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ANALYSIS OF A DISCRETE-TIME G[X]/DM — S QUEUEING SYSTEM WITH
APPLICATIONS IN PACKET-SWITCHING SYSTEMS

Phuoc Tran-Gia and Hamid Ahmadi

IBM Research, Zurich Research Laboratory, 8803 Rischlikon, Switzerland

ABSTRACT: In this paper, we present and solve a discrete-time G[X]/D/1——S
queueing system with a finite queue size, and batch arrivals with a general
batch-size distribution. The motivation for this model arises from performance
modeling of a statistical multiplexer with synchronous transmission of fixed-size
data-units in synchronous time slots. The arrival process to the multiplexer, for
example, may originate from a number of independent sources with packets of
variable lengths. Hence, a packet arrival corresponds to an arrival of a batch of
data-units. Different performance measures such as percentage of packet loss and
data-unit loss are considered under two different admission policies of packets into
the queue.
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1. INTRODUCTION AND PROBLEM STATEMENT

The overall performance of a packet-switching network depends heavily on the
performance of its communication links, their associated statistical multiplexers or
buffers, énd packet switches. Proper sizing of the buffers and loading of the links
for a specific performance are of major concern in the design of any
packet-switched network. The purpose of this paper is to present the analysis and
applications of the discrete-time G[XJ/D/1 — S queueing system. The notation used
indicates a single-server finite queue (S) with batch arrivals of general inter-arrival
times (G) and batch-size (X) distribution, and a constant service time (D).

The motivation for the discrete-time G[X]/D/1 — S queueing model presented here
arises from some practical applications in packet-switching systems where the
frequency of packet loss is an important performance measure. We deliberately
use a discrete-time model, because in many practical applications, systems actually
operate in clocked cycles and transfer fixed-length data blocks from buffers. This
model is very well suited for a statistical multiplexer with a synchronous output
transmission link. Synchronization means that the system clock is maintained, and
a single data-unit is transmitted at equally spaced time slots. This data-unit may
be considered as a character, a byte, or a fixed-size block of data (mini-packet).
The arrival instants to the queue are also assumed to occur at discrete-time slots.
The total number of data-units arriving during a time slot is modeled as a batch
with batch inter-arrival times (in units of slots) having general distribution. The
generality of our model is such that the batch size and the batch inter-arrival time
distribution can be modeled to represent different classes of input sources. There
are several applications for this model in which the arrival process to the
multiplexer has non-Poissonian statistics. For example, as shown in Fig. 1a, this
model may represent a statistical multiplexer fed by a number of independent
sources [1,9,10,14] which oscillate between “on” and ”“off” states and emit data-units
at some fixed rate during an “on” state, or a switch fabric (Fig. 1b) which operates
in a packet-switched mode and has buffers at each output. Examples of the latter
case are a crossbar switch with output FIFOs [12], or the output stage of the

Knockout switch [8]. Another example is a statistical multiplexer, like in [5-7], with



arrivals comprising user packets of variable length composed of many data-units.
In this respect, the arrival of a user packet can be considered as arrival of a batch
of data-units to the queue. In queueing terminology, the data-units are equivalent
to customers and user packets are batches of customers.

Because of the limited queue size, overflow can occur. Two performance measures
are considered: 1) the probability of batch or packet loss, and 2) the probability of
data-unit loss. Depending on the application, each of the loss probabilities has a
different merit. For example, when the batches are equivalent to user packets of
variable length then the probability of packet loss is of interest. When batches are
comprised of several data-units emanating from many sources, then the probability
of data-unit loss is important. It should be noted that in practical applications, the
buffer size is usually represented in data-units and not in user packets, because

user packets typically have a variable length.

To complete the modeling, two different admission policies are considered when an
arriving batch is larger in size than the number of unoccupied storage places in
the queue. They are:

1. Blocking policy 1 (BP1): An arriving batch of data-units larger in size than the
number of available free spaces in the queue fills the free positions and the
remaining data-units of the batch are lost.

