
University of Würzburg
Institute of Computer Science

Research Report Series

An Algorithmic Framework for
Discrete-Time Flow-Level Simulation of

Data Networks

Lasse Jansen1,2, Ivan Gojmerac1, Michael Menth2,
Peter Reichl1, and Phuoc Tran-Gia2

Report No. 416 March 2007

1Telecommunications Research Center Vienna (ftw.)
Donau-City-Str. 1, 1220 Vienna, Austria

2University of Würzburg, Institute of Computer Science
Am Hubland, 97074 Ẅurzburg, Germany





An Algorithmic Framework for Discrete-Time Flow-Level Simulation of
Data Networks

Lasse Jansen1,2, Ivan Gojmerac1, Michael Menth2,

Peter Reichl1, and Phuoc Tran-Gia2

1Telecommunications Research Center Vienna (ftw.)
Donau-City-Str. 1, 1220 Vienna, Austria

2University of Würzburg, Institute of Computer Science
Am Hubland, 97074 Ẅurzburg, Germany

Abstract
In this paper, we present a comprehensive algorithmic framework for discrete-time

flow-level simulation of data networks. We first provide a simple algorithm based upon
iterative equations useful for the simulation of networks with static traffic demands, and
we show how to determine packet loss and throughput rates using a simple example net-
work. We then extend these basic equations to a simulation method capable of handling
queue and link delays in dynamic traffic scenarios and compare results from flow-level
simulation to those obtained by packet-level simulation. Finally, we illustrate the tradeoff
between computational complexity and simulation accuracy which is controlled bythe
duration of a single iteration interval∆.

1 Introduction
Simulation has traditionally been an important tool for performance evaluation of data net-
works, mostly in the form of packet-level simulation by employing discrete-event simulation
techniques [1]. Every packet arrival and departure at each link is modeled as a separate event.
Although packet-level simulation still represents the most widely used approach, the sim-
ulation of today’s networks with very high packet rates is often not feasible, as too many
simulation events must be generated even for small intervals of simulated time.

However, in many cases the overhead of packet-level simulations is not necessary at all in
order to achieve a realistic estimation of network statistics like throughput rates, queue sizes,
or loss probabilities. In those cases, an efficient alternative to packet-level simulation is the
simulation of networks at the level of individual flows, for which there exists a multitude of
different techniques, commonly summarized under the termsfluid simulationor flow-level
simulation.

In this paper, we concentrate upondiscrete-time flow-level simulation. Traffic is not mod-
eled in terms of discrete packets but rather in terms of a continuous amount of data. The data
is shifted in fixed intervals∆ on predefined routes through the network. However, to our best
knowledge, literature in this field of research lacks a discrete, easy-to-implement formulation
of discrete-time flow-level simulation which is able to model end-to-end connections. Ad-
dressing this issue, in this paper, we provide such a formulation, which additionally allows the

1



network to be simulated at different levels of detail. We develop the fundamental flow-level
simulation techniques step by step, first presenting a simple algorithm for throughput calcu-
lation, and then extending this algorithm to capture network dynamics like link and queueing
delay.

The paper is structured as follows: Section 2 gives an overview of related work. In Section
3 we describe the basic equations for calculating the time-dependent aggregate throughput
rates and the loss probabilities on the links, and we presenta method for the calculation of
the stationary network state in the presence of static traffic demands. Subsequently, in Section
4 we extend these basic equations to scenarios with dynamic traffic patterns by introducing
queue and link delay modeling. Section 5 provides a comparison of flow-level and packet-level
simulation results and demonstrates the influence of different durations of iteration interval∆.
Finally, Section 6 concludes the paper with summarizing remarks.

2 Related Work

This section provides a brief description of previous work and relevant applications of flow-
level simulation. There are two main variants of flow-level simulation. The foundation for the
continuous-timevariant was given in [2] and [3], and has since been further developed and
widely applied by other authors [4, 5, 6, 7]. The basic principle of this approach is to model
flow rates and rate changes without considering discrete data packets. Each flow is assigned a
certain transmission rate, and rate reductions due to bottleneck links are tracked as events in
the event chain of the simulator. Although widely used, under particular circumstances this
approach has been shown to suffer from the so calledripple effectwhich can cause severe
performance degradations concerning computation time. Itoccurs in networks with circu-
larly overlapping end-to-end connections and overloaded links, causing rate change events to
reproduce themselves in a circular manner [8, 9].

