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Abstract
In this paper, we present a comprehensive algorithmic framework foretéstime

flow-level simulation of data networks. We first provide a simple algorithnedagon
iterative equations useful for the simulation of networks with static traffic aeisieand
we show how to determine packet loss and throughput rates using a sirapiplexnet-
work. We then extend these basic equations to a simulation method capabtedtiffpa
gueue and link delays in dynamic traffic scenarios and compare resutidlfra-level
simulation to those obtained by packet-level simulation. Finally, we illustrate thedffad
between computational complexity and simulation accuracy which is controlledeby
duration of a single iteration interval.

1 Introduction

Simulation has traditionally been an important tool forfpanance evaluation of data net-
works, mostly in the form of packet-level simulation by emphg discrete-event simulation
techniques [1]. Every packet arrival and departure at dakhd modeled as a separate event.
Although packet-level simulation still represents the meglely used approach, the sim-
ulation of today’s networks with very high packet rates isenfnot feasible, as too many
simulation events must be generated even for small intenfadimulated time.

However, in many cases the overhead of packet-level simokts not necessary at all in
order to achieve a realistic estimation of network statsslike throughput rates, queue sizes,
or loss probabilities. In those cases, an efficient alteraab packet-level simulation is the
simulation of networks at the level of individual flows, fohweh there exists a multitude of
different techniques, commonly summarized under the tdhand simulationor flow-level
simulation

In this paper, we concentrate updiscrete-time flow-level simulatioraffic is not mod-
eled in terms of discrete packets but rather in terms of amootis amount of data. The data
is shifted in fixed intervalg\ on predefined routes through the network. However, to our bes
knowledge, literature in this field of research lacks a disgreasy-to-implement formulation
of discrete-time flow-level simulation which is able to mbdead-to-end connections. Ad-
dressing this issue, in this paper, we provide such a forimalavhich additionally allows the



network to be simulated at different levels of detail. Weealep the fundamental flow-level
simulation techniques step by step, first presenting a siralglorithm for throughput calcu-
lation, and then extending this algorithm to capture nekwatymnamics like link and queueing
delay.

The paper is structured as follows: Section 2 gives an ogeroif related work. In Section
3 we describe the basic equations for calculating the tiepeddent aggregate throughput
rates and the loss probabilities on the links, and we presenéthod for the calculation of
the stationary network state in the presence of static¢rdéfimands. Subsequently, in Section
4 we extend these basic equations to scenarios with dynaafiic tpatterns by introducing
gueue and link delay modeling. Section 5 provides a compansflow-level and packet-level
simulation results and demonstrates the influence of éfffieslurations of iteration interva.
Finally, Section 6 concludes the paper with summarizingams

2 Related Work

This section provides a brief description of previous wankl aelevant applications of flow-
level simulation. There are two main variants of flow-levetslation. The foundation for the
continuous-timevariant was given in [2] and [3], and has since been furtheeld@ed and
widely applied by other authors [4, 5, 6, 7]. The basic ppleiof this approach is to model
flow rates and rate changes without considering discretefiatkets. Each flow is assigned a
certain transmission rate, and rate reductions due toelpeitk links are tracked as events in
the event chain of the simulator. Although widely used, urmigticular circumstances this
approach has been shown to suffer from the so calfgae effectwhich can cause severe
performance degradations concerning computation timecdurs in networks with circu-
larly overlapping end-to-end connections and overloaddd | causing rate change events to
reproduce themselves in a circular manner [8, 9].

An alternative to the continuous-time variantiime-stepped fluid simulatiomhich is the
foundation of the simulation method presented in this paptare, the data is modeled in
terms of quantities of a continuous amount of data which hiféesl through the network at a
fixed time step. This model was first proposed in [10], but th&ing model applied therein
is hardly applicable to realistic networks. In particulariraffic demand matrix cannot be
represented, as end-to-end connections have not beenedadelll.

Another approach which defines the evolution of network gé@ams in terms of differ-
ential equations is used in [11]. End-to-end connectioesnandeled as traffic aggregates
which enable the simulation of realistic network and rogitsieenarios. The equations are nu-
merically solved using the Runge-Kutta algorithm. In thipg@a we use the basic idea from
[10], and additionally enable end-to-end connections ilikg€l1]. Furthermore, we provide
a clean formulation of discrete-time flow-level simulatiwhich is well suited for practical
implementation.

