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Abstract

We propose a new modeling approach for variable bit rate (VBR) traffic in packet networks
based on a Markov chain with memory. The model is simple, comprehensive, and facili-
tates the modeling of strong positive correlations over a considerable range of lags. The
model can easily be adapted to measured traffic sequences, e.g. MPEG video or packet
interarrival time sequences. Due to its simplicity and its close relationship to Markov
chains the model is valuable to both simulation and analysis of currently considered types
of traffic.



1 Introduction

Currently, the increasing amount of traffic types with strong positive correlations or even
long-range dependent behavior in combination with larger buffers in the telecommunica-
tion equipment demand for traffic models and analytical tools capable to cope with this
new scenario. For instance, if real-time VBR video traffic is considered as being uncor-
related, performance analysis will underestimate losses and delays at network buffers by
orders of magnitude [6, 5].

Thus, there is a demand for models facilitating the modeling of such correlation char-
acteristics. In particular, the modeling of VBR video traffic attracted a lot of interest,
e.g. see overviews [2, 7]. Among those modeling approaches, there are Markov chains,
autoregressive processes, TES models, selfsimilar processes, and even combinations of
these. The simple modeling approaches, such as histograms or first-order Markov chains,
are not capable to provide a good approximation of the autocorrelation function of the
empirical data sets. The advanced modeling techniques, such as selfsimilar processes, lead
to difficulties in parameter estimation, simulation, and analysis.

We therefore propose a new approach for modeling VBR traffic: the Memory Markov
Chain (MMC). The main idea is to redefine the set of states of a first-order Markov chain.
Instead of representing only the sample size, as for a conventional Markov chain, in our
model a state represents both the sample size and the average of the sizes of a number
of preceding samples. This approach is different from a higher-order Markov chain, since
the MMC does not take into account the the preceding states but their averaged effect.
Thus, we avoid a state space explosion which is typical for higher-order Markov chains.
Nevertheless, we are able to improve the correlation behavior considerably.

The parameter estimation of the MMC requires three parameters: the number of states
My representing the sample size, the number of samples W which are considered for the
averaging process, and the number of states M, representing the average sizes. Hav-
ing defined the MMC states, the generation of the transition probability matrix is as
straightforward as for a first-order Markov chain.

In short, the Memory Markov Chain is a modified first-order Markov chain with im-
proved correlation properties. It can be applied in analysis and simulation of buffers of

considerable size.



In the following, we line out the reasoning behind our approach and the parameter esti-
mation. We apply the MMC approach to the modeling of MPEG video traffic and show
the validity and usefulness of the model by presenting autocorrelation functions and cell

loss estimates of an ATM buffer with MPEG video input.

2 The Memory Markov Chain and its parameter es-
timation

Let {z;:i=1,...,N} denote the considered traffic measurement time series and let W
denote the number of samples considered for the averaging process. The given trace {x;}

is now extended to a series of pairs {(z;,7;)} with

i—1
1

T, = W Z xp for i=W+1,...,N. (1)
k=i—W—-1

The series of pairs consists of W samples less than the original time series.

The averaging process is motivated as follows. For a time series with fast decaying au-
tocorrelation function, the values z; will be rather good estimators of the sample mean
and will be almost the same for all values of 7. Hence, this additional category contains
no information and is of very limited value with respect to a better characterization of
the sample correlations. In the presence of a slowly decaying autocorrelation function,
however, the values z; differ significantly and represent the cumulated averaged history
of x;.

Before we start to determine the transition matrix for the MMC we have to define an
appropriate state space. Each pair of the series {(z;,z;)} is related to a state (m?, m{),
where m? € {1,..., Mg} denotes the sample size class and m# € {1,... , M} the average
size class of sample 7. The classes are obtained by discretizing both the x; and Z; as follows.

