Machine Learning manuscript No.
(will be inserted by the editor)

Density-based Weighting for Imbalanced Regression

Michael Steininger - Konstantin Kobs -
Padraig Davidson : Anna Krause -
Andreas Hotho

Received: 22 November 2020 / Revised: 23 April 2021 / Accepted: 16 June 2021

Abstract In many real world settings, imbalanced data impedes model performance
of learning algorithms, like neural networks, mostly for rare cases. This is especially
problematic for tasks focusing on these rare occurrences. For example, when estimating
precipitation, extreme rainfall events are scarce but important considering their poten-
tial consequences. While there are numerous well studied solutions for classification
settings, most of them cannot be applied to regression easily. Of the few solutions for
regression tasks, barely any have explored cost-sensitive learning which is known to
have advantages compared to sampling-based methods in classification tasks.

In this work, we propose a sample weighting approach for imbalanced regression
datasets called DenseWeight and a cost-sensitive learning approach for neural network
regression with imbalanced data called DenseLoss based on our weighting scheme.
DenseWeight weights data points according to their target value rarities through kernel
density estimation (KDE). DenseLoss adjusts each data point’s influence on the loss
according to DenseWeight, giving rare data points more influence on model training
compared to common data points. We show on multiple differently distributed datasets
that Denseloss significantly improves model performance for rare data points through
its density-based weighting scheme. Additionally, we compare DenseLoss to the state-
of-the-art method SMOGN, finding that our method mostly yields better performance.
Our approach provides more control over model training as it enables us to actively
decide on the trade-off between focusing on common or rare cases through a single
hyperparameter, allowing the training of better models for rare data points.

Keywords Imbalanced regression - Cost-sensitive learning - Sample weighting -
Kernel-density estimation - Supervised learning.

This is a post-peer-review, pre-copyedit version of an article published in Machine Learn-
ing. The final authenticated version is available online at: https://dx.doi.org/10.1007/
$10994-021-06023-5

Chair of Computer Science X, University of Wiirzburg, Germany
E-mail: {steininger,kobs,davidson,anna.krause,hotho}@informatik.uni-wuerzburg.de

https://dx.doi.org/10.1007/s10994-021-06023-5
https://dx.doi.org/10.1007/s10994-021-06023-5

2 Steininger et al.

Kernel
Density
Estimation

®

XK MOOOKX K XX X X X

\/ (i)

Loss
Mo = momc 2300 SO X Weighting

(ii) ‘Weighting
Function

Fig. 1 Given the target values of all training examples, we (i) compute a kernel
density estimation (KDE) that approximates the target value distribution, (ii) calculate
a weighting function from the resulting probability density function, and (iii) weight
the loss for each data point in the training procedure

1 Introduction

Many machine learning algorithms, like neural networks, typically expect roughly uni-
form target distributions (Cui et al. Krawczyk [2016; Sun et al. [2009). In the case
of classification that means that there are similar numbers of examples per class. For
regression there should be a similar density of samples across the complete target value
range. However, many datasets exhibit skewed target distributions with target values
in certain ranges occurring less frequently than others. Consequently, models can be-
come biased, leading to better performance for common cases than for rare cases (Cui
et al. Krawczyk. This is particularly problematic for tasks where these rare
occurrences are of special interest. Examples include precipitation estimation, where
extreme rainfall is rare but can have dramatic consequences, or fraud detection, where
rare fraudulent events are supposed to be detected.

There are many solutions to this problem for classification tasks including resam-
pling strategies (Chawla et al. He et al. and cost-sensitive learning ap-
proaches (Cui et al. Huang et al. Wang et al. . However, these cannot
be applied easily to regression tasks because of the inherent differences between contin-
uous and discrete, nominal target values. Typical solutions to data imbalance require
a notion of rarity or importance for a data point in order to know which data points to
over- and undersample or which data points to weight more strongly. It is harder to de-
fine which values are rare for regression tasks in comparison to classification tasks, since
one cannot simply use class frequencies (Branco et al. . Only few works explore
methods improving model performance for rare cases in regression settings, mostly
proposing sampling-based approaches (Branco et al. Krawczyk Torgo et al.
. These can have disadvantages in comparison to cost-sensitive methods since the
creation of new data points via oversampling of existing data points may lead to over-
fitting as well as additional noise, while undersampling removes information (Cui et al.
Dong et al. [2017). The success of cost-sensitive learning for imbalanced classifi-

Density-based Weighting for Imbalanced Regression 3

cation tasks suggests that exploring this direction for imbalanced regression could also
lead to better methods in this domain (Krawczyk 2016).

