
Query Translation between AQL and CQL

Georg Fettea,b, Mathias Kasparb, Leon Limana, Maximilian Ertlb, Jonathan Krebsa, Georg Dietricha,

Stefan Störkb, Frank Puppea

a Chair of Computer Science 6, University of Würzburg, Würzburg, Germany,
b Comprehensive Heart Failure Center, University Hospital of Würzburg, Würzburg, Germany

Abstract

Secondary use of electronic health records using data

aggregation systems (DAS) with standardized access

interfaces (e.g. openEHR, i2b2, FHIR) have become an

attractive approach to support clinical research. In order to

increase the volume of underlying patient data, multiple DASs

at different institutions can be connected to research

networks. Two obstacles to connect a DAS to such a network

are the syntactical differences between the involved DAS

query interfaces and differences in the data models the DASs

operate on. The current work presents an approach to tackle

both problems by translating queries from a DAS using

openEHR’s query language AQL (Archetype Query

Language) into queries using the query language CQL

(Clinical Quality Language) and vice versa. For the subset of

queries which are expressible in both query languages the

presented approach is well feasible.

Keywords:

Query Rewriting, Data Warehousing, Information Systems

Introduction

The secondary use of electronic health records (EHR) has

become an important field in medical informatics [1]. Routine

clinical data is reused for various scientific purposes, like

prospective estimation of study cohort sizes or support of

study cohort acquisition. When this routine data is scattered in

various data sinks in various heterogeneous data formats, it is

difficult to access. In order to improve access to the EHR,

solutions have been developed to aggregate the routine data

and to make it accessible via a standardized interface. Two

paradigms are possible when constructing such a data

aggregation system (DAS): The first method is to leave the

data in its original place and to provide a standardized access

by aggregating the requested data chunks on the fly using

appropriate extraction transformation load (ETL) pipelines.

SMART on FHIR [2] projects for example realize this

paradigm by aggregating requested FHIR resources on the fly.

This approach works well for patient centered access (i.e.

queries operating on the data of a single patient). However, for

population centered access (i.e. queries operating on data of

all patients) this approach lacks indices covering the involved

data sources. Without such indices, query speed performance

does not scale related to the amount of queried patient data.

On large volumes of EHR data this would heavily afflict the

usability of FHIR related query languages like FHIR-REST-

API1 or CQL (Clinical Quality Language)2. The second

method to provide access to aggregated routine data is to

1 https://www.hl7.org/fhir/search.html
2 https://cql.hl7.org

provide an additional data sink with a generic data model, into

which the heterogeneous routine data is persistently

transferred via an ETL pipeline. The data sink is supplied with

appropriate indices, so it can be efficiently queried via a

standardized query language. Examples of this architecture are

i2b2 [3], openEHR [4] or OMOP [5]. HAPI3 and VONK4 are

data sink servers that do not only use FHIR as an access

interface in patient centered mode, but they also use it as the

data model in which the EHR data is stored, so it can be

queried in population centered mode using query languages

like FHIR-REST-API or CQL.

Clinical Research Networks

In order to increase the volume of underlying patient data for

larger and thus more expressive query results, DASs at

different institutions can be connected to clinical research

networks. Examples for such networks are PCORnet, the

OHDSI research network or EHR4CR. In a DAS network a

query is distributed to connected nodes, where it is

independently evaluated. Each node’s results are returned and

combined to an aggregated result. Systems like SHRINE [6]

for i2b2 or SNOW [7] for openEHR perform the query

distribution and result aggregation automatically. Each

network, however, only allows DASs having the same query

language to be part of the network. If a DAS with a different

query language is intended to be integrated into the network,

the data from that DAS has to be transferred (like in [8]) into a

new dedicated DAS supporting the networks query language.

However, parallel support of multiple DASs containing the

same redundant data at one institution creates an overhead in

support and hardware.