The possibility of dynamic traffic rate adjustments and geh@deling in the presented sim-
ulation approach allows for multipath routing simulatiemsvhich traffic aggregates between
individual pairs of nodes are carried via multiple paragtiaths. Implementing the simulation
approach described in this paper, we have already evaltre&dlaptive Multi-Path algorithm
(AMP) [12, 13] using our flow-level simulation environmet.([14, 15]).



Furthermore, the throughput and delay approximation aépeb of this approach enable
more complex elastic traffic models, like e.g. TCP, to be irgtyl into such a flow-level
simulation framework, as the sending rate of individualrses can be dynamically adjusted
based upon the information about flow round-trip time (RTiJ &ss probability on the path,
employing differential equation models of TCP as presemddi, 16, 17].

3 Basic Iterative Algorithm

In this section we first clarify the notation, after which weroduce the iterative algorithm
that calculates throughput rates and loss probabilitiesllly, we show the application of this
algorithm for the calculation of stationary throughput inetwork with static traffic demands.

3.1 Definitions

The simulation process is based upon shifting data thrdughétwork in fixed time intervals
A. In our model, a data rate denotes the total amount of data in a single iteration iaderv
normalized byA as the time between two successive iteration steps. In otbets, a data
rate of\ in interval A corresponds to an amount of daka,A, which may represent e.g. bits,
bytes, or equally sized packets.

In the following we list some definitions for reference. BEagsions indexed bin] are
time-dependent and calculated in each iteration.

L Set of all links.

A Set of all aggregates.

L*C L Set of links crossed by aggregate A.
A CA Set of aggregates crossing lihk L.

first(a) € L* First link on the route of aggregatec A.

next(a,l) € L*  Successor link of € L* on the route of aggregatec A,.

sink(a) € L* Virtual link representing the sink of aggregate A and
succeeding the last link af.

a Link capacity of linkl € L, i.e. data that can be served during a
single iteration interval\.

mn] Loss probability at link € L.

Atn] Arrival rate of aggregate € A atlinkl € L°.

A [n] Sending rate of aggregates A, equal to}, ;) [1]-

Ai[n] Sum of all arrival rates at linke L.

0%[n] Throughput of aggregatec A.

A Iteration duration interval, i.e. the time between twoateyn steps.

3.2 lterative Equations for Discrete-Time Flow-Level Simuldion

We assume the network to be empty at initialization time={ 0). Each traffic aggregate
a € A has a specific route consisting of a sequence of linksL® along which the arrival
rates\{[n] of this aggregate are shifted in each iteration step. Theathaarival rate at linki
in iteration stepr is then:



n =Y Mln. 1)

a€A;

Based on this sum and the capacitef this link, its loss probability,[»] can be calculated
for the corresponding iteration step The capacity; of a link [ is assumed to be proportion-
ally partitioned among the competing aggregates A;.

pl[n]:max{l—ﬁ, o}. )

The arrival rate\![n] of aggregate: and the loss probability at linkin iteration stepn
determine the arrival ratg” [n + 1] of a at its next link at the next iteration step+ 1.

next(a,l)

AZ@.’Et a,l) [ 1] = )\la[n] ’ (1 - pl[”]) (3)

The throughput of aggregates given by

0" [ ] /\gznk [ ] (4)

3.3 Calculation of Stationary Throughput for Static Traffic D emands

We now use the equations from the previous section to caétitee stationary throughput
rates in settings with static traffic demands. By first calitn¢pthe throughput rates of a
small example network analytically, we show that this carab®n-trivial task and propose
an algorithm based upon the iterative equations as a sirttptaative.
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Figure 1: Throughput calculation for an triangle network.

