.

13

5.1.2 Performance Model for the M essage Processing Time

The message processing time is the inverse of the receivedage throughput. Figure 12
shows that it depends both on the number of filtgfg. and the replication grade Therefore,
we propose a very simple model for the message processiegim

B = Lrew + Ngier tfltr + 7ty (l)

The parametet,., is a fixed time overhead for each received message. Thergtesffort
increases linearly with the number of filtetg,, and the time to check a single filtertg, .
Finally, t,, describes the time to dispatch and to send a single messagenifatching filter.

5.1.3 Validation of the Model by M easurement Data

The results in Figures 12 and 13 show the overall througlgmanding received and sent mes-
sages. Within tim&3, one message is received anthessages are dispatched by the server.
Thus, the overall throughput is given tﬁg—l and corresponds to the measurement results in
Figure 13. The parameters;, andr for the message processing time in Equation (1) are
known from the respective experiments. We fit the parameterst .., andt,, by a least
squares approximation to adapt the model in Equation (1heéateasurement results. The
resulting parameter values are compiled in Table 1 for tatice 1D and application property
filters.

Table 1: Empirical values for the model parameters of thesages processing time in Equa-
tion (1).

parameter re (S) tfltr (S) Utz (S)
corr. ID filtering | 8.52-10"7 | 7.02-107% | 1.70- 1075
app. prop. filtering| 4.10-107% | 1.46- 107 | 1.62-107°

We calculate the message throughput based on these valli&jaation (1) for all mea-
sured data points, and plot the results with dashed linegur&€s 12 and 13. The throughput
from our analytical model agrees very well with our measweets for all numbers of filters
n g and all replication grades

5.2 Performance Model for SunMQ

We describe the experiment series for the SunMQ, suggestabkumathematical approx-
imation model for the server throughput, and fit the corresipgg model parameters. Note
that the model for SunMQ is more complex than the model fordfioMQ.

5.2.1 Experiment Setup and M easurement Results

We performed the same experiment like above for the SunMQf@mt out that it matters
whether non-matching filters are equal or different. Thus, design such an experiment

14

series that we can study the impact of the replication gradiee number of different filters
n%17, and the number of all filters3l., on the message throughput. The publishers send only
messages with value #0. To achieve a replication grade wfe set upr subscribers with

a filter for value #0. Furthermore, we instal{’/, other different filters for values from #1

to #ngfff. We set up these additional filtefs times and callf, the filter replication factor

in this experiment. We use the following values for our ekpentsr € {1, 2,5, 10, 20,40},

ngl, € {1,2,5,10,20,40,80,160}, and f, € {1,2, 4,8}, and conduct them with 5 publisher
threads on one publisher machine and with a variable nunfber @5, - f.) subscribers on
one subscriber machine.

Figure 5.2.2 shows the received and overall message thpotifdr this experiment series.
The server capacity clearly decreases for an increasingpauof different fiIterSnggl]?f. An
increasing message replication gradeduces the received message rate, but it increases the
overall message rate. The four related figures differ by ferdint filter replication gradé,,
but they look very similar at the first spot. The impact of thener of all fiIterSn?J/tr =
r+fr - nggl;lf is clearly visible when we compare the right margins of theireg since the
number of all filters only differs significantly if the numbef additional different filtermggl;‘f
is large. Thereby we observe that equal filters also redwecthtbughput even though they do
not match.

5.2.2 A SmpleModel for the M essage Processing Time

The message processing time is the inverse of the receivedage throughput. The Fig-
ures 14(a)-14(d) on the left show that it depends on the nuofladitional filterSnjﬁflg, the
filter replication factorf,, and the replication grade We propose a simple model for the
message processing tinfethat relies omdl!, =r+ f, - na%, andnf;// =ngdd +1:

di di
B = trew+ n(}llir : t(]l”llffr +n le{rf -t le{rf + 7t (2)

The parametet,., is a fixed time overhead for each received message. Thergtesffort
increases linearly with the number of all filtez§!. and the time to check a single filter is

tall, . Different filters impose an extra overheaddf/’ - /7. Finally, t,, describes the time
to dispatch and to send a single message for a matching filter.

15

7000

—— Measured throughput ——Measured throughput
- = - Analytical throughput - = - Analytical throughput

60001

N}

&
o
S
S
=
o

40001

r=1,2,5,10,20,40

w
=}
=}
=)

[

2000f,

Overall throughput (msgs/s)

Received throughput (msgs/s)

60 b 100 120 140 160 O ‘ 40 SO 50 100 120 140 160
Number of different non—-matching filters Number of different non—-matching filters

(a) Filter replication gradé,. =1.