2. Blocking policy 2 (BP2): An arriving batch of data-units larger in size than the
available free positions in the queue is completely rejected.

It should be emphasized that from an implementétion point of view, the two
blocking policies have different overhead and trade-offs which are application
dependent. For example, in the case of blocking policy 2 and user packets of
multi-data-units, a mechanism is needed to sense the available space in the queue,
before admitting a packet into the FIFO queue. On the other hand, in the case of
blocking policy 1 and user packets of multi-data-units, this mechanism is not
necessary. However, a different mechanism is needed to disregard the partially



admitted packet in the queue. For the multiplexer in which several sources may
simultaneously generate fixed-length user packets (i.e., a user packet is equivalent

to a data-unit), policy 2 does not make sense.

Several models have been proposed which study the behavior of a statistical
multiplexer. In [5,6], a transmission buffer has been modeled as a finite queue
with batch Poisson arrivals, geometric batch-size distribution, and a constant
synchronous output. In [7], an infinite capacity buffer was used to approximate a
finite capacity buffer with a very small packet-loss probability. An infinite queueing
model with batch arrival was also used to study the behavior of a common-control
switching system [15]. A number of theoretical studies for both infinite [3,4,11] and
finite [2] queues with batch arrival has appeared with different degrees of
complexity. However, it is not easily seen how the results in [2] may be used in
practical applications to assess the buffer-size requirements. In another paper [13],
a queue with a finite capacity storage with exponential service time for individual
data-units was analyzed. Although the data-units were all of fixed size, justification
for the exponential service time assumption was explained by including other
factors such as retransmission time arising from errors on the line in the service
time of the data-units. An algorithmic technique was also proposed in [14], which
analyzes a discrete-time D/D/1 queue with both infinite and finite queue size with
multiple arrivals per unit time (slot) by using a bivariate Markov chain which
describes the whole system. The major contribution of our paper is: 1) to extend
the finite queueing model presented in [4,6,14] by incorporating general inter-arrival
times and batch-size distributions, and 2) to present an efficient, simple and
systematic computational method in discrete-time domain based on fast convolution
algorithms. It should be emphasized that the model presented here can be
formulated theoretically by standard teéhniques such as state equations and the
generating function method. However, solution of the state eduations, either
directly (by matrix inversion) or indirectly (by inversion of the moment generating
function) is in general very complex if not impossible.

The paper is organized as follows. In section 2, we present the basic description of
the G[X]/D/1 — S queueing system, and present the analysis. In section 3, we then



show by numerical examples, the effect of various system parameters on the
probability of packet and data-unit loss. In addition, in section 4, we illustrate the
application of this model via two examples. Finally, the conclusion is given in
section 5.

2. ANALYSIS OF GIX]/D/1 — S IN DISCRETE-TIME DOMAIN

Before proceeding to the analysis, we point out some aspects concerning the
methods used. In principle, the queueing system presented can be solved using
standard methods operating in continuous time domain. In this case, additional
simplifying assumptions have to be made, since we have several non-memoryless
processes, for which a Markov chain cannot be imbedded [14]. In contrast to this,
by observing and analyzing the system in discrete time, we are able to develop
algorithms built by a small number of operations. Examples for these operations
are the convolution and pi-operations as discussed later in this section. In turn,
these operations can be enumerated efficiently using powerful algorithms
developed in signal-processing theory [e.g., use of Fast Fourier Transform (FFT)
based on the Discrete Fourier Transform (DFT) to process the convolution
operation]. Apart from the case of finite-state space (limited by S+1, where S is
the maximum queue size) assumed in the following, the convolution can be
segmented, since the convolution operations required have just to be enumerated
within the finite-state space (0 <k < S+ 1). For small values of S (e.g., S<100), this
can be done directly; for larger S, more efficient algorithms like FFT can be
employed. Furthermore, it should be noted here that the algorithms in
discrete-time domain developed here are stable for a wide range of system

parameters.
2.1 Random Variables and Notation

As mentioned above, we use methods operating in the discrete-time domain to
analyze the general class of queueing systems G[X]/D/1 —S. In this analysis, we
consider the random variables to be of discrete-time nature, i.e., the time axis is
conceived to be divided into intervals of unit length At, which is the service or



transmission time of a single data-unit. As a consequence, samples of these
random variables are integer multiples of At.

