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Abstract: The fast computation of blocking probabilities and the resulting capacity is one of the
crucial tasks in the planning process of UMTS networks. The admission control in WCDMA networks
bases on the momentary interference which includes both own-cell and other-cell interference. Since
both interference terms are stochastic values we speak of soft blocking. The number of users in the
system is not sufficient for deciding whether to accept a new call or not. Instead, it is blocked with
a certain probability depending on the number of users in the system, the activity of the users, and
the other cell interference. In this paper we present a time efficient algorithm to compute blocking
probabilities in a WCDMA network operating with several services. Assuming Bernoulli activity and
modelling the other cell interference as a lognormal random variable the blocking probabilities are
computed using an approximation based on the Kaufman-Roberts recursion.

1 Introduction

The Universal Mobile Telecommunication System (UMTS) is the proposal for third generation wireless

networks in Europe. Contrary to conventional second generation systems like GSM which focus primarily

on voice and short message services, UMTS provides a vast range of data services with bit rates up to

2Mbps and varying quality of service requirements. This is achieved by operating with Wideband Code

Division Multiple Access (WCDMA) over the air interface.

The forthcoming introduction of UMTS in Europe requires new paradigms in wireless network plan-

ning. In GSM the capacity of a base station (BS) is determined by the number of available frequencies only

and hence is independent of the network load. For a number of frequencies the Erlang capacity follows

directly from the Erlang-B formula since the GSM network provides mainly voice telephony. In contrast,

the capacity of a BS or NodeB in a WCDMA network is interference limited. On the uplink the multiple

access interference (MAI) at a BS is caused by all mobile stations (MS) whether they belong to this BS

or not. On the downlink the capacity is limited by the transmit power of the BS or by the interference it

causes, respectively. The power control mechanisms in both link directions provide that the signals are

transmitted with such powers that for each service they are received with nearly equal strength. A detailed

examination of the interference on the uplink is no straightforward task. Due to the universal frequency
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reuse in UMTS, all users both in the considered cell and in the neighboring cells contribute to the total

interference, thus influencing the link quality in terms of received bit-energy-to-noise ratio (Eb/N0).

The planning of WCDMA networks consists of two aspects: The coverage planning and the capacity

planning. In contrast to GSM, coverage and capacity cannot be considered as independent terms. In

WCDMA a tradeoff between the coverage area and the capacity of a BS exists, see e.g. [1, 2]. The more

users are active at a BS, the larger is the MAI at the BS, and the higher are the transmit powers required by

the MSs to fulfill their Eb/N0 requirements. Additionally, due to the restriction of the mobile’s transmit

power, the coverage area shrinks with an increasing number of users. Attaining a certain coverage area

for a BS demands a limitation of the MAI which is done by admission control. The MAI level used as

threshold for the acceptance of new calls determines not only the coverage area but also the capacity of

the BS. Capacity here means the maximum possible offered load for a BS with a particular service mix

while meeting predetermined blocking probabilities. In the iterative planning process for large networks

the computation of blocking probabilities at a single BS is only one of many tasks which have to be

performed frequently. This demands a time-efficient method capable of providing blocking probabilities

with sufficient accuracy. In this paper we propose an approximation fulfilling these requirements.

Since the first introduction of CDMA systems with IS-95 the computation of blocking probabilities and

system capacity is an area of intense research. The paper by Gilhousen et al [3] was the first considering the

capacity of CDMA systems. The authors computed the probability to maintain the Eb/N0 requirements

for a constant number of users. Viterbi and Viterbi [4] extended the work by modelling the system as an

M/M/∞ queue such that the number of users in the system is a Poisson random variable. The activity of

a single user is described by a Bernoulli random variable, other-cell interference is included as a multiple

of the own-cell interference. In [5], interference is modelled as the sum of a Poisson distributed number of

independent random variables. Outage probabilities are determined from the interference. The previously

mentioned work considered only a single service. In [6], several services are considered. The CDMA

network is described by a product form traffic model whereby a state corresponds to the number of users

per service and cell. The admissible states are computed using analysis of statistical multiplexing for

each state and the sum of the state probabilities at the border of the admissible region yields the blocking

probabilities. In [7], a new kind of approach is used. Again, a single cell is modelled as a queue with

a Poisson arrival process and exponential holding times. A state is described by the number of users

in the system. In a certain system state a new call is accepted with a probability that depends on the

other-cell interference and the actual user activities. However, the analysis is restricted to the case with

a single service. In this paper we combine the work of [6] and [7]. From [6] we use the analysis with

product form solutions for a system with multiple services. From [7] we take the state-dependent blocking

probabilities. However, the two approaches do not match up with each other since the product form
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solution is not valid if state-dependent blocking probabilities occur. Additionally, the effort for computing

state probabilities grows exponentially with the number of services if the product form solution is used.