7000

—— Measured throughput

—— Measured throughput N
- = - Analytical throughput

- = - Analytical throughput
600013 Y Pt

N

o
o
S
S

r=1,2,510,20,40

=
4

40001

W
s
S
S
-

r=1,2,5,10,20,40
2000},

Overall throughput (msgs/s)

Received throughput (msgs/s)

60 b 100 120 140 160 40 60 100 120 140 160
Number of different non—-matching filters Number of dlfferent non matching filters

(b) Filter replication grad¢, =2.

7000 T T T T T T T

—— Measured throughput —— Measured throughput
- * - Analytical throughput

- * - Analytical throughput
6000 1

N

50001,

=
4]

40001

w
o
S
=]

-

20007, r=1,2,5,10,20,40

Overall throughput (msgs/s)

Received throughput (msgs/s)

Jc}

40 60 80 100 120 140 160 O ‘ ‘ 60 80 100 120 140 160
Number of different non—-matching filters Number of different non—matching filters

(c) Filter replication gradg, =4.

7000

—— Measured throughput ——Measured throughput
6000 - = - Analytical throughput - = - Analytical throughput

5000F
4000

3000

r=1,2,5,10,20,40

Received throughput (msgs/s)
Overall throughput (msgs/s)

60 b 100 120 140 160 O ‘ 40 SO 50 100 120 140 160
Number of different non—-matching filters Number of different non—-matching filters

(d) Filter replication gradg, =8.
16

Figure 14: SunMQ: Impact of the number of different filtef§/ and the message replication
grader on the received and overall message throughput for differembers of
additional equal filters — measurements and analytical data

5.2.3 Validation of the Model by M easurement Data

The results in the right column of the Figures 14(a)-14(awskhe overall throughput re-
garding received and sent messages. Within thnene message is received anthessages
are sent on average. Therefore, the overall throughpuvdmgjy% and corresponds to the
measurement results in Figures 14(a)—-14(d) on the righthwol The parametevéﬁ{f : njc’l’tr,
andr for the message processing timeare known from the respective experiments. We fit
the parameters..,, t?vlsz tffl{f , andt,, by a least squares approximation to adapt the model in
Equation (2) to the measurement results. The results arpitamhin Table 2 for correlation ID
and application property filters. We calculate the messagrighput based on these values

Table 2: Empirical values for the model parameters of thesamgs processing time in Equa-
tion (2).
parametar t,., (S) el (s) | 5l (s) te (S)
value [1.118-107%2.200-107°%{1.785-107%{4.008 - 10~

and Equation (2) for all measured data points, and plot theltewith dashed lines in Fig-
ure 5.2.2. The throughput from our analytical model agresyg well with our measurement
results.

5.3 Performance Model for WebsphereM Q

We conduct an experiment series to study the joint impactefreplication grade and

the number of installed filtera ;. for the WebsphereMQ, suggest a suitable mathematical
approximation model for the server throughput, and fit theesponding model parameters.
Note that WebshereMQ requires a substantially differendehéor the message processing
time compared to FioranoMQ and SunNQ.

5.3.1 Experiment Setup and M easurement Results

We set up the same series of experiments like for the FiorghamSection 5.1.1. Fig-
ure 15 shows the received message throughput dependinge aruthber of installed filters

n s =n+r and on the replication grade The solid lines show the measured throughput. An
increasing number of filters reduces the received messagegiput of the system which is
obviously independent of the replication grade. This ifedént to the results for FioranoMQ
and SunMQ in Section 5.1.1 and Section 5.2.1. Figure 16 shiogvsesulting overall mes-
sage throughput. It decreases also with an increasing nuoftbdéers, but it rises with the
replication grade. We have performed the same experimentsfrelation 1D filters, too, and
obtained the same measurement results. Thus, correl&iand application property filters
lead to the same throughput both for SunMQ and WebsphereMQ.