We use the following notation for functions and measures belonging to a
discrete-time random variable (r.v.) R:

k)=P(R=Kk),—co <k<+ oo distribution of R
k
Rk)= Y ri),—oco<k<+oo distribution function of R
i=—o00
ER, cp . mean and coefficient of variation of R

Further, the following notation is employed:

N queue capacity in data-units.

Aq random variable for the generalized inter-arrival time of the batch
input process, which describes the time interval between the arrival
epochs of the n-th and the (n+1)-th batch. Since an(0) can have a
non-zero value, batch-arrival processes with geometrically distributed
batch size can also be dealt with (cf. [186]).

Xh random variable for the size of the n-th batch.

The random variables A, and X, can be parameterized individually for each

arriving batch so that the analysis derived below can also be applied to investigate
the non-stationary behavior of the system.



2.2 State Analysis

A sample path of the state process development in the GIX]/D/1—S system is
shown in Fig. 2. Let U be the amount of unfinished work in the system, which is
the number of data-units to be processed, we define the following random variable
(cf. Fig. 2):

random variable for the number of data-units in the systems

n
immediately prior to the arrival instant of the n-th batch.
Ujl‘ random variable for the number of data-units in the system

immediately after the arrival instant of the n-th batch.

Depending on the two blocking policies defined above, we derive relationships
between these random variables and their respective distributions. We then
present algorithms to determine the state probabilities and consecutively the
blocking probabilities of batches and data-units.

a) Blocking policy 1 (BP1)

Based on the definition of BP1, when an arriving batch of size i finds the system
with j<i available buffer positions, the buffer will be filled up with (i-j) data-units,
and the remainder of the batch will be rejected, i.e., j data-units are accepted and

(i-j) data-units are blocked.

Observing the system state prior to and immediately after the arrival epochs of the
n-th and (n+ 1)-th batch (cf. Fig. 2), for blocking policy 1, we obtain,

Ut = minU, +X,.5+1) (1)

+
Upyq = max(U, — A, ,0) (2)



From egs. (1) and (2), their respective distributions are given by

wh = 25 (U0 % x4 00) (3)

Ungpq(k) = mo(uh(k) * ap(=k), (4)

where 7 5+1()) and mg(.) are operators on probability distributions defined by

(k) k<m
aMk)=<  >.fi)  k=m (5)
i=m
0 k>m
0 k<m
m
rn()=< Y. () k=m ()
i=—o0
(k) k>m

and the *-symbol denotes the discrete convolution operation

+oco

ra()=rq(0) * ra(k)= Y rq(k=jye ra() . (7)

.=—OO

Equations (3) and (4) represent a recursive relation between the system states
seen upon arrival by two consecutive batches n and (n+1). Using these equations,
an algorithm for both stationary and non-stationary cases, can be developed to
calculate the system-state probability prior to the batch-arrival epochs. The
corresponding computational diagram is depicted in Fig. 3.