In this paper, we propose a sample weighting approach for imbalanced regression
datasets called DenseWeight and, based on this, a cost-sensitive learning method for im-
balanced regression with neural networks called DenseLoss. Our approach is visualized
in Figure (i) We approximate the density function of the training target values using
KDE. (ii) The resulting density function forms the basis for calculating DenseWeight’s
weighting function. (iii) DenseLoss assigns each data point in the training set a weight
according to DenseWeight, increasing the influence of rare data points on the loss and
the gradients. We introduce a single, easily interpretable hyperparameter, which allows
us to configure to which extent we shift a model’s focus towards rare regions of the
target variable’s distribution.

Our contributions are as follows: (i) We propose DenseWeight, a sample weighting
approach for regression with imbalanced data. (ii) We propose DenseLoss, a cost-sen-
sitive learning approach based on DenseWeight for neural network regression models
with imbalanced data. (iii) We analyze DenseLoss’s influence on performance for com-
mon and rare data points using synthetic data. (iv) We compare DenseLoss to the
state-of-the-art imbalanced regression method SMOGN, finding that our method typ-
ically provides better performance. (v) We apply DenseLoss to the heavily imbalanced
real world problem of downscaling precipitation, showing that it is able to significantly
improve model performance in practice.

2 Related Work

Imbalanced data can in principle be tackled with data-level methods, algorithm-level
methods, or a combination of both (Krawczyk 2016)). Data-level methods typically over-
and/or undersample subsets of a dataset to balance the distribution. Algorithm-level
methods modify existing learning algorithms to better cope with imbalanced data.
There are many solutions to data imbalance for classification tasks. Data-level
methods for classification often create new samples for rare classes (oversampling)
and/or remove samples of common classes (undersampling). Notable examples include
ADASYN (He et al. 2008) and SMOTE (Chawla et al. 2002). Recently, KDE was used
to estimate the feature distribution of minority classes (Kamalov 2020]). New minority
class samples are generated using the estimated feature distribution. In contrast to
Kamalov (i) we use KDE to measure rarity on a continuous target domain and not
to model features, (ii) we do not generate samples, and (iii) we devise our method for
regression. Algorithm-level methods for classification typically involve cost-sensitive
learning, where the loss of samples with rare classes is emphasized in the overall
loss (Cui et al. 2019). Weighting is often based on the inverse class frequency as a
measure of rarity (Huang et al. 2016, Wang et al. |2017). We propose a conceptually
similar method, but for regression instead of classification. The continuous target vari-
able of regression tasks makes it harder to determine a single sample’s rarity, preventing
simple adaptations of existing cost-sensitive learning approaches (Branco et al. [2017)).
While there is work on cost-sensitive learning for regression models, these ap-
proaches assign different costs to over- and underestimation respectively, regardless
of a data point’s rarity (Zhao et al. 2011} Hernandez-Orallo |2013). However, we are
interested in exploring how cost-sensitive learning can be used to solve the problem
of imbalanced datasets for regression tasks, for which only few works exist. There is

4 Steininger et al.

0.06

0.04

(y)

Y
0.02

0.00

Fig. 2 SMoTER and SMOGN’s relevance function ¢ for pareto-distributed data

a cost-sensitive post-processing technique called probabilistic reframing which adjusts
estimates of previously built models to different contexts (Hernandez-Orallo [2014). It
would be feasible to apply this to imbalanced domains but it was not evaluated for
this yet (Branco et al. [2016b). A cost-sensitive method for obtaining regression tree
ensembles biased according to a utility function is ubaRules (Ribeiro 2011 which is
mostly used to estimate extreme values as accurately as possible. It is specific to re-
gression tree ensembles while our proposal is designed for — but not restricted to —
the use with neural networks. A metric that takes both rare, extreme samples and com-
mon samples into account for evaluating a model’s ability to predict extreme values is
SERA (Ribeiro and Moniz [2020). SERA can be considered a loss function that is used
for model selection and hyperparameter optimization but it is not incorporated in a
learning method like DenseLoss.