Figure 1a shows a triangle network with all link capacitiestec = 1 and three overlapping
aggregates with static, non-adaptive sending rates 1, as well. Intuition might lead to



the belief that each aggregate should achieve a througtiput=o 0.5, as this corresponds
to the most reasonable bandwidth distribution with respedtoth fairness and throughput.
However, the analytical calculation of the throughput gsebignificantly different results.
Due to the symmetrical nature of the example, we assumehbdbss probability is the
same on all links. The throughput, which equals the arrigge it the second link of each
aggregate, can then be expressed’by \ - (1 — p)?. The arrival rate of each aggregate
at its respective first link equals- (1 — p). As each link is crossed by two aggregates, i.e.
one at its initial hop and the other at its second hop, theiellg equation must be solved:

= A(1—p) +A(1 —p)% With A = 1 andc = 1, and presuming that the loss probability is
greater than 0, we can calculate the throughput resultiigin0.38.

Algorithm 1 Throughput calculation for static traffic demands.

1:n<0

2: initialize A [n] with O Va € AVl € L*\ {first,}
3. repeat

4. stop < true

5. forall [ € L do

6: calculate);[n] according to Equation (1)

7: calculatep;[n] according to Equation (2)

8: forall a € A; do

o if sink(a) # [ then

10: calculate\; ., ,[n + 1] according to Equation (3)
11: if ‘)\nm (@) n+1] — Amet(al) [n]| > e then
12: stop < false

13: end if

14: end if

15: end for

16:  end for

177 n<n+1

18: until stop = true
10: forall a € A; do
20 0% <= AY 01
21: end for

While in this simple example we are able to calculate the thinput quite easily, by solv-
ing just one quadratic equation, we would have to solve muatercomplex sets of nonlinear
equations in the case of larger networks. When instead ajgptizie proposed iterative equa-
tions from the last section to the example network, we oleser¥igure 1b that the stationary
throughput of all aggregates converges at the same poiheasalytical solution, i.e. at the
value of about 0.38, after only a few iterations of the alton.

The exact solution for throughput rates in arbitrary neksas achieved after a number
of iterations which corresponds to the hop count of the Ishg®ssible path composable
of overlapping aggregates in the network. As in this examydecan construct a path of



infinite length due to circularly overlapping aggregates,irginite number of iterations is
required to obtain an exact solution. Therefore, in ordexctuieve reasonably precise results,
we iteratively calculate the throughput of all aggregatesl the differences between two
consecutive arrival rates of all aggregates at each link tedow a predefined small value
of . A formal description is provided in Algorithm 1 which mayrge as an efficient and
conceptually simple alternative to analytical throughgaltulation.

4 Capturing Network Dynamics

In this section, we extend the flow-level simulation to dyimastenarios, in which link and
gueue delay is modeled and the sending rates of aggregatetaage in each iteration step
independently of the link delay.

4.1 Definitions

In addition to the definitions from Section 3 we list the nmas needed for the calculation of
delay and queue size.

d; - A Link propagation delay of link, d; € N.
q[n] Queue length at link, initialized with ¢,[0] = 0.
q* Maximum queue length at link
o n] Present delay of the data of aggregatariving at link/, initialized
with 6%,y [0] = 0.
d%[n] End-to-end delay of the data of aggregat&riving at its destination in

iteration interval.

4.2 Modeling Link Propagation Delay

The propagation delayl, - A) is expressed by an integer multiplgof the iteration interval
A. Due to this delay, the arrival raté$[n| at link [ at iteration step. are propagated to their
respective next link only at iteration stept d;:

/\Zemt(a,l) [TL + dl] = A? [n] ’ (1 — D [HD : (5)

In concrete implementations of our algorithm, the formolabf this equation implies that
for each aggregate, at every linkl, a number of/, values must be stored for future arrival at
the respective next link. This can be viewed as dividing daméhn d; slots, and then shifting
the data amount\?[n] - A) one slot further on its route in each iteration, as illugtdain
Figure 2. This method can be implemented quite efficientlyging an array of fixed sizé
for each aggregate at each linkl € L* and using(n modulod;) as index operator, as e.g.
done in [18].

Each iteration maps the arrival rateégn| for each link/ and aggregate to arrival rates
Aeatanylt + di] for the successor linkezt(a,!) of the respective aggregate in the future.
Thus, the traffic faces a delay @fiteration intervals until then. We take advantage of thes fa
for tracking the end-to-end delay, by using the followingadstructure. In addition to each
A¢[n] we define & [n] and add the following operation to each iteration step tduwapthe
delay up to this point.