An alternative to the continuous-time variant istime-stepped fluid simulationwhich is the
foundation of the simulation method presented in this paper. Here, the data is modeled in
terms of quantities of a continuous amount of data which are shifted through the network at a
fixed time step. This model was first proposed in [10], but the routing model applied therein
is hardly applicable to realistic networks. In particular,a traffic demand matrix cannot be
represented, as end-to-end connections have not been modeled at all.

Another approach which defines the evolution of network datastreams in terms of differ-
ential equations is used in [11]. End-to-end connections are modeled as traffic aggregates
which enable the simulation of realistic network and routing scenarios. The equations are nu-
merically solved using the Runge-Kutta algorithm. In this paper, we use the basic idea from
[10], and additionally enable end-to-end connections likein [11]. Furthermore, we provide
a clean formulation of discrete-time flow-level simulationwhich is well suited for practical
implementation.

The possibility of dynamic traffic rate adjustments and delay modeling in the presented sim-
ulation approach allows for multipath routing simulationsin which traffic aggregates between
individual pairs of nodes are carried via multiple parallelpaths. Implementing the simulation
approach described in this paper, we have already evaluatedthe Adaptive Multi-Path algorithm
(AMP) [12, 13] using our flow-level simulation environment (cf. [14, 15]).

2



Furthermore, the throughput and delay approximation capabilities of this approach enable
more complex elastic traffic models, like e.g. TCP, to be integrated into such a flow-level
simulation framework, as the sending rate of individual sources can be dynamically adjusted
based upon the information about flow round-trip time (RTT) and loss probability on the path,
employing differential equation models of TCP as presented in [11, 16, 17].

3 Basic Iterative Algorithm

In this section we first clarify the notation, after which we introduce the iterative algorithm
that calculates throughput rates and loss probabilities. Finally, we show the application of this
algorithm for the calculation of stationary throughput in anetwork with static traffic demands.

3.1 Definitions

The simulation process is based upon shifting data through the network in fixed time intervals
∆. In our model, a data rateλ denotes the total amount of data in a single iteration interval,
normalized by∆ as the time between two successive iteration steps. In otherwords, a data
rate ofλ in interval∆ corresponds to an amount of data,λ ·∆, which may represent e.g. bits,
bytes, or equally sized packets.

In the following we list some definitions for reference. Expressions indexed by[n] are
time-dependent and calculated in each iteration.

L Set of all links.
A Set of all aggregates.
La ⊆ L Set of links crossed by aggregatea ∈ A.
Al ⊆ A Set of aggregates crossing linkl ∈ L.
first(a) ∈ La First link on the route of aggregatea ∈ A.
next(a, l) ∈ La Successor link ofl ∈ La on the route of aggregatea ∈ Al.
sink(a) ∈ La Virtual link representing the sink of aggregatea ∈ A and

succeeding the last link ofa.
cl Link capacity of linkl ∈ L, i.e. data that can be served during a

single iteration interval∆.
pl[n] Loss probability at linkl ∈ L.
λa

l [n] Arrival rate of aggregatea ∈ A at link l ∈ La.
λa[n] Sending rate of aggregatea ∈ A, equal toλa

first(a)[n].
λl[n] Sum of all arrival rates at linkl ∈ L.
θa[n] Throughput of aggregatea ∈ A.
∆ Iteration duration interval, i.e. the time between two iteration steps.

3.2 Iterative Equations for Discrete-Time Flow-Level Simulation

We assume the network to be empty at initialization time (n = 0). Each traffic aggregate
a ∈ A has a specific route consisting of a sequence of linksl ∈ La along which the arrival
ratesλa

l [n] of this aggregate are shifted in each iteration step. The overall arrival rate at linkl
in iteration stepn is then:

3



λl[n] =
∑

a∈Al

λa
l [n]. (1)

Based on this sum and the capacitycl of this link, its loss probabilitypl[n] can be calculated
for the corresponding iteration stepn. The capacitycl of a link l is assumed to be proportion-
ally partitioned among the competing aggregatesa ∈ Al.

pl[n] = max

{

1 −
cl

λl[n]
, 0

}

. (2)

The arrival rateλa
l [n] of aggregatea and the loss probability at linkl in iteration stepn

determine the arrival rateλa
next(a,l)[n + 1] of a at its next link at the next iteration stepn + 1.