Despite the lack of cost-sensitive approaches, there are sampling-based data-level
methods which are applied during data pre-processing. One approach is SMOTE for re-
gression (SMOTER) (Torgo et al.|2013)), which is based on the original SMOTE method
for classification (Chawla et al. |2002). It combines undersampling of common data
points and oversampling of rare cases, in order to create a more balanced distribution.
The authors adjust SMOTE to work for regression domains by binning data points
into relevant and irrelevant partitions using a relevance threshold ¢ and a relevance
function ¢. They use an automatic method for obtaining ¢ based on box plot statistics
through which specific control points on the target domain are obtained. Each control
point is a tuple (y, ¢(y), ' (v)), where ¢'(y) — the derivative of relevance ¢(y) — is
always set to 0, since control points are assumed to be local extrema of relevance. The
relevance function ¢ is then defined with piecewise cubic Hermite interpolation through
these control points (Ribeiro [2011]). Figure [2] shows a resulting ¢ for data following a
pareto distribution. This automatic method for obtaining ¢ assumes that extreme val-
ues are rare, which is in contrast to our work, where rare values are automatically
detected without such assumptions. Data points marked as relevant (¢(y) > tg) are
oversampled, creating new synthetic cases via interpolation of features and target val-
ues between two relevant data points. Irrelevant data points are undersampled.

The SMOGN (Branco et al. 2017)) algorithm builds on SMOTER and combines it
with oversampling via Gaussian noise. For the latter, normally distributed noise is
added to the features and the target value of rare data points, creating additional,
slightly altered replicas of existing samples (Branco et al. 2016a)). Rare data points are
identified using the same method for obtaining a relevance function ¢ used by SMOTER.
SMOGN iterates over all rare samples and selects between SMOTER’s interpolation
based oversampling and Gaussian noise based oversampling depending on the distance

Density-based Weighting for Imbalanced Regression 5

to the k-nearest neighbors. For small distances, SMOTER’s interpolation is applied,
since interpolation is deemed more reliable for close samples. Other rare data points are
oversampled with Gaussian noise. Common data points are randomly undersampled.
The authors report improvements compared to SMOTER (Branco et al.|[2017)). Because
of this and a lack of other methods, SMOGN can be considered the state-of-the-art.

In contrast to these data-level methods, we propose an algorithm-level, cost-sensitive
method for imbalanced regression called DenseLoss using our density-based weighting
scheme DenseWeight. The concept of weighting data points based on the target value
distribution is already present in prior work, e.g. in the automatic method for obtain-
ing relevance functions used by SMOGN, or in SERA. However, DenseWeight does not
make assumptions about which cases are rare since it determines relative rarity with
a density function. Contrary to SMOTER and SMOGN, DenseLoss does not explicitly
change the dataset, e.g. by creating new samples.

3 Method

In this section we introduce DenseWeight, our proposed sample weighting approach
for imbalanced datasets in regression tasks, and DenselLoss, our cost-sensitive learning
approach for imbalanced regression problems based on DenseWeight.

3.1 DenseWeight

Our goal is to weight individual data points based on the rarity of their target values.
Thus, we want to calculate a weight for each sample inversely proportional to the
probability of the target value’s occurrence. This is similar to the relevance functions
used by the resampling approach SMOGN but we base our weighting directly on the
target distribution’s density function instead of box plot statistics (Branco et al. 2017)).
We call our density-based weighting scheme DenseWeight. We design its weighting
function fiu, so that the degree of weighting can be controlled by a hyperparameter
a € [0, 00) with the following properties.

P.1 Samples with more common target values get smaller weights than rarer samples.

P.2 f, yields uniform weights for o = 0, while larger o values further emphasize the
weighting scheme. This provides intuition for the effects of a.

P.3 No data points are weighted negatively, as models would try to maximize the dif-
ference between estimate and true value for these data points during training.

P.4 No weight should be 0 to avoid models ignoring parts of the dataset.

P.5 The mean weight over all data points is 1. This eases applicability for model opti-
mization with gradient descent as it avoids influence on learning rates.

These weights can theoretically be applied to any type of machine learning model that
allows for sample weighting to allow fitting models better suited for the estimation of
rare cases. We will use them for our cost-sensitive imbalanced regression approach for
neural networks DenseLoss in this work. Next, we define how the rarity of a data point
is measured, before designing the weighting function f,, with these properties.