Consequently, the product form solution becomes intractable for practical networks. Instead, we use the

approach independently proposed by Kaufman [8] and Roberts [9] to reduce the multi-dimensional state

space to a single dimension. We modify the algorithm such that we are able to include state-dependent

blocking probabilities and obtain a good approximation of the total blocking probabilities.

The paper is organized as follows. Section 2 describes the system model with the general problem for-

mulation. Section 2.1 explains admission control in WCDMA systems, the assumed interference model,

and the load-dependent blocking probabilities. Section 2.2 provides an approach for the exact computa-

tion of the total blocking probabilities and Section 2.3 describes the approximation based on a modified

Kaufman-Roberts recursion. In Section 3, simulations are used to validate the approximation and, further-

more, the influence of other-cell interference and activity factors are investigated. The paper is concluded

in Section 4 with a summary and some proposals for possible extensions and applications of this approxi-

mation.

2 Model

The objective of this work is to derive a method for determining the uplink blocking probabilities and the

resulting capacity of a WCDMA cell with multiple service classes. The cell is modelled as a loss system

with a T -dimensional Markov chain with T being the number of provided service classes. We assume

an independent Poisson arrival process for each service class t with an arrival rate λt and an exponential

holding time with mean 1/µt. This results in an offered load at = λt/µt. The user activity at an arrival

instant is modelled by a Bernoulli random variable with an activity factor νt which is assumed independent

at consecutive arrival instants. In the following sections we explain admission control in WCDMA and

how blocking probabilities are determined according to the momentary cell load.

2.1 Admission Control in WCDMA Systems

The key feature of WCDMA systems is that all users transmit in the same frequency band and their

signals are separated by using orthogonal or pseudo-orthogonal codes. Except for the ideal case when

real orthogonal codes are used and no multi-path propagation occurs, a user sees the other users’ signal as

interference. The interference grows with the number of users in the system and limits the uplink capacity.

WCDMA admission control, see e.g. [10], is performed on the basis of the measured noise rise. The noise

rise is the ratio of the total interference Î0 to the interference of an unloaded system which corresponds

to the thermal noise N̂0. The total interference density comprises the own-cell interference Îown , the
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other-cell interference Îother, and also the thermal noise. The noise rise is then defined as

Noise rise =
Î0

N̂0

=
Îown + Îother + N̂0

N̂0

, (1)

where we use the notation that â is a linear value in mW while the corresponding value a is in dBm.

The admission control estimates the increase of the noise rise that would be caused by accepting a new

connection and blocks it if the result exceeds a predetermined threshold. While the noise rise is a value

which is actually measured by a BS, it is not well suited in order to understand the actual system load. A

transformation of Eqn. (1) yields the definition of the cell load η:

Noise rise =
1

N̂0

Îown+Îother+N̂0

=
1

1 − Îown+Îother

Îown+Îother+N̂0

=
1

1 − η
. (2)

A cell load equal to 1 defines the pole capacity of a WCDMA cell. We define ηmax as the cell load

corresponding to the noise rise value used for admission control. On the arrival of a new call of service

t the admission control algorithm estimates the additional load αt. This load is based on the negotiated

bearer properties, i.e. bit rate and maximum error rates. WCDMA admission control consequently accepts

an incoming connection if the estimated cell load ηest is below the cell load threshold ηmax:

ηest = η + αt < ηmax ⇔ Îown + Îother

Îown + Îother + N̂0

< ηmax (3)

We can see that the acceptance of a new call depends on both the own-cell interference and the other-cell

interference. In the next section we show how to derive the interferences from the power control equation.

