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Abstract 

Secondary use of electronic health records using data 

aggregation systems (DAS) with standardized access 

interfaces (e.g. openEHR, i2b2, FHIR) have become an 

attractive approach to support clinical research. In order to 

increase the volume of underlying patient data, multiple DASs 

at different institutions can be connected to research 

networks. Two obstacles to connect a DAS to such a network 

are the syntactical differences between the involved DAS 

query interfaces and differences in the data models the DASs 

operate on. The current work presents an approach to tackle 

both problems by translating queries from a DAS using 

openEHR’s query language AQL (Archetype Query 

Language) into queries using the query language CQL 

(Clinical Quality Language) and vice versa. For the subset of 

queries which are expressible in both query languages the 

presented approach is well feasible. 
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Introduction 

The secondary use of electronic health records (EHR) has 

become an important field in medical informatics [1]. Routine 

clinical data is reused for various scientific purposes, like 

prospective estimation of study cohort sizes or support of 

study cohort acquisition. When this routine data is scattered in 

various data sinks in various heterogeneous data formats, it is 

difficult to access. In order to improve access to the EHR, 

solutions have been developed to aggregate the routine data 

and to make it accessible via a standardized interface. Two 

paradigms are possible when constructing such a data 

aggregation system (DAS): The first method is to leave the 

data in its original place and to provide a standardized access 

by aggregating the requested data chunks on the fly using 

appropriate extraction transformation load (ETL) pipelines. 

SMART on FHIR [2] projects for example realize this 

paradigm by aggregating requested FHIR resources on the fly. 

This approach works well for patient centered access (i.e. 

queries operating on the data of a single patient). However, for 

population centered access (i.e. queries operating on data of 

all patients) this approach lacks indices covering the involved 

data sources. Without such indices, query speed performance 

does not scale related to the amount of queried patient data. 

On large volumes of EHR data this would heavily afflict the 

usability of FHIR related query languages like FHIR-REST-

API1 or CQL (Clinical Quality Language)2. The second 

method to provide access to aggregated routine data is to 

                                                           
1 https://www.hl7.org/fhir/search.html 
2 https://cql.hl7.org 

provide an additional data sink with a generic data model, into 

which the heterogeneous routine data is persistently 

transferred via an ETL pipeline. The data sink is supplied with 

appropriate indices, so it can be efficiently queried via a 

standardized query language. Examples of this architecture are 

i2b2 [3], openEHR [4] or OMOP [5]. HAPI3 and VONK4 are 

data sink servers that do not only use FHIR as an access 

interface in patient centered mode, but they also use it as the 

data model in which the EHR data is stored, so it can be 

queried in population centered mode using query languages 

like FHIR-REST-API or CQL. 

Clinical Research Networks 

In order to increase the volume of underlying patient data for 

larger and thus more expressive query results, DASs at 

different institutions can be connected to clinical research 

networks. Examples for such networks are PCORnet, the 

OHDSI research network or EHR4CR. In a DAS network a 

query is distributed to connected nodes, where it is 

independently evaluated. Each node’s results are returned and 

combined to an aggregated result. Systems like SHRINE [6] 

for i2b2 or SNOW [7] for openEHR perform the query 

distribution and result aggregation automatically. Each 

network, however, only allows DASs having the same query 

language to be part of the network. If a DAS with a different 

query language is intended to be integrated into the network, 

the data from that DAS has to be transferred (like in [8]) into a 

new dedicated DAS supporting the networks query language. 

However, parallel support of multiple DASs containing the 

same redundant data at one institution creates an overhead in 

support and hardware. 

An alternative approach is to translate queries of an 

incompatible DAS into the query language required by the 

DAS network. The current work examines the feasibility of 

translating queries formulated in the query language CQL into 

AQL (Archetype Query Language, the query language of 

openEHR) and vice versa. To accomplish this task, the query 

is first translated into an intermediate query graph model, then 

potentially necessary graph transformation are applied on the 

query graph and, finally, the graph is translated into the 

desired target query language. 

Methods 

Query Languages 

Before going into detail about the translation process, the two 

languages shall be briefly introduced: 

                                                           
3 http://hapifhir.io 
4 https://fire.ly/vonk/vonk-fhir-server 



CQL is a functional query language. A CQL script is defined 

as a so called library in which, besides the actual queries, also 

meta information related to the queries can be defined. CQL is 

independent of a concrete data model, as the model to be used 

is explicitly defined in each CQL library. The CQL data 

model elements can be composed of the following data types: 

primitives (Booleans, Strings, numbers and timestamps), 

clinical codes, quantities, intervals, lists and structured types. 