6 Steininger et al.

3.1.1 Measure of Rarity

In order to weight data points based on the rarity of their target values, we need
a measure of rarity for f,,. To this end we want to determine the target variable’s
density function p. Values of density functions can be interpreted as relative measures
of density, allowing the distinction between rare and common value ranges (Grinstead
and Snell [2012)). To obtain density function p for a dataset with N data points and
target values Y = {y1,y2,...,yn}, we approximate it with KDE, which is a non-
parametric approach to estimating a density function (Silverman [1986):

o) = -3 (L) (1)
Nh & h

with kernel function K and bandwidth h. Literature shows that the choice of kernel
function is rather unimportant for KDE with only small differences between common
kernel functions (Chen |2017)), which is why we use Gaussian kernels. For bandwidth
selection, we found that, in practice, the automatic bandwidth selection method Silver-
man’s rule (Silverman |1986) produces density functions which follow the distributions
well for the datasets used in this work. KDE allows calculating a density value per data
point. Since it does not affect relative density information, we can normalize all data
points’ density values in the training set to a range between 0 and 1:

V() = p(y) — min(p(Y)) @)
maz(p(Y)) — min(p(Y))’
where p(Y) is the element-wise application of p to Y.

This normalized density function p’ € [0, 1] provides intuitively interpretable values.
For example, the data point in the most densely populated part of Y is assigned a value
of 1, while the data point in the most sparsely populated part of Y is assigned a value
of 0. Note that this normalization does not work for completely uniform data but there
is no reason to apply DenseWeight with uniformly distributed data anyways.

3.1.2 Weighting Function

In this section, we introduce DenseWeight’s final weighting function f,, in a step wise
manner. To this end, we use the normalized density function p’, hyperparameter «, and
a small, positive, real-valued constant e. Initially, we define a basic weighting function:

folay) =1—ap'(y). (3)

This function already satisfies properties and since —p’ yields larger values
for rare data points compared to more common data points and « scales p’, control-
ling the strength of density-based weighting. Setting o = 0 has the intuitive effect of
disabling density-based weighting, while a = 1 leads to the most common data point’s
weight reaching 0 in this basic weighting function. Accordingly, all weights are positive
for a < 1, while a > 1 leads to negative weights for the most common data points.
The defined behavior of the o values 0 and 1 provides intuition for the choice of sen-
sible values. However, there are still desired properties which f;, does not satisfy. For
example, we want to avoid negative and 0 weights as described in properties and
To this end, we clip f}, at the small, positive, real-valued constant e:

Density-based Weighting for Imbalanced Regression 7

. — fu(00,9)
4 u" == fuw(0.5,y) g -
N — fu(oy) S
s N e fely) Sy
\ P (y) i
4N i
“‘s ‘. /.. 4——__
14 N\s\ - 7’_4:—”
'\.—~___’ <4
N,
01— . — .
—20 0 20 40 60
Y

Fig. 3 DenseWeight for data sampled from a Gaussian distribution. With a = 0 each
sample’s weight is 1. Higher « stretches the function, emphasizing density differences.
For a > 1 (neglecting €) the function is partly clipped to avoid negative weights

fula,y) = maz(l — ap'(y),€) . (4)

Function f;, satisfies all desired properties except for Using it for weighting a
cost-sensitive model optimization approach based on gradient descent like Denseloss
would influence the learning rate since « is scaling all gradients without any normal-
ization. Changing « would also require a different learning rate if the magnitude of
model parameter changes is to stay consistent. Finding a sensible learning rate would
be tedious. Dividing f, by its mean value over all data points of the training set cor-
rects this. The mean weight becomes 1, preventing a change in the average gradients
magnitude. This leads us to DenseWeight’s weighting function fu:

o) = w(a,y) _ maz(l — ap'(y), €) ' 5
fulew) NI feny) & Y (maz(1 - ap! (i),) ©)

Figure [3] visualizes DenseWeight for a Gaussian distributed target variable. With
increasing «, weight differences between common and rare data points are emphasized
more strongly. Setting a = 1 yields a weighting function that barely reaches € for the
most common data points. To push more of the common data points towards a weight
of €, a can be increased beyond 1.

The most suitable « value for a specific task can be found by conducting a hyper-
parameter study. DenseLoss’s « allows for easy adjustment of the trade-off between
focusing on common or rare parts of a dataset. Thus, there needs to be a definition (at
least implicitly) for the meaning of performance regarding the task at hand, making it
impossible to give a general rule for an optimal a.