17

1400 10000

—<— Measured throughput
= Analytical throughput 1

——Measured throughput
- Analytical throughput

90001
1200F

8000
1000} * 7000¢

r=1,2,5,10,20,40

60001

r=1,2,510,20,40

o]

o

o
T

50001

fox}

o

o
T

4000r

30001 *

N

o

o
T

2000} *

Received throughput (msgs/s)

Overall throughput (msgs/s)

10001

—

(=]
OO

150 200

56 . 160 150 . 50 i 109 i
Number of application property filters Number of application property filters

Figure 15: WebsphereMQ: Impact of thEigure 16: WebsphereMQ: Impact of the

number of filtersn;,, and the number of filtersn,, and the
message replication grade on message replication grade on
the received message throughput — the overall message throughput —
measurements and analytical data. measurements and analytical data.

5.3.2 A Simple Modd for the M essage Processing Time

Figure 15 shows that the message processing time depernydsiotiie number of filters ;..

In contrast to FioranoMQ and SunMQ, it does not depend onepkcation grade. Thus,
the time to send messages is obviously so small that it isetateable for a replication grade
of up tor = 40. A linear model like for the FioranoMQ or the SunMQ in Sectidri..2
and Section 5.2.2 does not work for the approximation of th@va measurement results.
Therefore, we propose the following model for the messageqssing times:

B = Lrew + Ngigr (nfltr) : tfltr- (3)

The parametet,., is a fixed time overhead for each received message. Therdteffort
affects the processing time with a supplement@f, - \/ () - tre-. Hence, it increases
more than linearly with the number of installed filters,, .

5.3.3 Validation of the Model by M easurement Data

As mentioned above, the received and the overall througtgrutoe analytically calculated
by % andr—gl. Again, we adapt the model parametgs andt,, in Equation (3) by a least
squares approximation and obtain for them the valuygs-7.03-10~* andt s, = 1.1017-10~°.

We calculated the received and overall throughput for alksneed data points based on these
values and Equation (3), and plot them with dashed linesgares 15 and 16. The throughput
from our analytical model agrees very well with our measwetrdata for all numbers of
filtersn s, and all replication grades For a very high message replication grade tike 80,

the prediction tends to be incorrect since the time to seed(loutgoing messages imposes

18

additional time which is not captured by the model. Howetleg, model predicts the overall
message throughput of the server quite accurately for anaiuge of realistic parametets;,,
andr.

5.4 Summary of the Performance Models

We have investigated the joint impact of the number of fileard the replication grade on the
server capacity of FioranoMQ, SunMQ, and WebsphereMQ .aRioQ leads to enhanced
throughput for correlation ID filters compared to applioatproperty filters while the filter
type does not lead to different results for SunMQ and Wehsig®. Only SunMQ imple-
ments an optimized filter matching algorithm such that edilteirs can be handled more
efficiently than different filters. The message replicatgpade has an impact on the mes-
sage processing time for FioranoMQ and SunMQ, but not for 3ebreMQ as long as a
replication grade of =40 is not exceeded. The filtering effort for SunMQ and FioranoMQ
increases at most linearly with the number of installedrBlighereas WebshpereMQ showed
a worse filter scalability in our experiments. As a consegagthe models we developed for
the message processing time of each server type were stiédbgatifferent. They are useful
to predict the server capacity for specific application ac@s. Thus, they can be used to di-
mension the number of servers in a network. The throughpupasison of the three different
server platforms helps in general to decide which of thekéisas satisfies the requirements
of a special distributed application from a performancenpof view.

6 Application Example

We assume a distributed notification service, i.e., produgenerate so-called events and
consumers are notified about them. A JMS server can be useghternent such a service. We
assume many producers and 100 consumers. There are manhtypesnbut each consumer is
interested in only one. The consumers may use filtersmgj’fbb: 100 to get only the relevant
events; otherwise, they are notified about all events and t@aprocess a higher load. The
consumers are interestednﬁj{f € {1,10, 100} different events. We predict the JMS server
throughput based on the results of our study, in particldadifferent message replication
grades. Large replication grades occur if several clients filterthee same events. If no filters
are used, we consult Figure 7 to determine the receiveddghput. If filters are applied, we
use Equation (1), Equation (2), and Equation (3) with thpeegve parameters for application
property filtering to calculate the server capacity. We ta@rapiled the throughput of received
messages at the servers in Table 3.