For the case of identical, independent inter-arrival intervals with random variable A,
and batch sizes with random variable X, which are now assumed to be
time-independent, eqgs. (3) and (4) deliver an iterative algorithm to determine the
equilibrium state probabilities

uk) = 1im up(k). (8)
n— co

b) Blocking policy 2 (BP2)

Based on the definition of BP2, an arriving batch of size i which finds the system

with j<i available buffer positions will be entirely rejected. We obtain the following

equations for the system-state random variables:

U, + X Uy + Xy <S+1

U;*‘. — n n n n (9)
U, Up+ Xy >S+1

Uppq = max(Uh —A, . 0) | (10)

Distribution of these random variables are given as

k co

VOO = D unxalk =) + up) > xgli)l k=018 +1 (11)
j=0 j=S+1—k+1
Unpq (k) = mo(uf (k) * a,(=K), k=01,.,S+1." (12)

Since the functional relationship between Up4+¢ and U;%‘ is the same for both

blocking policies as given in egs. (2) and (10), egs. (4) and (12) are also identical.



Similar to the case of BP1, a recursive relation between the system-state
probabilities seen by two consecutively arriving batches is given by egs. (11) and
(12). Further steps are analogous to the case of BP1.

2.3 Blocking Probabilities

Using the equilibrium-state probabilities {u(k), k=0,...,S + 1}, the blocking probability
for batches and for data-units can be derived for both blocking policies.

a) Batch blocking probability
We first consider the conditional blocking probability for batches defined by

Pg(k) = probability for a batch to be rejected, conditioned on
the system state U=k seen upon arrival.

It is obvious that

j=8+2-k :

By eliminating the condition, we arrive at the blocking probability for an arbitrary
batch:

S+1 oo
Pg = D uk) . xi)
k=0  j=S+2—k

(14)

O

D (k) * x(k)
k=5+2
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b) Data-unit blocking probability

In contrast to the batch blocking probability, which can be derived for both blocking
policies in the same way, the data-unit blocking probability must be derived
separately.

1) Blocking policy 1 (BP1)

Observing a test data-unit contained in an arriving batch, we first determine the
conditional blocking probability for data-units defined by

Ppy(k) = probability for the test data-unit in an arriving batch to be rejected,
conditioned on the state X=k observed upon arrival.

The probability for the test data-unit to be in a batch of size i is i e x(i)/EX. For a
batch of size i, blocking will occur for j+k > S+1 , where a fraction of
k+i(S+1) data-units will be rejected. Accordingly, the probability of the test
data-unit being in the fraction rejected is ((k+ i—(S + 1))/i. Thus, the conditional
data-unit blocking probability is given by

N i o x(i)
K+i=S—1 _ 1exi
Poulk) = ' i * TEX
i=S—k+2 ’

. (15)
E L i — -_— ° i =
- = Z (k+i—S—1)e x(i), k=0,.,S+1.

i=S—k+2

By eliminating the condition U=k, the data-unit blocking probability is
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S+1
Ppu = Zu(k)PDu(k)
= S+1 %) (16)
=§Zu(k) Z (K+i=S—1) e x(i) .
k=0  i=S+2—k

2) Blocking policy 2 (BP2)

Again, we observe a test data-unit which arrives in a batch of size i and finds the
system in the state U=k. The probability for the test data-unit to be in an arriving
batch of size i is i  x(i)/EX. Blocking will occur for i+k > S+ 1, where the entire
batch, i.e., all data-units will be rejected. Hence, the conditional data-unit
blocking probability is now

o0

i e x(i)
Ppou(k) = Z Ve &=
i=8—k+2
- (17)
] —1— i i =
-2 Z iox(0), k=0,..8+1.
i=S—k+2
The data-unit blocking probability of a system with blocking policy 2 is given as
s S+1 oo
Pou = ¢ Zu(k). Z ie x(i) . (18)
k=0 i=S8+2—k

3. NUMERICAL RESULTS

In this section, we present numerical results for various classes of input processes
and batch-size distributions. It should be noted that the results discussed below
will focus on the influence of the variations of the input process and the batch

sizes, which are the essential components of the model considered in this study.
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For this purpose, with the exception of the deterministic case, we use the negative
binomial distribution to obtain a parametric representation of various classes of
random processes. We do this by matching here the inter-arrival and batch-size
distributions given by their two parameters, namely, the mean and the coefficient of
variation. The negative binomial random variable R with mean ER and coefficient

of variation cg, has the distribution

y+k—1 y K
k)= ‘ p’(1—p) , 0<p<1, yreal, (19)
where
1 ER
-1 = , ER > 1.
P=ERecg ' VT ERecg - 1 "R

Since the service time is chosen to be At = 1, the offered traffic intensity is just

EX

= (20)

p=

For the numerical results given here, the coefficients of variation of the appearing
discrete-time processes are chosen to include a wide range of variations.