2.1.1 Interference model

The total interference received at a BS determines the uplink capacity of the WCDMA cell. The thermal

noise is a fixed value and in a first step we assume the other-cell interference as known. The own-cell

interference density corresponds to the sum of the received powers of the m̄ = (m1, . . . ,mT ) active MSs

power controlled by the considered BS divided by the system bandwidth W:

Îown =
T∑

t=1

mtŜt

W
(4)

Assuming perfect power control, the received MS powers Ŝt have to fulfill the power control equation

ε̂∗t =
Ŝt
Rt

Îown + Îother + N̂0 − Ŝt
W

(5)

with ε̂∗t and Rt being the target-Eb/N0 and the bit rate of the MSs operating with service t. With perfect

power control all MSs of one service require an equal received power. Solving Eqn. (5) for this powerŜt

yields

Ŝt = W
ε̂∗t Rt

W + ε̂∗t Rt

(
N̂0 + Îown + Îother

)
. (6)
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By replacing Ŝt in Eqn. (4) we obtain the own-cell interference density as

Îown = (Îown + Îother + N̂0)
t∑

k=1

mtωt (7)

with ωt defined as

ωt =
ε̂∗t Rt

W + ε̂∗t Rt
. (8)

Note that the variable ωt contains all service-specific parameters and is sufficient to describe the influence

of the service type on the interference. Solving Eqn. (7) for Îown leads to

Îown =
A(m̄)

1 − A(m̄)
(Îother + N̂0), (9)

where A(m̄) is defined as

A(m̄) =
T∑

t=1

mtωt. (10)

Eqn. (9) defines the own-cell interference depending on the variable A(m̄) which is the sum of the ωt of

the users active in the cell. Using this definition we are able to write the cell load η in the following way:

η =
A(m̄)

1−A(m̄)(Îother + N̂0) + Îother

A(m̄)
1−A(m̄)(Îother + N̂0) + Îother + N̂0

=
N̂0

N̂0 + Îother

A(m̄) +
Îother

N̂0 + Îother

(11)

Defining m̄t+ as (m1, . . . ,mt + 1, . . . ,mT ), the admission control condition (3) is reformulated to

N̂0

N̂0 + Îother

A(m̄t+) +
Îother

N̂0 + Îother

< ηmax ⇔ A(m̄t+) + (1 − ηmax)
Îother

N̂0

< ηmax. (12)

This equation has the interesting property that own-cell load and other-cell load are separated. The own-

cell load is equal to A(m̄) and in consistence with [11] the pole capacity is reached for A(m̄) = 1

if the other-cell interference is neglected. Without other-cell interference A(m̄t+) is equivalent to ηest.

Consequently, we define the own-cell load for m̄ users as

ηown(m̄) = A(m̄) (13)

and the load per service as αt = ωt. Since an equal own-cell load may occur for different user numbers m̄

we write ηown without indicating the user number if we use the term own-cell load in a general context. In

the next section we derive the blocking probability for a new call arriving in a system state with own-cell

load ηown.

2.1.2 Local Blocking Probabilities

Blocking occurs if the total interference exceeds a defined maximum level or if the cell load exceeds the

maximum threshold ηmax, respectively. In this case WCDMA admission control rejects the request for a
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new connection. The probability βt(ηown) for this event, i.e. the blocking of a new call of service t when

arriving at an instance with own-cell load ηown, is called local blocking probability in the remainder. Local

blocking probabilities are computed by

βt(ηown) = P

(
ηown + ωt + (1 − ηmax)

Îother

N̂0

≥ ηmax

)
. (14)

In this equation all variables except the other-cell interference are known. We model the other-cell interfer-

ence as a random variable which is independent at consecutive arrival events. In general, the distribution

of the momentary other-cell interference may depend on the momentary own-cell load. In the following,

however, we assume the other-cell interference as a lognormal random variable with parameters µ and σ

that do not depend on the own-cell load. This assumption is justified by [12, 13] which propose an iter-

ative approach used to calculate the first and second moments of the other-cell interferences in a UMTS

networks with an arbitrary BS layout and a non-homogeneous spatial traffic distribution. The resulting

other-cell interferences are shown to be lognormal distributed. In [13] coverage areas are determined un-

der the assumption that the other-cell interference is independent of the current own-cell load. The results

match well with simulated results.

With this premises blocking for a given own-cell load occurs if the other-cell interference exceeds a

certain limit. Let ηother be a random variable for the other-cell load defined by:

ηother = (1 − ηmax)
Îother

N̂0

. (15)

The other-cell load is also a lognormal random variable with distribution function Γ(x) and parameters:

µΓ = µ + log(1 − ηmax) − log(N̂0) and σΓ = σ, (16)

So, we obtain for the local blocking probabilities

βt(ηown) =


 1 − Γ(ηmax − (ηown + ωt))), if ηmax − (ηown + ωt) > 0

1, else
(17)

According to this equation we are able to compute blocking probabilities depending on the own-cell load.