The use of filters increases the throughput performanceesetlapplication scenarios for
FioranoMQ and for SunMQ but not for WebsphereMQ. Howevee, dilse of filters is not
only recommended to increase the server throughput but@lgmtect the consumers from
undesired load if they are only interested in 1% or 10% of tlessages. We immediately re-
alize that FioranoMQ and SunMQ are superior to Websphereiill considered application
scenarios. Therefore, we discuss only the performanceeséttwo solutions. Without filters,
FioranoMQ has twice the capacity of SunMQ and each consumeegs/es all messages. With

19

Table 3: Throughput capacity of the FioranoMQ, SunMQ, ant¥gbereMQ JMS server for
different application scenarios with 100 subscribers and\erall number ofij}, =
100 filters if filters are used.

nt? | repl. | Fiorano| Sun [Webspherg
if grade| capacity| capacity| capacity
applicable| r (msgs/s)| (msgs/s) (msgs/s)
no filters | 100 456 228 90
100 1 676 1817 85
10 1 676 2566 85
1 1 676 2676 85
10 10 615 1333 85

all consumers having a filter installed, the throughputeases to 676 msgs/s for FioranoMQ,
and for SUnMQ to 1817, 2566, or 2677 msgs/s if the number éérifit filtersn, is 100,
10, or 1. This holds for a message replication grade-ofl.. In this case, the clients get only
1% of all messages. For a replication grade-ef 10, the clients get 10% of all messages.
Then, FioranoMQ achieves a throughput of 615 msgs/s and Qutd83 msgs/s ifi};// = 10.
Thus, SunMQ has twice the capacity of FioranoMQ if filters apelied.

After all, only FioranoMQ and SunMQ can be considered as thgbughput performance
JMS platform. FioranoMQ is the better choice without filtetsereas SunMQ performs better
when filters are applied. From a throughput performancetpafiview, WebsphereMQ is
clearly inferior both to FioranoMQ and SunMQ. However, Weabsre comes with a wealth
of other functionality and the mere consideration of the@tighput performance of its IMS
module is then certainly not a sufficient criterion agaimss$ solution, in particular, if high
throughput performance is not required.

7 Conclusion

In this work, we have compared the message throughput of itrafoMQ, SunMQ, and
WebsphereMQ Java messaging system (JMS) server undeuvaoaditions. We first gave
a short introduction into JMS and reviewed related work. Wesented the testbed and ex-
plained our measurement methodology. Then, we presentegkpariments and results that
we used to develop performance models for the server thpuugkie briefly summarize our
major findings.

(1) The throughput of the three investigated server typasspver several orders of mag-
nitude with FioranoMQ achieving the highest one and WebsgM® achieving the
lowest one.

(2) The throughput is significantly larger in the non-persis mode than in the persistent
mode. The difference depends on the server type.

20

(3) The server throughput depends on the replication gratteanessages and the number
of installed filters. FioranoMQ can handle simple correiatD filters more efficiently
than application property filters while SunMQ and WebspkEpaequire the same fil-
tering effort for both filter types.

(4) The message throughput is limited either by the proongdsgic for small messages or
by the transmission capacity for large messages.

(5) The number of configured topics hardly affects the oVveeadacity of the server.

(6) Complex OR-filters allow a larger message throughput #a equivalent number of
simple filters. The performance gain depends significantlthe server type.

(7) The complexity of AND-filters reduces the message thhpug for FioranoMQ and
SunMQ and the position of the filter components matters, wban be used to opti-
mize the formulation of filter rules. In contrast, Webspih@requires the same time
to process a message regardless of the filter complexity lng@dsition of the filter
components.

Subsequently, we studied the joint impact of filters and tlessage replication grade. We
designed rather complex experiment series whose measuotreaselts showed the influence
of the relevant parameters so well that we could find a quiteirate mathematical approx-
imation model of the message processing time for each sgyper These models predict
the message throughput for specific application scenagpsrding on the average message
replication grade, the overall number of installed filteasd the number of different filters.
They made it evident that all server types have a basicaffgrdnt performance behavior.
Finally, we illustrated the use of the performance modelagsessing the suitability of the
server types in four simple application scenarios. Fiok&Qded to the highest throughput if
filtering is not required; otherwise SunMQ performed betieicontrast, WebsphereMQ can-
not be viewed as a high performance JMS solution, but it Isaradin allround server platform
with many different features including JMS.

References

[1] Sun Microsystems, Inc.Java Message Service APl Rev. 1.1, April 2002. http://
j ava. sun. com products/j ns/.

[2] Fiorano Software, IncKioranoMQ”*: Meeting the Needs of Technology and Business,
Feb. 2004ht t p: / / www. fi or ano. com whi t epaper s/ whi t epapers_f ny.
pdf .