(*) potential loss

Figure 2: Network with 4 nodes and a traffic aggregate thatsas 3 links, each with a link
delay ofd; = 3.

5?Lext(a,l) [n + dl] = 5la [n] + dl‘ (6)

The end-to-end delay is then given by

o [n] = 5gink(a) [n] (7)

For now, this does not yield insightful results because radl-to-end delays are constant.
But we will use this data structure as a basis for keeping tedicqueueing delay in the next
section.

4.3 Modeling Queuing Delay

So far, we have considered networks without queues, mednatgraffic exceeding the link
bandwidth, i.e.\;[n] > ¢, is dropped. When using queues, the excess traffic that fitein t
queue is buffered and only the carryover is dropped.

During one iteration interval\; - A) new data arrives whil&:; - A) data can be transmitted
by link [. As the queue size can be at mggt”, the queue size for the next iteration step
(n + 1) can be calculated by:

q [n+ 1] = min {q}"‘w, max {ql[n] —ca- A+ \[n]-A, 0}} (8)

At most(¢"** + ¢, - A — q;[n]) can be buffered in the queue, while the exceeding traffic is
dropped. Therefore, we can calculate the loss probabuity b

(9)

o Soab )

pl[n]zmax{l— A

The flow-level simulation works so far by calculating thehatrate at a linkl based on the
current arrival rate at its predecessor dipiteration steps in the future. While the link delay
d; is constant, a queue introduces additional delay which eayin each iteration step. We
therefore substitute Equation (5) with the following edoas.



additional queuing
delayl, ..., [%W

d; 1
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Figure 3: Array data structure for traffic aggregates witbwging delays.

Within iteration step, (\[n]-A) data arrives which can be sent at the earliestin %J

iteration steps. Thus,is the minimum queuing delay for the traffic of all aggregates/ed

during intervaln. The maximum queueing delay for the arriving data corredpdn k =

[%1 . We now calculate how the arriving data is distributed betwthe delays fromto

In order to compute the amount of data which can be dequeusterration steps, we need
to consider that it is possible that there is already dat&dtfor this iteration step, which does
not use the full link capacity. Therefore, we calculate #maining capacity for this iteration
step by((i + 1) - ¢, - A — g[n]). This free capacity is shared proportionally by all aggtega
competing for the link. As a consequence, the amount of detawill arrive at interval
(n+d; +1) at the next Imk,\next opln+di+1]-Aisincreased. We flay;, [n+ d; + 1]
before the increase with a&’, and after the increase with &'

ext(a,l)

/\?Lemt(a,l) [TL +d; + Z]+ = )\Zeﬂ(a,l) [n +d; + Z]_
. [G@+1) - A—qn] MIn] .
The arrival rates\®

meat(a) [n + d; + j] with queueing delay, i < j < k, make proportional
use of the full link capamtycl.

(10)

Al [n]
>\l [n] ’

)\Zextal)[n+dl+j]zcl' VJ, Z<]<k’ (]_1)

If & > 4, the arrival rate\;_,, »[n + d; + k] with queueing delay: corresponds to the
proportional fraction of the Iatest buffered data in thewpigy[n + 1] — (K — 1) - ¢, - A).

an+1]—-(k-=1)-¢-A _ A¢n]

)\Zext(a,l) [n + dl + k] = (12)



We observe that in the case of queues we calculate the aatealfor several future iteration
steps atonce # > i, which is illustrated in Figure 3. The data structureXppn| in a concrete
implementation can essentially stay as in Equation (5) whiehexception that the size of the

respective modulo array must now et

To keep track of the end-to-end delay of aggregates we ussatine data structure as in
Equation (6) but add the additional queuing delay. Faith ¢ < 7 < k& we can simply write

5?Lext(a,l)[n+ dl +.]] = 5la[n] + dl +.]7 vja i <] < k. (13)

However, for the minimum delay it is possible that there is already data stored for arrival
at interval(n + d; + 7). Therefore, we have to calculate the weighted average afeley of
the data rate that was stored ear(i&f [n+ d; +i]7) and the delay of the data arrived in

ext(a,l)

the lastintervalk;,_, , »[n+d +i]" Afmt (@pln+di+1]7). Again, we flagy;, ., , before
modifying with a '’ and after modifying Wlth at'.
Y yln+dp+1d]”
5a d a4+ 50 d R next(a,l)
newt(a,l)[n +a; + Z] next(a,l) [TL +a;+ Z] (}\?Lemt [n + dl + Z]Jr
(14)

A n+d +1”
+(6l“[n]+dz+z')-<1— neriap |+ ]>.