Fig. 1 shows the local blocking probabilities depending on the estimated cell load. The curves are plotted

for different mean other-cell interferences with a constant variation coefficient of 1. A very high other-cell

interference causes blocking probabilities of almost 20% even for an own-cell load of zero, i.e. without

any user in the system. The curve for E[Îother] = 10−50mW represents the case without other-cell

interference. All other curves with more realistic values for E [̂Iother] between 5 × 10−19mW and 6 ×
10−18mW are between these two extremes. Note that in the legend of figures we use I instead ofÎother.

Let us summarize the status of our analysis. Local blocking probabilities depending on the own-cell load

are determined according to Eqn. (17). In the following we aim at computing the steady state distribution

6



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

owncell load

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

E[I]
1e−050mW
5e−019mW
1e−018mW
2e−018mW
3e−018mW
4e−018mW
5e−018mW
6e−018mW
1e−017mW

Figure 1: Local blocking probabilities
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of the own-cell load in the system to obtain the total blocking probabilities using the theorem of total

probability. In order to achieve this we propose a model for the exact computation of the steady state

distribution and subsequently introduce an approximation based on the Kaufman-Roberts recursion.

2.2 Exact Computation of Total Blocking Probabilities

In general our model is based on a T -dimensional Markov chain which may be computed using the product

form solution provided that no local blocking occurs. A state is defined by the number n̄ of users in the

system and the state space Ω is restricted by a maximum number of users large enough to avoid hard

blocking. We define a transition rate matrix for the exact computation of blocking probabilities since the

application of the product form solution is not valid with local blocking. The introduction of local blocking

probabilities for each transition n̄ → n̄t+ leads to reduced transition rates. The Markov chain is adapted

in order to get an appropriate model behavior, similar as in [7]. Figure (3) shows the state diagram of a

modified one-dimensional Markov chain with local blocking if a single service is considered.

(n−1) µ n µ

... n−1 n0 1

µ 2µ

λ
λ0 1 n−2 λλ n−1 λ(1−β  ) (1−β    ) (1−β    )(1−β  )

Figure 3: State diagram of a modified one-dimensional Markov chain

The calculation of blocking probabilities in the current state requires the knowledge of the distribution

of the momentary user activity. The variable nt denotes the number of users with service t in the systems

and mt are the active connections. The local blocking probability Bt(n̄) for a new call of service t in state
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(n̄) is

Bt(n̄) =
∑
m̄≤n̄

P (m̄|n̄)βt(ηown(m̄)). (18)

According to Eqn. (13), ηown(m̄) is the own-cell load and the blocking probability βt(ηown(m̄)) results

from Eqn. (17). The number of active users with service t is binomially distributed:

P (mt|nt) =
(

nt

mt

)
(1 − νt)

nt−mt νmt
t . (19)

A new call of service t arriving in state (n̄) is accepted with probability 1 − Bt(n̄). Accordingly the

transition rate from (n̄) to (n̄t+) decreases from λt to (1 − Bt(n̄))λt. We define the transition rate matrix

Q as

Q(f(n̄), f(n̄t±)) =




(1 − Bt(n̄))λt for n̄ → n̄t+

ntµt for n̄ → n̄t−
(20)

and Q = 0 else. The injective index function f maps the state space Ω to �. The steady state distribution

vector X̄ is computed by solving the equation system:

QX̄T = 0 and
∑
n̄∈Ω

X̄(f(n̄)) = 1 (21)

From the steady state distribution the total blocking probability Pblock(t) for service t results as

Pblock(t) =
∑
n̄∈Ω

X̄(f(n̄))Bt(n̄) (22)

This method is numerically intractable and not suitable for multi-dimensional scenarios with large state

spaces, since the size of Q grows exponentially with the number of services.