An alternative approach is to translate queries of an

incompatible DAS into the query language required by the

DAS network. The current work examines the feasibility of

translating queries formulated in the query language CQL into

AQL (Archetype Query Language, the query language of

openEHR) and vice versa. To accomplish this task, the query

is first translated into an intermediate query graph model, then

potentially necessary graph transformation are applied on the

query graph and, finally, the graph is translated into the

desired target query language.

Methods

Query Languages

Before going into detail about the translation process, the two

languages shall be briefly introduced:

3 http://hapifhir.io
4 https://fire.ly/vonk/vonk-fhir-server

CQL is a functional query language. A CQL script is defined

as a so called library in which, besides the actual queries, also

meta information related to the queries can be defined. CQL is

independent of a concrete data model, as the model to be used

is explicitly defined in each CQL library. The CQL data

model elements can be composed of the following data types:

primitives (Booleans, Strings, numbers and timestamps),

clinical codes, quantities, intervals, lists and structured types.

Structured data objects, which can again contain other

structured data objects, can be accessed with a path syntax

(e.g. patient.contact[0].name.family). Besides the data model,

a CQL library can define its search context, which is either

Patient or Population centered. The main functional part in a

CQL library are the statements. Each statement can be seen as

an individual query. Usually a statement defines which data

sources the query is operating on (e.g. [Patient] A or

[Observation] B), how the elements of the queried sources are

constrained (e.g. B.valueString = ‘x’), how the various data

sources have to be related to each other (e.g. [Patient] A with

[Observation] B such that B.subject = A) and which elements

of potential matches have to be returned as results (e.g. Return

Tuple {id:A.identifier, B.valueString}). CQL provides a rich

repertoire of operators (e.g. comparison, logical, arithmetic,

list access, aggregation) to perform calculations on the data

model.

OpenEHR’s query language AQL is SQL-inspired and as well

a functional language. It operates on a data model that is

defined by the openEHR data modeling language ADL.

OpenEHR’s root data model elements are called archetypes.

An archetype can be composed of the following data element

types: primitives (Booleans, Strings, numbers and

timestamps), other archetypes and generic container structures

(e.g. lists). Structured data objects are accessed via a path

syntax. An AQL query mainly consists of three parts: The

FROM part defines which archetypes are queried and how

these archetypes are related to each other concerning

meronymity relations (e.g. EHR A contains Observation B).

The WHERE part constrains the archetype elements (e.g.

B/value > 1). The SELECT part defines which elements have

to be returned in the results (e.g. select A/ehr_id, B/value).

Compared to CQL, AQL provides a smaller set of operators

(comparison, logical, matches, exists). For the sake of brevity

archetype names in the following chapters are shortened (e.g.

openEHR-EHR-OBSERVATION.LabResult.v1 →

Observation[LabResult]).

Currently, the CQL translation has the following constraints:

1. The CQL queries may only contain a single statement and

2. The CQL queries are defined in the context Population. If a

CQL query with context Patient has to be translated to AQL,

the given patient identifier has to be integrated into the CQL

statement as a constrained Patient.identifier.

Queries as Graphs

Queries can be seen as graphs. In order to perform the query

translation, the CQL/AQL (depending on the translation

direction) query to be translated is transformed into an

intermediate graph model. The graph is subsequently

translated into the desired target query language. The graph

model is depicted in Figure 2. A graph contains a set of data

model elements that are connected via relations. Although the

type of these relations is not specifically defined, they could

be interpreted as meronymity (i.e. contains) relations.

Additionally, a graph contains a set of operators, which

contain as parameters either other operators, data model

elements or literals. A similar same approach has already been

applied in [9] where AQL was translated into the query

language of i2b2.

For parsing AQL queries the parser from the AQL-processor

of the EtherCIS project5 was taken and combined with a graph

builder written by the authors. The parser for CQL libraries

was taken from the cql-2-elm project6 and combined with a

graph builder also written by the authors. The graphs retain 1.

the structure of data model elements mentioned in the query,

2. the constraints and operators on data element values and 3.

which data elements have to be contained in the returned

results. Whenever elements in a query are named with an

alias, all references to that alias create IsRelatedTo/

HasParameter relations to the graph node identified with that

alias.