AZe:vt(a,l) [n +d + Z]Jr

5 Analysis of Simulation Accuracy

In this section we demonstrate the application of the pregdew-level simulation model us-
ing a small example network in order to provide the readeh @it insight about the character
of results which may be expected.

The network in Figure 4a consists of six nodes and threedraffgregates. The traffic is
Poisson meaning that the packet interarrival times are exponigntigstributed. In addition,
in order to generate a dynamic network-wide traffic mathe, tnean rate of each traffic source
varies in an oscillatory manner with different frequencies

The presented simulation setting results in temporaryloadrat both the link from 3 to
4 and from 4 to 5, allowing us to observe the throughput of egates which experience
gueueing and loss at more than one link. We performed theegpdekel simulations in the
ns-2network simulator [19] and the the flow-level simulation®ur own simulator.

We concentrate on the aggregate from 0 to 5. In Figure 4b thruladive throughput (the
total amount of data arrived until iteration interva) is shown for this aggregate for both
packet-level simulation and flow-level simulation (with of 1 ms), demonstrating that the
flow-level simulation results closely resemble those frauoket-level simulation.

Next we demonstrate the effects of varying the iteratioarival A in flow-level simulation.

In Figure 5 the size of the queue at the link from node 4 to 5 @swh using the same traffic
scenario as before. For comparison, in Figure 5a the quee@ger time is shown for packet-
level simulation. For flow-level simulation withh = 1 ms the queue size over time is very



similar (Figure 5b). Increasing to 5 ms (Figure 5c¢) and 10 ms (Figure 5d), we observe that
the short-time variations disappear, but the basic pagtersists. The computational complex-
ity of the flow-level simulation is inversely proprotional the iteration interval, meaning that
simulation with aA of 10 ms is 10 times as fast as simulation with af 1 ms.

In Figure 6 the total (i.e. end-to-end) packet delay is shfmwthe aggregate from 0 to 5 for
packet simulation and flow-level simulation. In packetelesimulation, the end-to-end delay
was determined by calculating the average delay for all gzdkat arrived at their destination
within an interval of 1 ms. In flow-level simulation we applyiations (13) and (14). We
observe that the calculated end-to-end delays for packeflaw-level simulation are quite
similar when using &\ of 1 ms, with the exception that the short-time variatioreskagher in
packet-level simulation (Figures 6a—6b). In Figures 6cwédotice that these variations dis-
appear completely, but the simulation still captures thedxand-to-end delay characteristics
quite well.

6 Conclusion

In this paper we have provided a comprehensive formulatiahiscrete-time flow-level sim-
ulation at different levels of detail. We have first introddca basic algorithm capable of
calculating the loss probabilities and throughput ratesnof-to-end traffic aggregates in a set-
ting with static traffic demands, and have demonstratedatigisrithm to be a conceptually
very simple and efficient alternative to complex analytitabughput calculation.

We have then extended the algorithm to handle time-depé¢nmdravior of networks by
introducing link and queueing delay and a technique for mesmsent of end-to-end delay.
We have compared results from flow-level simulation exaspberesults from packet-level
simulation, and have shown that the they are very similpe@sally if a sufficiently small iter-
ation intervalA is chosen for flow-level simulation. A smaller interval Issd more accurate
results while a larger interval speeds up the simulationvéi@r, we have demonstrated that
even for larger intervals the basic network behavior iswagat. Future work may include the
analysis of realistic ISP networks, both in terms of netwside and traffic patterns observed
in today’s Internet.
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Figure 4. Simple example network with cumulative throudhfputhe aggregate from 0 to 5.
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Figure 5: Queue sizes for packet-level simulation and flevel simulation with different
iteration intervals.
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