λa
next(a,l)[n + 1] = λa

l [n] ·
(

1 − pl[n]
)

. (3)

The throughput of aggregatea is given by

θa[n] = λa
sink(a)[n]. (4)

3.3 Calculation of Stationary Throughput for Static Traffic D emands

We now use the equations from the previous section to calculate the stationary throughput
rates in settings with static traffic demands. By first calculating the throughput rates of a
small example network analytically, we show that this can bea non-trivial task and propose
an algorithm based upon the iterative equations as a simple alternative.

n1

n2

n3

c
=

1 c
=

1

c = 1

λ
=

1

λ
=

1

λ = 1

(a) Triangle network

T
hr

ou
gh

pu
t

Iteration stepsn

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9

(b) Throughput evolution

Figure 1: Throughput calculation for an triangle network.

Figure 1a shows a triangle network with all link capacities set toc = 1 and three overlapping
aggregates with static, non-adaptive sending ratesλ = 1, as well. Intuition might lead to

4



the belief that each aggregate should achieve a throughput of θ = 0.5, as this corresponds
to the most reasonable bandwidth distribution with respectto both fairness and throughput.
However, the analytical calculation of the throughput yields significantly different results.
Due to the symmetrical nature of the example, we assume that the loss probabilityp is the
same on all links. The throughput, which equals the arrival rate at the second link of each
aggregate, can then be expressed byθ = λ · (1 − p)2. The arrival rate of each aggregate
at its respective first link equalsλ · (1 − p). As each link is crossed by two aggregates, i.e.
one at its initial hop and the other at its second hop, the following equation must be solved:
c = λ(1 − p) + λ(1 − p)2. With λ = 1 andc = 1, and presuming that the loss probability is
greater than 0, we can calculate the throughput resulting inθ ≈ 0.38.

Algorithm 1 Throughput calculation for static traffic demands.
1: n ⇐ 0
2: initialize λa

l [n] with 0 ∀a ∈ A,∀l ∈ La \ {firsta}
3: repeat
4: stop ⇐ true
5: for all l ∈ L do
6: calculateλl[n] according to Equation (1)
7: calculatepl[n] according to Equation (2)
8: for all a ∈ Al do
9: if sink(a) 6= l then

10: calculateλa
next(a,l)[n + 1] according to Equation (3)

11: if
∣

∣

∣
λa

next(a,l)[n + 1] − λa
next(a,l)[n]

∣

∣

∣
> ε then

12: stop ⇐ false
13: end if
14: end if
15: end for
16: end for
17: n ⇐ n + 1
18: until stop = true

19: for all a ∈ Al do
20: θa ⇐ λa

sink(a)[n]
21: end for

While in this simple example we are able to calculate the throughput quite easily, by solv-
ing just one quadratic equation, we would have to solve much more complex sets of nonlinear
equations in the case of larger networks. When instead applying the proposed iterative equa-
tions from the last section to the example network, we observe in Figure 1b that the stationary
throughput of all aggregates converges at the same point as the analytical solution, i.e. at the
value of about 0.38, after only a few iterations of the algorithm.

The exact solution for throughput rates in arbitrary networks is achieved after a number
of iterations which corresponds to the hop count of the longest possible path composable
of overlapping aggregates in the network. As in this examplewe can construct a path of

5



infinite length due to circularly overlapping aggregates, an infinite number of iterations is
required to obtain an exact solution. Therefore, in order toachieve reasonably precise results,
we iteratively calculate the throughput of all aggregates until the differences between two
consecutive arrival rates of all aggregates at each link drop below a predefined small value
of ε. A formal description is provided in Algorithm 1 which may serve as an efficient and
conceptually simple alternative to analytical throughputcalculation.

4 Capturing Network Dynamics
In this section, we extend the flow-level simulation to dynamic scenarios, in which link and
queue delay is modeled and the sending rates of aggregates can change in each iteration step
independently of the link delay.