2.3 Approximation of the Total Blocking Probabilities

The Kaufman-Roberts recursion is applicable for systems with a shared resource and a set of services with

different resource requirements. The algorithm exploits the fact that the blocking of an arriving call does

not explicitly depend on the number of users in the system but on the resources they occupy. Consequently,

it is sufficient to determine the steady state distribution of the resource occupancy. The Kaufman-Roberts

algorithm reduces the T -dimensional state space to a one-dimensional state space by combining the states

which occupy the same amount of resources to one state. For a system with capacity C and T services

with resource requirements rt and an offered load at the steady state probability p(j) that j resources are

occupied is given as

p̃(j) =




0 , for 0 < j or j > C

1 , for j = 0∑T
t=1 at

rt
j p̃(j − rt) , else

and p(j) =
p̃(j)∑C
c=0 p̃(c)

(23)
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The service specific blocking probabilities are then

P block
t =

rt−1∑
j=0

p(C − j) (24)

In WCDMA networks we can interpret the cell load η as shared resource and the load per service ωt

as resource requirement. The application of the Kaufman-Roberts algorithm postulates a discrete shared

resource and discrete service requirements. Additionally, the algorithm is beneficial only if a single state

(j) combines many multi-dimensional states (n̄). Thus, we discretisize the cell load by introducing a cell

load unit g of which ηmax should be an integer multiple. The resulting capacity and resource requirements

are then:

C = ηmax

g and rt = round
(

ωt
g

)
(25)

The cell load unit g controls the granularity of the Kaufman-Roberts state space. The smaller g is, the

larger is the state space and the better is the approximation. In the simple case of no other-cell interference

and no user activity, the Kaufman-Roberts recursion yields exact steady state probabilities except for the

error caused by the cell load discretization. Fig. 2 shows total blocking probabilities for such a scenario

considering two services with 12.2 kbps and 64 kbps bit rates and corresponding target-Eb/N0 values

of 5dB and 4dB, respectively. The solid curves depict the simulation results and the dashed curves the

analytic results for different granularities. The finer the granularities the better the results match. The

two smallest cell load units of 0.005 and 0.001 lead to almost identical results and curves. Therefore, we

choose g = 0.005 as cell load unit for the numerical results presented in Section 3.

The integration of the local blocking probabilities into the Kaufman-Roberts recursion is not directly

possible. A state corresponds to the resources occupied when all users are active. The state description

does not provide the number of active users and the maximum occupied resource is not sufficient to

determine the distribution of the resource occupancy. We introduce the random variable Λ for the number

of occupied resources. Still assuming that no local blocking occurs the probability Λ(c|j) that c resources

are occupied in state j is computed recursively:

Λ(c|j) =
T∑

t=1

Pt(j) [νtΛ(c − rt|j − rt) + (1 − νt)Λ(c|j − rt)]. (26)

The probability Pt(j) denotes the probability that state j is reached by a new call of service t and is given

by:

Pt(j) =
p̃(j − rt)at

rt
j

p̃(j)
. (27)

Figure 4 illustrates the algorithm for the recursive calculation of the resource occupancy distribution Λ.

The example relates to a system of two services with resource requirements 1 and 2. On the left, the

Kaufman-Roberts state space is shown. The transitions between neighbored states are for the service with
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requirement 1 and the transitions overleaping one state are for the service with requirement 2. For reasons

of clarity the labelling of the transition arrows is omitted. The right side shows the recursive calculation of

the occupancy distribution. In state (0) without users obviously no resources are occupied, i.e. Λ(0|0) = 1.

In state (1) we have one user of service 1 which is either active or not. That leads to Λ(0, 1) = 1 − ν1

and Λ(1, 1) = ν2. For state (2) it becomes more complicated as we have either two users with service one

or one user with service two. The probability for the first case is P1(2) and the probability for the second

case is P2(2). Let us pick out the probability that no user is active in state two. With probability P1(2) we

have the occupancy distribution of state (1) plus a new user with service one that is either active or not.

And with probability P2(2) we have the occupancy distribution of state (0) plus a new user with service

two that is either active or not. Putting that together we obtain

Λ(0|2) = P1(2)Λ(0|1)(1 − ν1) + P2(2)λ(0|0)(1 − ν2). (28)

In the scheme this calculation is indicated by the arrows. A solid arrow means the probability that the new

call is active and the dashed arrow that the new call is passive. Let us consider another special case, the

probability Λ(2, 4) that 2 resources are occupied in state (4). This case is quite general since it composes

four ways to obtain this resource occupancy. The new user may either be of service one or two and it

may be either active or passive. The four arrows running into the circle labelled with Λ(2|4) indicate the

recursive computation of these four possibilities.