3.2 DenseLoss

In this work we focus on neural networks due to their broad applicability to both
simple and complex regression problems through the use of either relatively small

8 Steininger et al.

multilayer perceptrons (MLPs) or large deep learning neural networks, respectively.
Neural networks are typically optimized with gradient descent optimization algorithms
that, given model estimates ¥ = {91,92,.-.,9YN}, alm to minimize a metric M that
is incorporated into a loss function L for which we can apply sample weighting. When
combining DenseWeight and sample weighting for loss functions we obtain a cost-
sensitive approach for regression with imbalanced datasets, which we call DenseLoss:

N
LpenseLoss (0() = % Zl fw (aa yi) ! M(:&z’ yZ) . (6)

i=
Weighting the loss per sample with DenseWeight affects the gradients’ magnitude
calculated based on each sample. Rarer samples yield larger gradients than more com-
mon samples even when the model’s estimates are equally good according to the chosen
metric. Thus, the gradients focus more on achieving best possible estimates for rare
samples than for common samples. When updating model parameters with these gra-
dients, this leads to models better suited for estimating rare samples. Similarly to
cost-sensitive imbalanced classification methods weighting samples according to the
inverse class frequency (Cui et al.|2019), DenseLoss is also cost-sensitive as it adapts
the cost for rare samples in comparison to common samples according to the weights
assigned by DenseWeight. In contrast to SMOGN, the state-of-the-art method for im-
balanced regression, our approach works at the algorithm-level instead of the data-level.
Weighting a loss function with DenseWeight is a very flexible approach in principle as
it allows for optimization using any gradient descent optimization algorithm and any
metric. Models trained with DenseLoss are expected to typically perform better for
rare cases compared to models trained with uniform sample weights, as we show next.

4 Experiments

We evaluate DenseWeight and Denseloss with three experiments: a case study on
synthetic data, a comparison to the state-of-the-art, and an application to a real world
task. First, we examine with synthetic datasets how DenseLoss behaves for different a
values and different distribution characteristics, validating that DenseLoss is working as
designed. Second, we compare DenselLoss to the state-of-the-art imbalanced regression
method SMOGN, showing that our algorithm-level method can typically provide better
performance for rare data points than SMOGN’s data-level approach. Finally, we apply
DenseLoss to the real world task statistical downscaling of precipitation, proving that
it can also work for larger datasets and more complex neural network architectures.
For all experiments, we use the library KDEpy’s convolution-based KDE imple-
mentation FFTKDE. It provides fast density estimation that can, however, only be
evaluated on an equidistant grid (Odland 2019). Thus, for each training dataset we
span a grid over the target range and assign each data point the density of the closest
grid point. We use an equidistant grid with 4096 points, which is 4 times KDEpy’s
default resolution, to avoid potential negative effects on our method due to low KDE
accuracy. In general, the quality of the resulting density function with respect to the
real target distribution can be limited by low quality training data with noisy outliers.
While we did not encounter such problems in this work, careful data cleaning and tun-
ing of the KDE may improve this for such datasets. To provide a small, positive value to
DenseLoss’s clipping constant € we set it to 107 for all experiments. When we report

Density-based Weighting for Imbalanced Regression 9

0.025 0.025

0.020 0.020

0015 0015
= =

= 0.010 = 0.010
0.005 0.005

0.000 0.000

y y
(a) normal (b) dnormal
0.06 0.06
S 00 S 001
= &
0.02 0.02 1
0.00 y T T 0.00 -
20 0 20 40 60 80 20 0 20 40 60 80
Y Y
(c) pareto (d) rpareto

Fig. 4 Distribution of the target variable for each synthetic dataset

significantly different results for the experiments, the statistical significance is calcu-
lated for the metrics on test datasets with the Wilcoxon signed-rank test (Wilcoxon
1945) and a significance level of 0.05. Our experiments’ code and data is availableﬂ

4.1 Case Study with Synthetic Data

In this case study, we aim to validate the expectation that models trained with DenseLoss
achieve improved performance in underrepresented parts of the dataset compared to
a regular training procedure. To this end, we use four synthetic datasets with varying
characteristics: two heavy-tailed datasets, following a pareto (pareto) and a reversed
pareto distribution (rpareto), respectively. Furthermore, we use a Gaussian dataset
(normal) and a dataset built from two Gaussians with a sparse middle area (dnormal).
Figure[d]shows their target distributions. We train models with DenseLoss and different
« values to gain insight into the practical effects of different degrees of DenseWeight.