4.1 Definitions

In addition to the definitions from Section 3 we list the notations needed for the calculation of
delay and queue size.

dl · ∆ Link propagation delay of linkl, dl ∈ N.
ql[n] Queue length at linkl, initialized withql[0] = 0.
qmax
l Maximum queue length at linkl.

δa
l [n] Present delay of the data of aggregatea arriving at linkl, initialized

with δa
first(a)[0] = 0.

δa[n] End-to-end delay of the data of aggregatea arriving at its destination in
iteration intervaln.

4.2 Modeling Link Propagation Delay

The propagation delay(dl · ∆) is expressed by an integer multipledl of the iteration interval
∆. Due to this delay, the arrival ratesλa

l [n] at link l at iteration stepn are propagated to their
respective next link only at iteration stepn + dl:

λa
next(a,l)[n + dl] = λa

l [n] ·
(

1 − pl[n]
)

. (5)

In concrete implementations of our algorithm, the formulation of this equation implies that
for each aggregatea, at every linkl, a number ofdl values must be stored for future arrival at
the respective next link. This can be viewed as dividing eachlink in dl slots, and then shifting
the data amount(λa

l [n] · ∆) one slot further on its route in each iteration, as illustrated in
Figure 2. This method can be implemented quite efficiently byusing an array of fixed sizedl

for each aggregatea at each linkl ∈ La and using(n modulodl) as index operator, as e.g.
done in [18].

Each iteration maps the arrival ratesλa
l [n] for each linkl and aggregatea to arrival rates

λa
next(a,l)[n + dl] for the successor linknext(a, l) of the respective aggregate in the future.

Thus, the traffic faces a delay ofdl iteration intervals until then. We take advantage of this fact
for tracking the end-to-end delay, by using the following data structure. In addition to each
λa

l [n] we define aδa
l [n] and add the following operation to each iteration step to capture the

delay up to this point.

6



1

2 3

4

(*) potential loss

*

* *

Figure 2: Network with 4 nodes and a traffic aggregate that crosses 3 links, each with a link
delay ofdl = 3.

δa
next(a,l)[n + dl] = δa

l [n] + dl. (6)

The end-to-end delay is then given by

δa[n] = δa
sink(a)[n]. (7)

For now, this does not yield insightful results because all end-to-end delays are constant.
But we will use this data structure as a basis for keeping trackof queueing delay in the next
section.

4.3 Modeling Queuing Delay

So far, we have considered networks without queues, meaningthat traffic exceeding the link
bandwidth, i.e.λl[n] > cl, is dropped. When using queues, the excess traffic that fits in the
queue is buffered and only the carryover is dropped.

During one iteration interval,(λl ·∆) new data arrives while(cl ·∆) data can be transmitted
by link l. As the queue size can be at mostqmax

l , the queue size for the next iteration step
(n + 1) can be calculated by:

ql [n + 1] = min
{

qmax
l , max

{

ql[n] − cl · ∆ + λl [n] · ∆, 0
}}

. (8)

At most(qmax
l + cl · ∆ − ql[n]) can be buffered in the queue, while the exceeding traffic is

dropped. Therefore, we can calculate the loss probability by:

pl[n] = max

{

1 −
qmax
l + cl · ∆ − ql[n]

λl[n] · ∆
, 0

}

. (9)

The flow-level simulation works so far by calculating the arrival rate at a linkl based on the
current arrival rate at its predecessor fordl iteration steps in the future. While the link delay
dl is constant, a queue introduces additional delay which can vary in each iteration step. We
therefore substitute Equation (5) with the following equations.

7



2 3

additional queuing

delay1, ...,
l

qmax
l

cl

m

1...dl

d
l
+

1

d
l
+

‰

q
m

a
x

l
c
l

ı

Figure 3: Array data structure for traffic aggregates with queueing delays.