1 if ; = min;x;

(2)

m: _— L 1 . .
i T; — min; x; i
. - Mg otherwise
max; r; — Imin; r;

The z; are processed analogously.
The Mg - M4 states are ordered such that the states for one average size class are grouped

together with ascending average size class number. The entries of the transition matrix



P can now be estimated as usual as empirical transition probabilities [1]. The size vector
s related to the states of the Markov chain is determined in two steps. First, we compute
the size vector of length Mg based on the x; values.
Let d(my, j) denote the indicator function of m; = j with j € {1,..., Mg}. The sizes s;
related to sample size class 7 are now given by
ZZZWH o(m7, j) - x;

Sitwi 6(mi,g)
Then, vector s is formed by concatenating M, copies of that vector. For instance, let

Mg = 3 and M, = 2. Then, the state space consists of {(1,1),(2,1),(3,1),(1,2),(2,2),(3,2)}

(3)

Sj

and s = [817 52, 83, 81, 52, 83]-
The MMC model is fully characterized by the transition matrix P and the size vector s.

The mean and variance of the process generated by this model are given by

p o= mw-s, ot = Zﬂ' -diag(s)® — p? (4)

where the vector 7 is the steady-state distribution of the MMC given by the solution of

T = 7P, Zﬂ'zl. (5)

and diag(s) denotes a square diagonal matrix with diagonal s. The correlation coefficient

for lag k is obtained by

Pk = % |:Z7T -diag(s) - P* - diag(s) — p?| . (6)

Note, that a sequence generated by means of transition matrix P and the size vector s
will have a marginal distribution which is identical to a histogram with Mg intervals of
equal size.

The values M, and W have to be determined empirically. Experiments have shown that
that M4 should be at least 5 to clearly outperform a standard first-order Markov chain. If
the MMC should be capable to approximate the first L lags then the parameter W should
be chosen in the neighborhood of L. There are values of M4 and W where an increase
of these values leads only to marginal improvements of the MMC correlation properties.
This is due to the usage of finite traces for the estimation of the transition matrix leading
to a loss in statistical significance of its entries for increasing values of M 4. The parameter

M 4 should therefore be chosen as small as tolerable in terms of model accuracy.



3 MPEG video traffic example

To show the usefulness and the validity of our approach, we applied the MMC as a model
for variable bit rate MPEG video. As data sets, we chose the dino (Jurassic Park) sequence
from the University of Wiirzburg data sets [4] and the Bellcore MPEG Star Wars sequence
[3]. Details on MPEG video and statistical properties of the video data sets can be found
in the related literature. In the sequel, we will only show the results for the dino sequence.
The results for the Star Wars sequence are essentially the same.

Figure 1 shows the autocorrelation functions for a number of MMC models fitted to the
dino GOP size time series where Group Of Pictures (GOP) is a number of consecutive
MPEG video frames. We did not use the frame size sequence since in this case the strong
positive correlations are hidden due to the periodic structure of the frames sizes. For
details on the correlation structure of MPEG video see [4].

All MMC models have Mg = 20 GOP size classes and M4 = 10 average GOP size
classes, implying a 200x200 transition matrix. The parameter W was varied from 1 to
100. Note, that a value of W = 1 results in the autocorrelation curve of the simple
Markov chain model. As expected, the models’ capability in approximating the empirical
autocorrelation function increases with larger values of W. In addition, the substantial
difference of the correlation characteristics of a conventional first-order Markov chain and
the MMC with a memory of tens of past samples becomes obvious.

As an additional means of validation, we applied the MMC model of VBR MPEG video
traffic to predict cell losses at an ATM multiplexer buffer with dino input traffic. Again,
we use the MMC approach to model the GOP size sequence. The frame sizes are computed
from the GOP sizes by multiplying constant factors representing the average percentage
of the individual frame sizes of a GOP compared to the average GOP size (for details see
[6])-

Figure 2 shows the cell loss estimates at an ATM buffer with 90% load for an uncorrelated
histogram model with 20 intervals, a conventional first-order Markov chain with 20 states
and an MMC with parameters Mg = 20, M, = 10, and W = 100 compared to the
losses of the empirical data set. Thus, the marginal distributions of all generated sample
sequences are the same. The models differ only in their capabilities to approximate the

autocorrelation properties of the empirical data set and, of course, in complexity. For
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Figure 1: Autocorrelation functions of the Memory Markov Chain model

small buffer sizes, all modeling approaches lead to a very good estimate of the cell losses
of the empirical data set. Increasing the buffer size, leads to very optimistic estimates for
the histogram model. Increasing the buffer size further, the estimates of the conventional
Markov chain become worse. Only the MMC shows the capability to estimate the cell

losses for the whole range of buffer sizes with high accuracy.
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