�(0|0)

�(0|1) �(1|1)

�(1|2) �(2|2)

�(3|3)�(2|3)�(1|3)�(0|3)

�(0|2)

0

1

2

3

Kaufman-Roberts State Space Occupancy Distribution in a Kaufman-Roberts State

�tPt(j)

(1-�t)Pt(j)

�(3|4)�(2|4)�(1|4)�(0|4)4 �(3|4)

�(0|0)

�(0|1) �(1|1)

�(1|2) �(2|2)

�(3|3)�(2|3)�(1|3)�(0|3)

�(0|2)

0

1

2

3

Kaufman-Roberts State Space Occupancy Distribution in a Kaufman-Roberts State

�tPt(j)

(1-�t)Pt(j)

�(3|4)�(2|4)�(1|4)�(0|4)4 �(3|4)

Figure 4: Recursive computation of the resource occupancy

This recursive computation of the resource occupancy distribution is exact if the product form solution

is applicable, i.e. if no local blocking occurs. With local blocking probabilities included the transition rate

is reduced and we have to modify the recursion.
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Let us start with state (0) and an empty system. In this state holds:

p̃(0) = 1,Λ(0|0) = 1,Λ(i|0) = 0 for i �= 0, and Bt(0) = βt(0) (29)

We initialize p̃(j) = 0 for j < 0. The unnormalized probabilities and local blocking probabilities for state

j are computed recursively. The unnormalized state probability p̃(j) follows from Eqn. (23) extended by

local blocking:

p̃(j) =
T∑

t=1

p̃(j − rt)(1 − Bt(j − rt))at
rt

j
(30)

This probability depends on p̃(j − rt) and Bt(j − rt) which are known for all states c with c < j. In order

to determine the local blocking probabilities Bt(j) the probability that state j is reached from state j − rt

is required:

Pt(j) =
p̃(j − rt)(1 − Bt(j − rt))at

rt
j

p̃(j)
(31)

The resource occupancy distribution is computed according to Eqn. (26) and the local blocking probabili-

ties Bt(j) are derived using the theorem of total probability:

Bt(j) =
j∑

c=0

Λ(c|j)βt(c). (32)

The iterative computation of unnormalized state probabilities and local blocking probabilities is done until

either the local blocking probabilities approach one or further states are unreachable due to hardware

restrictions. After determining all unnormalized state probabilities p̃(j) the steady state probabilities p(j)

follow by normalization:

p(j) =
p̃(j)∑C
c=0 p̃(j)

(33)

The total blocking probability for a service t is the sum of all state probabilities p(j) multiplied with the

local blocking probabilities Bt(j) for all reachable states:

Pblock(t) =
jmax∑
j=0

Bt(j)p(j) (34)

3 Numerical Results

All numerical results are calculated for a WCDMA system with a chip rate of 3.84 Mcps and a thermal

noise N0 = −174dBm. We consider bearer services with 12.2kbps, 64 kbps, and 144kbps and target-

Eb/N0 of 5dB, 4dB, and 3dB, respectively. The maximum load ηmax is set to 0.8.

3.1 Validation by Simulation

This section is dedicated to the validation of our results. In Section 2.2 we presented an exact analysis,

however, it is not applicable in realistic scenarios. Instead, we use a event-discrete simulation for the
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validation. In the simulation we use the same assumptions as in the approximation, i.e. the user activities

and the other-cell interferences are independently determined at every arrival event. We want to point

out that the intention of the simulation is not the verification of our assumptions but to demonstrate the

accuracy of the approximation.
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Figure 5: Different other-cell interference levels
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Figure 6: Scenario with three service classes

Fig. 5 shows blocking probabilities for a scenario with two service classes of 12.2kbps and 64kbps,

respectively. The traffic mix is set to 75% 12.2kbps 25% 64kbps. The connections are assumed to be

Always-ON, i.e. νt = 1. The solid lines represent the simulation results with 90% confidence intervals

and the dotted lines depict the approximated values. On the x-axis you find the offered own-cell load

which is defined as

offered own-cell load =
T∑

t=1

νtatωt. (35)

The influence of the other-cell interference is evident due to the fact that the curves for a mean other-cell

interference of 4 × 10−18mW are noticeably higher than for their counterparts with 2 × 10−18mW. The

figure also illustrates the accuracy of the modified Kaufman-Roberts algorithm even for a high other-cell

interference.
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Figure 7: Influence of activity on blocking probabilities

A scenario with three service classes is shown in Fig. 6. The service mix is 50% 12.2kbps, 25%
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64kbps, and 25% 144kbps. The mean other-cell interference is set to E [̂Iother] = 2 × 10−18mW with

a variation coefficient of 1. The activity factors for the three service classes are set to 0.45, 0.3 and 0.8,

respectively. The high requirements of the high-speed service class lead to increased blocking probabilities

in comparison to the other classes. With growing offered own-cell load the gap between the 144kbps

class and the 64kpbs increases faster than the gap between the 64kbps and the 12.2kbps service class.