4.1.1 Dataset Creation

We use an MLP as a random function to generate synthetic datasets. This guarantees
that the function can be learned again by an MLP in theory. Our network’s param-
eters are initialized with a standard Gaussian distribution. This network is provided
with 200000 sets of 10 features each. The features are also drawn from a standard
Gaussian distribution. The network consists of 3 hidden layers with 10 neurons each
and ReLU (Nair and Hinton activation. The final hidden layer is connected to a

L https://github.com /SteiMi/density- based- weighting- for-imbalanced-regression

https://github.com/SteiMi/density-based-weighting-for-imbalanced-regression

10 Steininger et al.

single neuron with linear activation to obtain target values for a regression task. From
the resulting 200 000 data points 10000 were sampled in such a way that there are
uniformly distributed target values. This uniform dataset’s target values range from
—32.13 to 76.42. Then, for each dataset a probability density function is defined cor-
responding to the desired target distribution. 1000 data points are sampled from the
uniform dataset weighted by the samples’ desired densities, creating the datasets pareto,
rpareto, normal, and dnormal. Figure [4] visualizes their target variable distributions.
Each dataset is split randomly in a training (60 %), validation (20 %), and test
(20 %) set. The resulting splits are inspected to confirm that their target variables are
similarly distributed. Otherwise it would be possible that sparsely sampled ranges in
the target variable are not represented in a split through unfortunate random sampling.

4.1.2 Experimental Setup

To illustrate how DenselLoss affects model performance for underrepresented parts of
datasets based on our weighting scheme DenseWeight, we conduct a parameter study
to examine the effects of different « values. Therefore, we train models with a values
ranging from 0.0 to 2.0 with steps of 0.1. To strengthen confidence in the results of
this experiment we train 20 model instances per o which are used for testing statistical
significance with the Wilcoxon signed-rank test and a significance level of 0.05.

The MLP used is structurally equal to the data generator network. Thus, this model
also consists of 3 hidden layers with 10 neurons each and ReLU activation as well as
one neuron with linear activation for the output layer. Instead of initializing parameters
from a standard Gaussian distribution, we use Kaiming Uniform initialization (He et
al. |2015)). DenseLoss is the loss function used in conjunction with the metric mean
squared error (MSE). The model is trained with Adam optimization (Kingma and Ba
2014)), a learning rate of 107, and a weight decay coefficient of 10™%. Training is run
for at most 1000 epochs, but it is stopped early if the validation loss is not improving
for 10 epochs in a row. This improves generalization performance (Prechelt [1998]).

4.1.3 Results

To evaluate model performance for separate parts of the target domain, we bin the test
data points based on their target value. Each bin spans 20 % of the target variable’s
range in the test set. We rank these bins per dataset by the number of data points. The
bin with the fewest (most) samples has bin rank 1 (5) and is called the least (most)
common bin. This allows performance comparisons between similarly rare bins over all
datasets. We calculate the root mean squared error (RMSE) and mean absolute error
(MAE) for each individual model instance of the 20 instances per tested configuration.
Our MLP without DenseLoss achieves on average over the 20 runs RMSEs (MAEs)
between 3.53 (2.70) and 6.75 (5.47) for the most common bins, i.e. bin rank 5, and
between 6.68 (6.26) and 27.10 (26.74) for the rarest bins, i.e. bin rank 1, across the
synthetic datasets. We find that DenseLoss with, for example, « = 1.0 improves av-
erage RMSE (MAE) for the rarest bins by between 1.21 (1.48) and 7.02 (7.00) while
increasing it for the most common bins by between 1.12 (0.90) and 1.68 (1.49).
Figure[§] visualizes the mean RMSE of models trained with different « values over all
synthetic datasets for different bin ranks. DenseLoss typically improves performance
in sparsely sampled bins (bin ranks 1 to 3) with a suitable o value. As expected,
DenseLoss tends to reduce performance for bins with many samples (bin ranks 4 and

Density-based Weighting for Imbalanced Regression 11

normal dnormal
VI g?" gé“t; PRatris 30
* Bin Rank 3 -7 25
12 4 == Bin Rank 4 /[
‘Eﬁ == Bin Rank 5 20 4
= 10
~ 15 A
8 - N
10 A
6 m====—== Sera” ™~ 5
pareto rpareto
30 25
&2 - 207
B 204 o,
2 : 15
o=
Teaaatel, eszl T L LS ==
10 ==="~=~== TN 10 1 bl P -
s | | === R = v ..""'- >
————————— - 5o trrel,eteaen FEETITEL LA
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
o «

Fig. 5 Mean RMSE per a and bin rank over the synthetic datasets. Bins are ranked
in each test set by sample size. Bins with rank 1 (5) contain the fewest (most) samples