Figures 4 and 5 show the blocking probabilities (for both batches and data-units) as
a function of the buffer size (in data-units) for blocking policies 1 and 2,
respectively. These figures include a family of curves for different values of the
coefficient of variation of the batch size. The constant parameters for these curves
are: p = 0.5,cp = 1.5, and EX = 4. There are several interesting observations. As
can be seen in Fig. 4, under blocking policy 1, the blocking probability of a
data-unit is smaller than the blocking probability of a batch when the batch size is
constant (cx = 0). This is not surprising because when an arriving batch is
blocked, under policy 1, a fraction of that batch is admitted to the queue, hence the

percentage of data-units lost is smaller. As the coefficient of variation of batch size
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is increased, the blocking probability of a data-unit becomes larger than that of a
batch. This is because when the batch-size variation is large, the data-units blocked
are more likely to emerge from a large batch than a small one. For blocking
policy 2 (Fig. 5), the batch and data-unit blocking probabilities are the same when
batches are all of fixed length (cx = 0). This is obvious, since in this case the
whole batch is rejected and as a result, the percentage of loss for batches and
data-units must be the same. When cy >0, the data-unit blocking probability is
greater than the batch blocking probability.

Another interesting point is the crossover of the batch blocking-probability curves
for both policies when the buffer size is relatively small (as compared to the
variance of a batch size). The reason being that when the batch-size variation is
large, some small size batches can still enter the queue when the occupancy of
the queue is near to its maximum capacity. For example, if the maximum queue
size is ten data-units and the batch size is fixed and equal to four data-units, then
any arriving batch will be rejected when the queue contains more than six
data-units. Now, if the batch size is uniformly distributed from one to seven
data-units (with the same mean = 4), some batches can still enter the queue up to
when the queue is absolutely full.

Figures 6 and 7 depict the batch and data-unit blocking probabilities, respectively,
as a function of the batch-size coefficient of variation. These curves are shown for
different values of the inter-arrival coefficient of variation. The other parameters are
the same as before, and the buffer size is fixed at 32. As expected, the batch
blocking probability in policy 1 is always greater than in policy 2 (Fig. 6), because,
according to policy 1, the available space in the queue is occupied by the partial
admission of a blocked batch. In the case of policy 2, since the available queueing
space is not occupied by a fraction of a blocked batch, some small size batches
can still enter the queue, hence causing less overall blocking. For the same
reason, as shown in Fig. 7, the data-unit blocking probability is greater in policy 2
than in policy 1.
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Figures 8 and 9 show the blocking probabilities for policy 1 and policy 2,
respectively, as a function of the inter-arrival coefficient of variation for different
values of the batch-size coefficient of variation. These curves are given for the
same parameters as before. Finally, in Fig. 10, we show the batch blocking
probability as a function of the offered traffic for different values of the batch-size
coefficient of variation. The crossing effects of the curves are again apparent here.
As the offered load is increased, the batch blocking probability for batches with
large variation in size is less than for batches with small variations.

4. APPLICATIONS OF THE MODEL TO SOME PRACTICAL PROBLEMS

In this section, we briefly discuss how this model can be applied to solve some
related problems in packet switching. In particular, we look at two examples from
the literature in which models have been considered to analyze the performance of
a FIFO buffer in the context of a statistical multiplexer and a packet switch,
respectively. The purpose of giving these two examples is to show the power of
our model especially with respect to the arrival process and the batch-size
distribution. Our intent is to show how this model can be used to solve these two

cases, by selecting the inter-arrival and batch-size distribution appropriately.