[3] Sun Microsystems, Inc.,.Sun ONE Message Queue, Reference Documentation,
2005. ht t p: / / devel oper s. sun. cont pr odt ech/ nsgqueue/ r ef er ence/
docs/i ndex. htm .

21

[4] IBM Corporation, IBM WebSphere MQ 6.0, 2005. htt p: / / www 306. i bm com
sof tware/i ntegrati on/ wrg/ veO0/ .

[5] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kemnree, “The Many Faces of
Publish/Subscribe,” ild\CM Computing Surveys, 2003.

[6] Y. Liu and B. Plale, “Survey of Publish Subscribe Evensgms,” Technical Report,
No. TR574, Indiana University, May 2003.

[7] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Achieviggalability and Expres-
siveness in an Internet-Scale Event Notification Servitge 9" ACM Symposium on
Principles of Distributed Computing (PODC), July 2000.

[8] G. M"uhl, “Generic Constraints for Content-Based PshliSubscribe,” ir0? Inter-
national Conference on Cooperative Information Systems (CooplS), (London, UK),
pp. 211-225, 2001.

[9] Z. Ge, P. Ji, J. Kurose, and D. Towsley, “Min-Cost Matclk@aProblem in Distributed
Publish/Subscribe Infrastructures,”@penSg Workshop, From Signalling to Program-
ming, 2002.

[10] H. Liu and H.-A. Jacobsen, “Modeling Uncertainties inbfish/Subscribe Systems,” in
20" International Conference on Data Engineering (ICDE), (Washington, DC, USA),
2004.

[11] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. As® and D. Shasha, “Filtering Al-
gorithms and Implementation for Very Fast Publish/Sulbec8ystems, ACM S GMOD
Record, vol. 30, pp. 115-126, June 2001.

[12] A. Campalilla, S. Chaki, E. Clarke, S. Jha, and H. Veitffitient filtering in publish-
subscribe systems using binary decision diagram<3ifi International Conference on
Software Engineering (ICSE), (Washington, DC, USA), pp. 443-452, IEEE Computer
Society, 2001.

[13] G. Muhl, L. Fiege, and A. Buchmann, “Filter Similag8 in Content-Based Pub-
lish/Subscribe SystemsConference on Architecture of Computing Systems (ARCS),
2002.

[14] R. Baldoni, M. Contenti, S. T. Piergiovanni, and A. Miigo, “Modelling Pub-
lish/Subscribe Communication Systems: Towards a Formakdgeh,” in8 Interna-
tional Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2003),
pp. 304-311, 2003.

[15] A. Carzaniga and A. L. Wolf, “A Benchmark Suite for Digtuted Publish/Subscribe
Systems,” tech. rep., Software Engineering Research batnyr Department of Com-
puter Science, University of Colorado, Boulder, Colorazia2.

22

[16] M. Pang and P. Maheshwari, “Benchmarking Messagen@rtMiddleware - TIB/RV
vs. SonicMQ,” inWbrkshop on Foundations of Middleware Technologies, International
Symposium on Distributed Objects and Applications (DOA) 2002, (University of Cali-
fornia, Irvine, CA), Nov. 2002.

[17] S. Chen and P. Greenfield, “QoS Evaluation of JMS: An Eiogi Approach,” in37%
Annual Hawaii International Conference on System Sciences (HICSS), (Washington,
DC, USA), IEEE Computer Society, 2004.

[18] U. Farooq, E. W. Parsons, and S. Majumdar, “Performarideublish/Subscribe Mid-
dleware in Mobile Wireless NetworksACM S GSOFT Software Engineering Notes,
vol. 29, no. 1, pp. 278-289, 2004.

[19] Krissoft Solutions, “JMS Performance Comparison¢hterep., 2004ht t p: / / waww.
fi orano. conf conp- anal ysi s/jnms_perf_conp. ht m

[20] Sonic Software, Inc., Enterprise-Grade Messaging, 2004. http://ww.
soni csof t war e. cont product s/ docs/ soni cny. pdf .

[21] Tibco Software, Inc., TIBCO Enterprise Message Service, 2004. ht t p:
/I wwv. ti bco. conifresources/software/ enterprise_backbone/
nessage_servi ce. pdf.

[22] Crimson Consulting Group, “High-Performance JMS Maggeg,” tech. rep.,
2003. htt p: / / www. sun. com sof t war e/ pr oduct s/ nessage_queue/ wp_
JMsper f or mance. pdf .

[23] S. GodardSysstat Monitoring Utilities, Feb. 2004.

23