Within iteration stepn, (λl[n] ·∆) data arrives which can be sent at the earliest ini =
⌊

ql[n]
cl·∆

⌋

iteration steps. Thus,i is the minimum queuing delay for the traffic of all aggregatesarrived
during intervaln. The maximum queueing delay for the arriving data corresponds tok =
⌈

ql[n+1]
cl·∆

⌉

. We now calculate how the arriving data is distributed between the delays fromi to

k.
In order to compute the amount of data which can be dequeued ini iteration steps, we need

to consider that it is possible that there is already data stored for this iteration step, which does
not use the full link capacity. Therefore, we calculate the remaining capacity for this iteration
step by((i + 1) · cl · ∆ − ql[n]). This free capacity is shared proportionally by all aggregates
competing for the link. As a consequence, the amount of data that will arrive at interval
(n + dl + i) at the next link,λa

next(a,l)[n + dl + i] ·∆, is increased. We flagλa
next(a,l)[n + dl + i]

before the increase with a ’−’, and after the increase with a ’+’.

λa
next(a,l)[n + dl + i]+ = λa

next(a,l)[n + dl + i]−

+ min

{

(i + 1) · cl · ∆ − ql[n]

∆
·
λa

l [n]

λl[n]
, λa

l [n] · (1 − pl[n])

}

.
(10)

The arrival ratesλa
next(a,l)[n + dl + j] with queueing delayj, i < j < k, make proportional

use of the full link capacitycl.

λa
next(a,l)[n + dl + j] = cl ·

λa
l [n]

λl[n]
, ∀j, i < j < k. (11)

If k > i, the arrival rateλa
next(a,l)[n + dl + k] with queueing delayk corresponds to the

proportional fraction of the latest buffered data in the queue(ql[n + 1] − (k − 1) · cl · ∆).

λa
next(a,l)[n + dl + k] =

ql[n + 1] − (k − 1) · cl · ∆

∆
·
λa

l [n]

λl[n]
. (12)

8



We observe that in the case of queues we calculate the arrivalrates for several future iteration
steps at once ifk > i, which is illustrated in Figure 3. The data structure forλa

l [n] in a concrete
implementation can essentially stay as in Equation (5) withthe exception that the size of the

respective modulo array must now bedl +
⌈

qmax
l

cl

⌉

.

To keep track of the end-to-end delay of aggregates we use thesame data structure as in
Equation (6) but add the additional queuing delay. Forj with i < j ≤ k we can simply write

δa
next(a,l)[n + dl + j] = δa

l [n] + dl + j, ∀j, i < j ≤ k. (13)

However, for the minimum delayi, it is possible that there is already data stored for arrival
at interval(n + dl + i). Therefore, we have to calculate the weighted average of thedelay of
the data rate that was stored earlier(λa

next(a,l)[n + dl + i]−) and the delay of the data arrived in
the last interval (λa

next(a,l)[n+dl + i]+ −λa
next(a,l)[n+dl + i]−). Again, we flagδa

next(a,l) before
modifying with a ’−’ and after modifying with a ’+’.

δa
next(a,l)[n + dl + i]+ = δa

next(a,l)[n + dl + i]− ·

(

λa
next(a,l)[n + dl + i]−

λa
next(a,l)[n + dl + i]+

)

+ (δa
l [n] + dl + i) ·

(

1 −
λa

next(a,l)[n + dl + i]−

λa
next(a,l)[n + dl + i]+

)

.

(14)

5 Analysis of Simulation Accuracy

In this section we demonstrate the application of the proposed flow-level simulation model us-
ing a small example network in order to provide the reader with an insight about the character
of results which may be expected.

The network in Figure 4a consists of six nodes and three traffic aggregates. The traffic is
Poisson, meaning that the packet interarrival times are exponentially distributed. In addition,
in order to generate a dynamic network-wide traffic matrix, the mean rate of each traffic source
varies in an oscillatory manner with different frequencies.

The presented simulation setting results in temporary overload at both the link from 3 to
4 and from 4 to 5, allowing us to observe the throughput of aggregates which experience
queueing and loss at more than one link. We performed the packet-level simulations in the
ns-2network simulator [19] and the the flow-level simulations inour own simulator.

We concentrate on the aggregate from 0 to 5. In Figure 4b the cumulative throughput (the
total amount of data arrived until iteration intervaln) is shown for this aggregate for both
packet-level simulation and flow-level simulation (with∆ of 1 ms), demonstrating that the
flow-level simulation results closely resemble those from packet-level simulation.