5). We find that most a values greater than 0 lead to improvements in rare bins. For
example, for pareto all tested configurations with a > 0.8 yielded improvements in the
rarest bin and the same is true for all runs with a > 0.2 for dnormal. For rpareto all
runs with DenseLoss enabled (a > 0.0) improved the rarest bin except for « = 1.5 and
a = 1.6, where performance dropped slightly. normal’s rarest bin is improved with
0.1 < a < 1.2, which is discussed in the next paragraph. As described at the beginning
of Section [d] we conduct statistical significance tests to strengthen confidence in our
results. When considering a@ = 1.0, which seems to provide good performance for rare
data points across all datasets, we find that the performance for the rarest bin has
improved significantly compared to not using DenseLoss (a = 0.0) for each dataset.
Bin rank 2 is improved significantly with a = 1.0 for normal and rpareto, while bin
rank 3 is significantly better for normal and pareto. We also see with a > 1.0 that
the performance for the most common bin deteriorates considerably for normal and
dnormal, as the weight of more and more of these data points is pushed towards e.
This effect is also noticeable in the other bin ranks albeit with reduced strength the
rarer the bins get. Interestingly, this performance degradation seems less pronounced
for both pareto datasets. We find very similar results with regards to the metric MAE.

Figure [§] shows detailed results for datasets normal and pareto. Bins are identified
by bin rank and ordered to correspond to the dataset’s distribution plot at the top,
thus visualizing RMSE and density from the lowest (left-most bin) to the highest target
values (right-most bin). Setting a to around 1 provides improved performance for rare
target ranges while only slightly reducing performance for common target ranges. For
example, with @ = 1.0 in pareto we observe an increase in RMSE of 1.68 in the most
common bin with rank 5 and a drop in RMSE of 7.02 in the least common bin with rank
1. In general, error for samples in rare target ranges tends to decrease with increasing

12 Steininger et al.

normal pareto
0.04 0.04 -
=00.02 4 0.02 A
0.00 - 0.00 -

m 20 20 4
1)
=
10 A 10
T T T T T
2 4 5 3 1
Bin Rank Bin Rank
— 00 =—: 04 =—— 08 —- 12 1.6 2.0
== 02 trrr 0.6 == 1.0 cee- 1.4 1.8

Fig. 6 Mean RMSE per test bin over 20 runs for datasets normal (left) and pareto
(right). Bar charts show the density per bin in the test set. Line plots visualize the
mean RMSE per test bin for the « values shown in the box at the figure’s bottom

—_— a=0.0
020 =—— o =1.0
a=20

SMOGN

0.15

0.10 - k
7Py
N \
0.05 - \W

P (y)

Normalized MAE

Fig. 7 Normalized MAE for test samples from all synthetic datasets per normalized
density. Graph is smoothed via moving mean (window size 30) to ease interpretability

« while performance in common target ranges mostly deteriorates. For normal’s rarest
bin with rank 1 too large o values (o > 1.4) also show performance degradation. We
hypothesize that this can occur when the target range in the training set has very few
data points and the neighboring, more common data points are assigned weights close
to 0. In this case the model seems to struggle to learn a general function for the higher
target ranges, because of the effectively small number of samples there.

Given the continuous nature of regression datasets it is also interesting to regard the
performance over the datasets’ target domains. To account for different distributions

Density-based Weighting for Imbalanced Regression 13

among the datasets for this evaluation we calculate the normalized density per test data
point’s target value (as defined in Equation) through KDE (same parameters as for
DenseWeight’s KDE) on the target variable of its respective test dataset. In contrast
to before, we do not use this normalized density to weight samples or train models but
instead use it as a dataset-independent metric for each sample’s rarity within its test
dataset. This rarity thus provides us with a dataset-independent proxy of the target
variable domains. It is independent from the rarity used during model training and
does not influence the estimates for the test samples. Also, we calculate the MAE over
the 20 runs for each test data point of each dataset. To enable a continuous evaluation
over all datasets we normalize the MAE via division by the difference between the
maximum and the minimum value of its respective test dataset’s target variable. The
normalized MAE in conjunction with the normalized densities allow us to plot Figure[7]
which visualizes the normalized MAE depending on the data point rarity across all
datasets for regular training (o = 0.0), DenseLoss (¢ = 1.0 and a = 2.0), and also
the state-of-the-art imbalanced regression method SMOGN. To account for the high
variability and to improve interpretability we smoothed the plot by applying a moving
mean with a windows size of 30 data points over the 800 total test data points. We
find that DenseLoss with both & = 1.0 and o = 2.0 typically reduces error for very
rare samples (~ p’(y) < 0.15). Performance with oo = 2.0 deteriorates considerably for
more common data points (~ p’(y) > 0.4) while performance of a = 1.0 remains close
to o = 0.0 up until around p(y) > 0.75 where a gap emerges.