Figure 2 – Model of graphs, which are used as intermediate

data model during query translation.

Graph Transformations

Because of properties of CQL/AQL that do not exist in the

respective other language or non-matching properties of the

incorporated data models, the graph has to be appropriately

transformed, in order to fit all required properties of the target

language. Currently there exist the following types of

transformations: Meronyminity-Equality-Transformations and

their reverse, Path-Transformations, Concept-Code-Mappings,

Operator-Mappings, Resolve-Quantity-Transformations,

Resolve-Interval-Transformations (see Figure 3).

Figure 3 – Query graph transformations

Meronyminity-Equality-Transformations

Meronyminity-Equality-Transformations are needed because

in CQL the connection between two root data model elements

is represented by an equality constraint between one root

element and a child element of the other root element (e.g.

[Patient] A with [Observation] B such that B.subject = A).

The definition of both involved element types ([Observation]

and [Patient]) determine the type for the element B.subject,

which would otherwise not be specified. In contrast, in AQL

the main mechanism to define structural relationships between

data model elements are meronymity relations, which also

define the type of the contained elements (e.g. Ehr A contains

Observation[LabResult] B). Meronyminity-Equality-

Transformations are parameter free. The transformation looks

for any three data model elements A, B and C, with a relation

between B and C and an Equals operator containing A and C

as parameters. The element C and the Equals operator are

deleted and the element A gets connected to the element B.

5 http://ethercis.org
6 https://github.com/cqframework/clinical_quality_language

The reverse Equality-Meronyminity-Transformation requires a

parametrization because only a defined set of related elements

A and B should be transformed and the name of the newly

created element C has to be given. For all directly connected

elements A and B the connection gets removed and instead a

new element C gets created and connected to B. Furthermore,

a new Equals operator gets created receiving A and C as

parameters.

Path-Transformations

Path-Transformations provide the possibility to shorten or

lengthen data model element paths. They are needed because

elements from the source data model, which have to be

mapped to their semantically identical counterparts in the

target data model, might be encapsulated in additional element

wrappers. These wrappers have to be removed if they do not

exist in the target data model. E.g. the intermediate element

valueQuantity in Observation.valueQuantity.value (FHIR) has

no counterpart in Observation[LabResult]/value (openEHR).

The transformation can be configured to either shorten or

lengthen a path. In order to shorten a path, the transformation

searches for nodes Q and R connected by a list of nodes B and

removes the intermediate nodes. The reverse transformation

introduces new intermediate nodes B into the graph between

two directly connected nodes Q and R.

Concept-Code-Mappings

Concept-Code-Mappings map element identifiers of the

source data model to element identifiers of the target data

model by renaming nodes.

Operator-Mappings

Operator-Mappings map operators of the source query

language to operators of the target query language by

renaming nodes.

Resolve-Quantity-Transformations

AQL does not contain quantities as build in types. Therefore,

operators on quantity types have to be exchanged by and-

connected clauses that check the requested value as well as the

requested quantity type (e.g. days, cm) (e.g. [Encounter] A

where A.length > 120 days → [Encounter] A where

A.length.value > 120 and A.length.unit = ‘days’). The

transformation looks for data model elements A contained as a

parameter in an operation Op (with potential further

parameters). The node A get connected to two newly created

data model elements value and unit and gets removed from the

parameters of Op. Additionally, a new equals operator is

created which gets the new unit node and a newly created

literal Y as parameters. The value of Y has to be given as a

transformation configuration and defines the unit of the

quantity to be computed. The new equals node and the Op

node get connected in a newly created and.

Resolve-Interval-Transformations

Similar to quantity types, AQL does not contain intervals as

build in types. Operators on interval types have to be

exchanged by and-connected clauses, that check the requested

constraints (e.g. [Patient] A where A.birthDate in

A.contact[0].address.period → [Patient] A where A.birthDate

> A. contact[0].address.period.low and A.birthDate < A.

contact[0].address.period.high).