Next we demonstrate the effects of varying the iteration interval∆ in flow-level simulation.
In Figure 5 the size of the queue at the link from node 4 to 5 is shown, using the same traffic
scenario as before. For comparison, in Figure 5a the queue size over time is shown for packet-
level simulation. For flow-level simulation with∆ = 1 ms the queue size over time is very

9



similar (Figure 5b). Increasing∆ to 5 ms (Figure 5c) and 10 ms (Figure 5d), we observe that
the short-time variations disappear, but the basic patternpersists. The computational complex-
ity of the flow-level simulation is inversely proprotional to the iteration interval, meaning that
simulation with a∆ of 10 ms is 10 times as fast as simulation with a∆ of 1 ms.

In Figure 6 the total (i.e. end-to-end) packet delay is shownfor the aggregate from 0 to 5 for
packet simulation and flow-level simulation. In packet-level simulation, the end-to-end delay
was determined by calculating the average delay for all packets that arrived at their destination
within an interval of 1 ms. In flow-level simulation we apply Equations (13) and (14). We
observe that the calculated end-to-end delays for packet and flow-level simulation are quite
similar when using a∆ of 1 ms, with the exception that the short-time variations are higher in
packet-level simulation (Figures 6a–6b). In Figures 6c–6dwe notice that these variations dis-
appear completely, but the simulation still captures the basic end-to-end delay characteristics
quite well.

6 Conclusion

In this paper we have provided a comprehensive formulation of discrete-time flow-level sim-
ulation at different levels of detail. We have first introduced a basic algorithm capable of
calculating the loss probabilities and throughput rates ofend-to-end traffic aggregates in a set-
ting with static traffic demands, and have demonstrated thisalgorithm to be a conceptually
very simple and efficient alternative to complex analyticalthroughput calculation.

We have then extended the algorithm to handle time-dependent behavior of networks by
introducing link and queueing delay and a technique for measurement of end-to-end delay.
We have compared results from flow-level simulation examples to results from packet-level
simulation, and have shown that the they are very similar, especially if a sufficiently small iter-
ation interval∆ is chosen for flow-level simulation. A smaller interval leads to more accurate
results while a larger interval speeds up the simulation. However, we have demonstrated that
even for larger intervals the basic network behavior is captured. Future work may include the
analysis of realistic ISP networks, both in terms of networksize and traffic patterns observed
in today’s Internet.

0 3 4 5

1 2

(a) Example network.

Flow-level simulation
Packet-level simulation

C
um

ul
at

iv
e

th
ro

ug
hp

ut

Time (ms)

100 200 300 400 500

300

600

900

1200

1500

(b) Cumulative throughput.

Figure 4: Simple example network with cumulative throughput for the aggregate from 0 to 5.

10



Q
ue

ue
si

ze

Time (ms)

100 200 300 400 500

10

20

30

40

50

(a) Packet simulation.

Q
ue

ue
si

ze

Time (ms)

100 200 300 400 500

10

20

30

40

50

(b) Flow-level simulation with∆ of 1 ms.

Q
ue

ue
si

ze

Time (ms)

100 200 300 400 500

10

20

30

40

50

(c) Flow-level simulation with∆ of 5 ms.
Q

ue
ue

si
ze

Time (ms)

100 200 300 400 500

10

20

30

40

50

(d) Flow-level simulation with∆ of 10 ms.

Figure 5: Queue sizes for packet-level simulation and flow-level simulation with different
iteration intervals.

Acknowledgements

This work has been performed partially in the framework of the Austrian Kplus Competence
Center Program.

References

[1] A. M. Law and W. D. Kelton,Simulation Modeling and Analysis. McGraw-Hill, 3rd ed.,
2000.

[2] D. Mitra, D. Anick, and M. M. Sondhi, “Stochastic Theory of a Data Handling System
with Multiple Sources,”Bell Systems Technical Journal, vol. 61, no. 8, pp. 1871–1894,
1982.

[3] D. Mitra, “Stochastic Theory of a Fluid Model of Producers and Consumers Coupled by
a Buffer,” Advances in Applied Probability, vol. 20, pp. 646–676, 1988.

[4] R. C. F. Tucker, “Accurate Method for Analysis of a Packet-Speech Multiplexer with
Limited Delay,” in IEEE Transactions on Communications, vol. 36, pp. 479–483, 1988.