This indicates that the high-speed services are more sensitive for higher cell loads than lower bit rate

services. The simulation and the analysis match well. This is remarkable since in this scenario we have

used parameters which are critical for the approximation: A high and considerably varying other-cell

interference, multiple services with different values for ωt, and low activities. The approximation is exact

for either no other-cell interference and Always-ON users or for a single service. The parameters chosen

for Fig. 6 are therefore a challenging scenario for our approximation.

Fig. 7 illustrates the impact of Bernoulli activity on blocking probabilities. Both scenarios are calculated

with equal loads but different activity factors per service. E [̂Iother] is set to 2 × 10−18mW with variation

coefficient 1. The scenario with 100% activity for both service classes yields lower blocking probabilities

than its counterpart with a 45% to 80% mix. This indicates that it is not sufficient to simply reduce the

Poisson arrival rate by the activity factors, since this approach corresponds to the Always-ON scenario.

3.2 Parameter Studies

Let us examine some interesting parameters and their influences on the system. Fig. 8 shows the plot of

two scenarios with two service classes, the first with activity factors 0.45 and 0.8 and the second with

both service classes Always-ON. All blocking probabilities shown in this figure are computed with an

offered own-cell load of 0.4 and an other-cell interference with E [̂Iother] = 2× 10−18mW and a variation

coefficient of 1. The varying parameter is the traffic mix between the two service classes, it ranges from

solely 12.2kbps to solely 64kbps. On the x-axis we have the share of the 12.2kbps service. Two effects

can be observed: First, the blocking probabilities decrease with an decreasing contingent of the higher bit

rate service. This holds true for both scenarios with and without activity. Second, as already observed

in Fig. 7, Bernoulli activity has a noticeable influence on the blocking probability if comparing scenarios

with equal loads.

In Fig. 9 the influence of the variation coefficient of the other-cell interference with otherwise equal

scenario parameters is illustrated. The total offered load, i.e. offered own-cell load plus mean other-cell

load E[ηother] is kept constantly at 0.6. On the x-axis the share of the offered own-cell load increase

until the other-cell load vanishes. The lowest curve considers deterministic other-cell load. The blocking

probabilities increase slightly with the own-cell load. With increasing variation coefficients forÎother the

results show a behavior reciprocal to the first curve: The blocking probabilities decrease with an increasing
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probabilities
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Figure 9: Influence of the variation coefficient of
the other-cell interference

contingent of own-cell load. The reason is that the part of the total load with higher variance also has a

higher influence on the blocking probabilities. It can be concluded that not only the quantity of the other-

cell interference but also the quality expressed by the standard deviation is an important factor in network

planning.

4 Conclusion

The admission control in UMTS networks accepts or blocks calls depending on the current interference

level which includes both own-cell and other-cell interference. We show that the blocking condition can be

expressed in terms of own-cell load and other-cell load. Assuming the other-cell interference as lognormal

random variable independent of the own-cell load allows us to calculate local blocking probabilities. The

term local blocking denotes the event that a new call is blocked in the instance of a certain own-cell load.

Local blocking probabilities are typical for WCDMA networks with soft blocking, i.e. without a hard limit

for the number of users in the system or the number of occupied resources. The shared resource which

corresponds to the cell load is stochastic. These local blocking probabilities prevent the application of

the product form solution so exactly determining the blocking probabilities requires the inversion of the

transition rate matrix which is numerically intractable.

As a solution we develop an algorithm based on the Kaufman-Roberts recursion which allows a time-

efficient approximation of the blocking probabilities. We validate our results by simulation and show that

the approximation yields accurate results even for large other-cell interferences and low user activities.

These are the especially interesting cases since without other cell activity and Always-ON users our anal-

ysis yields exact results. There are some promising extensions of our model for future research. It would

be interesting to combine the computation of blocking probabilities with the iterative calculation of the

first and second moment of the other-cell interference according to [12]. Adapting the computation of the

local blocking probabilities to the downlink would allow a similar analysis for the downlink cell capacity.
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