Graphs to Queries

After all necessary graph transformations have been executed,

the graph can be translated into the desired target query

language via respective Graph2QueryString writers

implemented by the authors.

The proposed method was tested on manually designed

AQL/CQL queries and on queries contained in the AQL/CQL

documentation. A query was (when translatable) translated

into its respective counterpart and re-translated into its original

language. The original query was compared for semantic

equality to its translated counterpart as well as to its re-

translation into the original query language.

Results

Translations Constraints

The proposed methodology using the currently available set of

graph transformations allows the translation of all CQL/AQL

queries having the following properties: A query has to

contain the data type Patient (EHR in AQL) as a query source.

The query may contain an arbitrary amount of additional data

sources of arbitrary type. A query may return an arbitrary

subset of query sources or data model elements that are

reached from the data sources via paths. The paths can have

arbitrary length. Data model elements can be constrained

using the logical comparators listed below, parametrized with

literals or with other data model elements. A query may

contain the data types Boolean, String, Integer, Decimal,

Timestamp, Date, DateTime, Quantity and Interval. Data

model elements or literals can be processed with operators

from the set of mutual operators listed below.

Translations are only possible for queries containing

exclusively operators which exist in both query languages

with the same semantics and the same interface. These

operators (using their CQL-displaynames) grouped into

operator categories are:

 Boolean operators { and, or, not }

 comparator operators on numeric/date/timestamp

types { =, <, <=, >, >=, != }

 comparator operators on Strings { =, !=, matches }

 operators on lists/iterators { in, exists, with, without }.

All other operators either have to be substituted by appropriate

graph transformations or render a query untranslatable.

CQL does not contain an equivalent to AQL’s contains

operator. This operator, which performs a type matching on a

given to be contained data type, returns the matched child data

element. The operator is substituted by Meronyminity-

Equality-Transformations.

The mutual set of operators is reduced by the following

limitations of the two languages, which could not be

substituted by graph transformations:

AQL contains no arithmetic operators (e.g. +, -, *, /). AQL

comprises a limited set of list operators (e.g. first, last, sort,

count do not exist). It is only possible to access specific list

elements via a given index or via the matches operator. The

contains operator can only be used to constrain the data model

structure and not to check the containment of a single element

in a list (e.g. [ProcedureRequest] A where A.notes contains

'x').

AQL allows no aliased valueset definitions. All valuesets have

to be directly given as parameters to the operator using them,

instead of having the possibility to reference a previously

defined valueset with an alias. CQL, on the other hand, allows

only valueset aliases based on valueset ids but no definition of

valuesets by listing their contained codes. As the current

implementations is restricted to CQL statements instead of

CQL libraries, the usage of valuesets or therein contained

codes still has to be resolved.

Table 1 shows a selection of example queries that have been

automatically translated given proper graph transformation

configurations.

Table 1 – Automatically translated example queries

CQL AQL

[Patient] A where A.active = true
and A.gender = ‘male’

select e from EHR e where e/active =
true and e/gender = ‘male’

[Patient] A where exists(A.name

B where B.given = ‘John’)

select e from EHR e contains

composition a[HumanName] where
a/given = ‘John’

[Patient] A with [Encounter] B

such that not(exists(B.discharge))

and B.subject = A

select e from EHR e contains

composition a[Encounter] where not

exists a/content[Discharge]

[Patient] A with [Observation] B

such that B.code = ‘Calcium’ and

B.valueQuantity > 10’mg’ and
B.subject = A

select e from ehr e contains

observation a[LabResult] where

a/code = ‘Calcium’ and
a/valueQuantity/value > 10 and

a/valueQuantity/unit = ‘mg’