[5] J. M. Pitts, “Cell-Rate Modelling for Accelerated Simulation of ATM at the Burst Level,”
in Communications, IEE Proceedings, 1995.

[6] G. Kesidis, A. Singh, D. Cheung, and W. Kwok, “Feasibilityof Fluid Event-Driven
Simulation for ATM Networks,” inIEEE Globecom, (London, UK), Nov. 1996.

11



E
nd

-t
o-

en
d

de
la

y
(m

s)

Time (ms)

100 200 300 400 500

10

20

30

40

50

(a) End-to-end delay in packet simulation.

E
nd

-t
o-

en
d

de
la

y
(m

s)

Time (ms)

100 200 300 400 500

10

20

30

40

50

(b) End-to-end delay in flow-level simula-
tion with ∆ of 1 ms.

E
nd

-t
o-

en
d

de
la

y
(m

s)

Time (ms)

100 200 300 400 500

10

20

30

40

50

(c) End-to-end delay in flow-level simulation
with ∆ of 5 ms.

E
nd

-t
o-

en
d

de
la

y
(m

s)

Time (ms)

100 200 300 400 500

10

20

30

40

50

(d) End-to-end delay in flow-level simula-
tion with ∆ of 10 ms.

Figure 6: End-to-end delay statistics for the aggregate from 0 to 5.

[7] M. Bahr and S. Butenweg, “On Rate-Based Simulation of Communication Networks,”
in Design, Analysis, and Simulation of Distributed Systems (DASD), Apr. 2003.

[8] B. Liu, D. R. Figueiredo, Y. Guo, J. F. Kurose, and D. F. Towsley, “A Study of Networks
Simulation Efficiency: Fluid Simulation vs. Packet-level Simulation,” in IEEE Infocom,
pp. 1244–1253, 2001.

[9] B. Liu, Y. Guo, J. Kurose, D. Towsley, and W. Gong, “Fluid Simulation of Large Scale
Networks: Issues and Tradeoffs,” Tech. Rep. UM-CS-1999-038,1999.

[10] A. Yan and W.-B. Gong, “Time-Driven Fluid Simulation forHigh-Speed Networks,”
IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1588–1599, 1999.

[11] Y. Liu, F. L. Presti, V. Misra, D. Towsley, and Y. Gu, “Fluid Models and Solutions for
Large-Scale IP Networks,” inACM SIGMETRICS, pp. 91–101, 2003.

[12] I. Gojmerac, T. Ziegler, F. Ricciato, and P. Reichl, “Adaptive Multipath Routing for
Dynamic Traffic Engineering,” inProc. IEEE Globecom 2003, San Francisco, USA,
pp. 3058–3062, 2003.

[13] I. Gojmerac, T. Ziegler, and P. Reichl, “Adaptive Multipath Routing Based on Local
Distribution of Link Load Information,” inInternational Workshop on Quality of future
Internet Services (QofIS), pp. 122–131, 2003.

12



[14] I. Gojmerac, L. Jansen, T. Ziegler, and P. Reichl, “Feasibility Aspects of AMP Perfor-
mance Evaluation in a Fluid Simulation Environment,” inMMBnet Workshop, Hamburg,
Germany, 2005.

[15] I. Gojmerac, L. Jansen, T. Ziegler, and P. Reichl, “A Simulation Study of Microscopic
AMP Behavior,” inPolish-German Teletraffic Symposium (PGTS), 2006.

[16] V. Misra, W.-B. Gong, and D. F. Towsley, “Fluid-Based Analysis of a Network of AQM
Routers Supporting TCP Flows with an Application to RED,” inACM SIGCOMM,
pp. 151–160, 2000.

[17] M. A. Marsan, M. Garetto, P. Giaccone, E. Leonardi, E. Schiattarella, and A. Tarello,
“Using Partial Differential Equations to Model TCP Mice and Elephants in Large IP
Networks,” inIEEE Infocom, 2004.

[18] Fluid Flow Model in NS, “Source code available at
ftp://gaia.cs.umass.edu/pub/ffmin ns.tar.gz,” 2003.

[19] The Network Simulator (Version 2), “Source code and documentation available at
http://www.isi.edu/nsnam/ns/,” 1995.

13