The first example is from the paper by Morris [14], which models a packet-switch
node consisting of N independent binary sources feeding a single-server queue or
multiplexer (like in Fig. 1a). Each source is in either an “off” state during which it
is not transmitting packets, or in an “on” state, during which it transmits packets
(data-units) at a constant rate of one packet per unit time. Since more than one
source can be in the “on” state, multiple packets can arrive at the queue per
service time. Therefore, the arrival process can be modeled as a batch arrival with
constant inter-arrival time. Using the same assumptions and notations as in [14],
each of the N sources is represented by a two-state discrete-time Markov chain,
with transition probabilities tg4 (transition “off” to “on” state) and t4o (transition from
“on” to "off”), the batch-size distribution is given by a binomial distribution



15

x(k) = (:)Q"m — QK (21)

where

I
to1 +t40

In this view, the behavior of the packets generated by the N independent sources
is represented by eq. (21). The remaining solution is to solve the system behavior
based on the method presented in this paper. This way all the results in [14] can
easily be obtained. In the Morris’ model, the system state is presented by a
bivariate discrete-time Markov chain for which the system of state equations has
been solved for the queue with finite waiting places. It should be noted that for
this application, only the blocking probability of data-units under policy 1 is
appropriate.

The second example is taken from the paper by Karol et al. [12], in which they
model a crossbar NxN space division switch with output FIFOs (like the one shown
in Fig. 1b). Their assumption is that the crossbar switch operates N times faster
than the input and output links so there is no contention within the space switch.
Time is slotted and each input generates a fixed-size packet per unit time
according to a Bernoulli process with probability p. Each packet has equal
probability 1/N of being destined to one of the outputs. From the view of a
particular output queue, we can observe that at every time slot, the arrival process
is again a batch process with binomial distribution exactly as in eq. (21), with
Q = p/N. Using our model, one can easily obtain the probability of packet loss for
this system. It should be noted that the authors in [12] model the buffer state as a
discrete-time Markov chain, and propose a recursive algorithm which numerically
provides the steady-state probabilities. Because of the specific assumptions made
for this problem (i.e.,, constant inter-arrival time, fixed-length packets, and a
single-packet departure during an inter-arrival time), it is possible to solve the
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steady-state probabilities numerically by a recursive algorithm directly from the
balance equations. However, if any of these assumptions is relaxed, it is not in
general possible to solve for the state probabilities recursively other than by either
matrix inversion or by numerical inversion of z-transform. Both of these methods
are computationally very compiex. The method proposed in our paper can
appropriately model this switch under variable length packets and a general
inter-arrival time distribution. Once the arrival process has been correctly modeled,

the system performance can be analyzed in a straightforward manner.
5. CONCLUSION

In this paper, we have presented and analyzed a discrete-time G[x]/D/1—S
queueing system with a finite queue size and batch arrivals with general batch-size
distribution. By means of numerical examples, we have shown how system
performance, namely, the blocking probabilities, depends on the batch-size
statistics of the arrival process, not only the mean but the variance of the batch
size. We have also shown how batch acceptance policy affects system
performance. We used discrete-time analysis for two reasons: 1) many practical
systems actually operate in a clocked cycle mode, therefore discrete-time
representation is the natural way to capture the behavior of the system, and 2) the
discrete-time approach provideé a very robust and simple computational method
based on fast convolution algorithms. The queueing model presented here is
general enough for it to be effectively applied to a wide range of practical
problems in packet-switching environments. We have given two examples, modeling
of a statistical multiplexer, and a modeling of a space-division packet switch with
output FIFOs.

REFERENCES

1. Anick, C., D. Mitra and M. M. Sondhi, “Stochastic Theory of a Data Handling
System with Multiple Sources,” BSTJ, Vol.61, No. 8, pp. 1871-1894, October
1982.