Wihile this experiment mainly analyzes DenseLoss in a controlled manner we also
applied SMOGN to our synthetic datasets, finding mostly better performance for
a = 1.0 than SMOGN, when applying SMOGN as described in Section [£:2] Rare parts
in pareto and rpareto were identified automatically; rare parts in normal and dnormal
were identified manually, since the automatic method wrongly deemed all samples rele-
vant. For normal and dnormal we used the control points (—10, 1, 0), (20, 0,0), (50, 1,0)
and (0,0,0), (20, 1,0), (50,0,0), respectively. Resulting relevance functions are visual-
ized in the Appendix. Since SMOGN’s automatic method for obtaining ¢ only works
for datasets where rare values are also extreme, it is not suited for dnormal. With our
manual control points it is still not ideal as it incorrectly deems low target values as
relevant, but it is substantially better than considering all data points relevant. nor-
mal’s manual ¢ shows no such issues. When considering binned evaluation we find that
DenseLoss with a = 1.0 performs significantly better than SMOGN for the rarest bin
on all datasets except pareto.

This experiment confirms that DenseLoss allows shifting a model’s focus to rarer
cases away from the cases it would have focused on with regular training. Inspecting
the model performance across the target range with varying o values enables an in-
formed choice for the trade-off between performance in common and rare cases. Thus,
DenseLoss provides additional control over model training, allowing to fit models with
better performance for rare data points.

4.2 Comparison with State-of-the-Art

SMOGN can currently be considered the state-of-the-art method for imbalanced re-
gression, as it has shown to be better than the other available method SMOTER (Branco
et al.|2017). SMOGN’s authors present 20 imbalanced datasets in their paper. We ap-
ply both SMOGN and DenseLoss to those datasets and compare model performances.

14 Steininger et al.

Neural networks trained without applying any method for imbalanced data are used as
a baseline. To this end we apply both methods and the baseline to the 20 imbalanced
datasets from SMOGN’s test section (Branco et al. [2017). We obtain the data from
their repositoryﬂ See the Appendix for an overview. We also compared DenseLoss with
SMOGN using DenseWeight for its relevance function in the Appendix, finding similar
results as presented in the following, where we compare DenseLoss to SMOGN using
its default relevance function.

4.2.1 Experimental Setup

As with the synthetic data, we randomly split each dataset in a training (60 %), a
validation (20 %), and a test (20 %) set. Considering the small size of some of the
datasets, we inspect the splits to confirm that they are similarly distributed and redo
the random split if the distributions are too different.

Models trained with DenseLoss use « = 1.0. For SMOGN we use the python
package smogn (Kunz[2019)). Since SMOGN’s authors also aim to increase performance
for rare data points on these datasets we apply the same hyperparameters as they did
in their paper: Rare target values are determined by their automatic method (Ribeiro
2011) as described in Section [2| Just as SMOGN’s authors, we consider target values
rare where the relevance function yields more than 0.8. SMOGN oversamples data
points with rare target values to obtain a more balanced distribution. For oversampling
SMOGN is set to consider the 5 nearest neighbor samples. The amount of Gaussian
noise added for oversampling (i.e. perturbation) is set to 0.01. We use the same MLP
architecture and hyperparameters as described in Section Additionally, we repeat
the experiment with the same hyperparameters but different MLP topologies, namely
a deeper model (4 hidden layers with 10 neurons each), a shallower model (2 hidden
layers with 10 neurons each), a wider model (3 hidden layers with 20 neurons each),
and a narrower model (3 hidden layers with 5 neurons each), to confirm that our
results are not due to a specific network architecture. We find very similar results for
all architectures and therefore only report detailed results for one topology (3 hidden
layers with 10 neurons each) for brevity. Models are trained and evaluated 20 times
per dataset and method to test statistical significance with the Wilcoxon signed-rank
test and a significance level of 0.05.

4.2.2 Results

As in Section [£I] we split each test dataset into 5 equidistant bins and rank the bins
by the number of samples. Metrics RMSE and MAE are calculated for each bin.
Figure [§] visualizes the number of dataset wins of DenseLoss, SMOGN, and the
baseline (None) per bin rank over the 20 datasets for the metric RMSE. Due to some
datasets’ small sizes there are some bins without data points in the test set. This results
in the bars for rank 1 and 2 not containing 20 wins, since no winner can be found