Figure 4 pictures an example of an CQL query being

transformed into AQL. The query represents a request for

patients having at least one Calcium laboratory measurement

with a value of more than 10. The CQL query is parsed into

the uppermost graph depicted in Figure 4. Successively,

Meronymity-Equality-Transformations, Path-Transformations

and Concept-Code-Mappings are applied to the graph

(parametrized with the configurations from Table 1, CQL →

AQL). The Meronymity-Equality-Transformation links the

Patient node with the Observation node, which is the required

representation in AQL. The Path-Transformation removes the

valueQuantity node, because in the openEHR data model the

value element is a direct child element of the LabResult

archetype. The Concept-Code-Mappings rename the nodes

Patient and Observation as Ehr and Observation[LabResult],

as those are the semantically equivalent data elements in the

openEHR data model. Finally, the transformed graph is

translated into an AQL query String.

Table 2 – Manually defined configurations used in the

example in Figure 4. The column headings reference the

nodes from Figure 3.

CQL → AQL

Path-Shorten-Transformations

Q B R

Observation[LabResult] {valueQuantity} value

Concept-Code-Mappings

Q R

Ehr Patient

Observation[LabResult] Observation

AQL → CQL

Equality-Meronymity-Transformations

A B C

Patient Observation subject

Path-Lengthen-Transformations

Q B R

Observation[LabResult] {valueQuantity} value

Concept-Code-Mappings

Q R

Ehr Patient

Observation[LabResult] Observation

Figure 4 – Translation of an CQL query into AQL. Underlined

nodes denote elements that have to be included in the result

The translation from AQL to CQL goes accordingly with the

transformation configurations from Table 1, AQL → CQL. It

is noted that the order of the execution of the different

transformation types remains the same, so the re-translation is

not according to the reverse direction in Figure 4, which has to

be considered in the transformation configurations. The AQL

query is first parsed into a graph. Subsequently the Equality-

Meronymity-Transformation creates the child node subject,

connects it to the Observation[LabResult] node, removes the

relation between Ehr and Observation[LabResult] and adds a

new Equals operator with subject and Ehr as parameters. The

Path-Transformation adds the node valueQuantity between

Observation[LabResult] and value. The Concept-Code-

Mappings rename the nodes Ehr and Observation[LabResult]

as Patient and Observation. Finally, the graph is translated

into a CQL query String.

Discussion

The approach to translate a query into another query to

improve or facilitate its evaluation is known as query

rewriting [10]. The early work on query rewriting is related to

view-based relational database querying and deals with the

translation of queries formulated in the same language for

both, source and target. In recent years query rewriting was as

well used in conjunction with graph data query system, e.g.

[11] resembles the presented approach, whereas there XQuery

was translated into SPARQL.

The discussed graph model and the graph transformations

have been specified and implemented by the authors. Both

elements could be exchanged by a standard from the graph

computing community like e.g. Owl to model graphs and

graph transformation frameworks like GROOVE to model the

transformations.

Although the used graph model is similar to the parser graphs

produced by each of the systems, it was more convenient for

the authors to use a separate model in order to be independent

of possible system specific modeling paradigms.

The concept-mappings and path-transformations could be

substituted by a mechanism using FHIR ConceptMaps, which

encode the mappings from elements of one data model to

equivalent data model elements in a target system.

When applying the presented approach on productive data

models, the configuration of the various transformations could

become cumbersome when the data models are large. It would

be beneficial if some configurations could be automatically

deduced by an analysis of the source and the target data

model. When both data models are annotated with

terminology codes, the configuration of concept-mappings

could be deduced automatically by identifying equivalent data

model elements annotated with the same codes.

An issue that could appear when applying query translations

in combination with concrete query engines system

implementations could be that the translations are

semantically equivalent, but they can contain differences in

their syntactical structure. E.g. the two CQL queries [Patient]

A with [Encounter] B such that B.patient = A and [Patient] A

where exists [Encounter] B where B.patient = A are

semantically equivalent, but a query execution engine could

handle the execution of a with-such-that expression differently

than a where-exists with a nested sub query.