2. Bagchi, T. P. and J. G. C. Templeton, “Finite Waiting Bulk Queuing Sytems,” J.
Eng. Math., Vol. 7, pp. 313-317, 1973.



3.
4,
5.

10.

1.
12.

13.

14.

18.

16.

17

Bhat, U. N., "Imbedded Markov Chain Analysis of Single Server Bulk Queues,”
J. Aust. Math. Soc., Vol. 4, pp. 244-263, 1964.

Burke, P. J. "Delays in Single-Server Queues with Batch Input,” Operation
Research, Vol. 23, pp. 830-833, 1975.

Chu, W. W., "Buffer Behavior for Batch Poisson Arrivals and Multiple
Synchronous Constant Outputs,” IEEE Trans. Commun., Vol. COM-19, pp. 30-534,
June 1971.

.Chu, W. W. and L. C. Liang, "Buffer Behavior for Mixed Input Traffic and Single

Constant Outputs Rate,” IEEE Trans. Commun., Vol. COM-20, pp. 230-235, April
1972.

.Chu, W. W. and A. G. Konheim, "On the Analysis and Modeling of a Class of

Computer Communication Systems,” |IEEE Trans. Commun., Vol. COM-20, No. 3,
pp. 645-660, June 1972.

-Eng, K. Y., M. G. Hluchyj and Y. S. Yeh, "A Knockout Switch for Variable-Length

Packets,” Proc. ICC, Seattle, Washington, pp. 22.6.1-22.6.6, 1987.

. Gopinath, B. and A. J. Morrison, “Discrete-time Single Server Queues with

Corrolated Inputs,” BSTJ, Vol. 56, No. 9, pp. 1743-1768, November 1977.

Halfin, S.," "The Blocking of Data in Buffers with Variable Input and Output Rate,”
in Performance of Computer-Communication Systems, edited by H. Rudin and
W. Bux, North-Holland, Amsterdam, 1984, pp. 307-319.

Kabak, I. W., "Blocking and Delays in mLX /M/c Bulk Arrival Queueing
Systems,” Management Sience, Vol. 17, No. 1, pp.112-115, 1970.

Karol, M. J., M. G. Hluchyj and S. P. Morgan, “Input vs. Output Queueing on a
Space-Division Packet Switch,” Proc. Globecom, Houston, Texas, pp-19.4.1-19.4.7,
1986.

Manfield, D. R. and P. Tran-Gia, “Analysis of a Finite Storage System with Batch
Input Arising out of Message Packetization,” IEEE Trans. Commun., Vol. COM-30,
No. 3, pp. 456-462, March 1982.

Morris, R. J. T, "An Algorithmic Technique for a Class of Queueing Models with
Packet Switching Applications,” Proc. ICC, Denver, Colorado, pp. 41.2.1-41.2.1,
1981.

Schwaertzel, H. G., “Serving Strategies of Batch Arrivals in Common Control
Switching Systems,” Proc. 7th Int. Telecomm. Conference, Stockholm, Sweden,
1973.

Tran-Gia, P., "Discrete Time Analysis for the Interdeparture Distribution of a
GI/G/1 Queue,” in Teletrafic Analysis and Computer Performance Evaluation,
edited by O. J. Boxma, J. W. Cohen and H. C. Tijms, North Holland,
Amsterdam, 1986, pp. 341-357.

INPUT OuUTPUT
1 1
FINITE — O
QUEUE
E—= -0 | s eacrer [0
. 1 DUISLOT | SWITCH
(N] M. O
PACKET
GENERATING
SOURCES
a) A statistical multiplexer b) A model of a packet switch
with independent sources with output queues

Fig. 1. Modeling examples.
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Fig. 5. Blocking probabilities vs buffer size:
impact of batch statistics on the second
blocking policy (BP2).
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Fig. 8. Blocking probabilities vs inter-arrival
variation: comparison of blocking policies.
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