An aspect not yet covered by the presented approach is the

translation of valueset, concept, code and codesystem

definitions. Due to the omnipresence of valueset references in

the query examples of both query languages, the presented

approach could have difficulties to be applied in productive

systems without this issue being solved.

A further aspect not tackled in the presented approach is how

query results are returned by the respective systems. Both

systems have their own method and syntactical encoding for

delivering results. For that topic, proper adapters would have

to be developed as well. The example from Figure 4 for

example returns complete patient objects, which are serialized

differently by the respective systems. In order to prevent

differences in serializations, the return types of translatable

queries could be restricted to primitive types (e.g. patient ids

instead of complete patient objects).

As the presented approach is still work in progress, it can be

extended whenever the query language specifications are

changed or extended and thus set of mutual operators grows.

E.g. the AQL specification already contains announcements of

future language elements like arithmetic operators, an

extended matches operator or alias definitions (i.e. let).

Conclusions

An approach was presented to translate Clinical Quality

Language (CQL) queries into Archetype Query Language

(AQL) queries and vice versa. Several examples were shown

to illustrate the capabilities of the presented apprach and for

one example the translation process was illustrated in detail.

As CQL and AQL do not comprise the same sets of

operations, the translation capabilities of the presented

approach are restricted to a subgroup of possible queries,

which have to be composed of a set of common operators of

both query languages. Despite this limitation, queries

expressible in both languages can be automatically translated,

which would allow both query systems to be transparently

included in a distributed research network of the other type.

Acknowledgements

An implementation of the presented approach in Java is

available at https://gitlab2.informatik.uni-wuerzburg.de

/gef18bg/cdw_querymapper. The authors thank B. Haarbrandt,

A. Zautke and G. Vella for helpful comments. This research

was funded by grant of German Federal Ministry of Education

and Research (Comprehensive Heart Failure Center

Würzburg, grants #01EO1004 and #01EO1504).

References

[1] Prokosch H, Ganslandt T, Perspectives for medical infor-

matics. Reusing the electronic medical record for clinical

research, Methods Inf Med 48(1) (2009), 38-44.

[2] Mandel JC, Kreda DA, Mandl KD, et al, SMART on

FHIR: a standards-based, interoperable apps platform for

electronic health records, J Am Med Inform Assoc 23(5)

(2016), 899-908.

[3] Murphy S, Weber G, Mendis M et al, Serving the Enter-

prise and beyond with Informatics for Integrating Biology

and the Bedside (i2b2), J Am Med Inform Assoc 17(2)

(2010), 124-30.

[4] Kalra D, Beale T, Heard S, The openEHR Foundation.

Stud Health Technol Inform 115 (2005), 153-73.

[5] Overhage JM, Ryan PB, Reich CG et al, Validation of a

common data model for active safety surveillance research,

J Am Med Inform Assoc 19(1) (2012), 54-60.

[6] Weber GM, Murphy SN, McMurry AJ, et al, The Shared

Health Research Information Network (SHRINE): a proto-

type federated query tool for clinical data repositories, J

Am Med Inform Assoc 16(5) (2009), 624-30.

[7] Hailemichael MA, Marco-Ruiz L, Bellika JG, Privacy-

preserving Statistical Query and Processing on Distributed

OpenEHR Data, Stud Health Technol Inform 210 (2015),

766-70.

[8] Haarbrandt B, Tute E, Marschollek M, Automated popula-

tion of an i2b2 clinical data warehouse from an openEHR-

based data repository, J Biomed Inform, 63 (2016), 277-94.

[9] Fette G, Kaspar M, Liman L, et al. Query Translation be-

tween openEHR and i2b2. (in press) Stud Health Technol

Inform (2019)

[10] Calvanese D, De Giacomo G, Lenzerini M, et al. What is

query rewriting?, Proc. of KRDB (2000), 17–27.

[11] Droop M, Flarer M, Groppe J, et al. Embedding Xpath

Queries into SPARQL Queries, ICEIS (2008).

Address for correspondence

Georg Fette, georg.fette@uni-wuerzburg.de