Structured data objects, which can again contain other 

structured data objects, can be accessed with a path syntax 

(e.g. patient.contact[0].name.family). Besides the data model, 

a CQL library can define its search context, which is either 

Patient or Population centered. The main functional part in a 

CQL library are the statements. Each statement can be seen as 

an individual query. Usually a statement defines which data 

sources the query is operating on (e.g. [Patient] A or 

[Observation] B), how the elements of the queried sources are 

constrained (e.g. B.valueString = ‘x’), how the various data 

sources have to be related to each other (e.g. [Patient] A with 

[Observation] B such that B.subject = A) and which elements 

of potential matches have to be returned as results (e.g. Return 

Tuple {id:A.identifier, B.valueString}). CQL provides a rich 

repertoire of operators (e.g. comparison, logical, arithmetic, 

list access, aggregation) to perform calculations on the data 

model. 

OpenEHR’s query language AQL is SQL-inspired and as well 

a functional language. It operates on a data model that is 

defined by the openEHR data modeling language ADL. 

OpenEHR’s root data model elements are called archetypes. 

An archetype can be composed of the following data element 

types: primitives (Booleans, Strings, numbers and 

timestamps), other archetypes and generic container structures 

(e.g. lists). Structured data objects are accessed via a path 

syntax. An AQL query mainly consists of three parts: The 

FROM part defines which archetypes are queried and how 

these archetypes are related to each other concerning 

meronymity relations (e.g. EHR A contains Observation B). 

The WHERE part constrains the archetype elements (e.g. 

B/value > 1). The SELECT part defines which elements have 

to be returned in the results (e.g. select A/ehr_id, B/value). 

Compared to CQL, AQL provides a smaller set of operators 

(comparison, logical, matches, exists). For the sake of brevity 

archetype names in the following chapters are shortened (e.g. 

openEHR-EHR-OBSERVATION.LabResult.v1 → 

Observation[LabResult]). 

Currently, the CQL translation has the following constraints: 

1. The CQL queries may only contain a single statement and 

2. The CQL queries are defined in the context Population. If a 

CQL query with context Patient has to be translated to AQL, 

the given patient identifier has to be integrated into the CQL 

statement as a constrained Patient.identifier. 

Queries as Graphs 

Queries can be seen as graphs. In order to perform the query 

translation, the CQL/AQL (depending on the translation 

direction) query to be translated is transformed into an 

intermediate graph model. The graph is subsequently 

translated into the desired target query language. The graph 

model is depicted in Figure 2. A graph contains a set of data 

model elements that are connected via relations. Although the 

type of these relations is not specifically defined, they could 

be interpreted as meronymity (i.e. contains) relations. 

Additionally, a graph contains a set of operators, which 

contain as parameters either other operators, data model 

elements or literals. A similar same approach has already been 

applied in [9] where AQL was translated into the query 

language of i2b2. 

For parsing AQL queries the parser from the AQL-processor 

of the EtherCIS project5 was taken and combined with a graph 

builder written by the authors. The parser for CQL libraries 

was taken from the cql-2-elm project6 and combined with a 

graph builder also written by the authors. The graphs retain 1. 

the structure of data model elements mentioned in the query, 

2. the constraints and operators on data element values and 3. 

which data elements have to be contained in the returned 

results. Whenever elements in a query are named with an 

alias, all references to that alias create IsRelatedTo/ 

HasParameter relations to the graph node identified with that 

alias. 

 
Figure 2 – Model of graphs, which are used as intermediate 

data model during query translation. 

Graph Transformations 

Because of properties of CQL/AQL that do not exist in the 

respective other language or non-matching properties of the 

incorporated data models, the graph has to be appropriately 

transformed, in order to fit all required properties of the target 

language. Currently there exist the following types of 

transformations: Meronyminity-Equality-Transformations and 

their reverse, Path-Transformations, Concept-Code-Mappings, 

Operator-Mappings, Resolve-Quantity-Transformations, 

Resolve-Interval-Transformations (see Figure 3). 

 
Figure 3 – Query graph transformations 

Meronyminity-Equality-Transformations 

Meronyminity-Equality-Transformations are needed because 

in CQL the connection between two root data model elements 

is represented by an equality constraint between one root 

element and a child element of the other root element (e.g. 

[Patient] A with [Observation] B such that B.subject = A). 

The definition of both involved element types ([Observation] 

and [Patient]) determine the type for the element B.subject, 

which would otherwise not be specified. In contrast, in AQL 

the main mechanism to define structural relationships between 

data model elements are meronymity relations, which also 

define the type of the contained elements (e.g. Ehr A contains 

Observation[LabResult] B). Meronyminity-Equality-

Transformations are parameter free. The transformation looks 

for any three data model elements A, B and C, with a relation 

between B and C and an Equals operator containing A and C 

as parameters. The element C and the Equals operator are 

deleted and the element A gets connected to the element B. 
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6 https://github.com/cqframework/clinical_quality_language 



The reverse Equality-Meronyminity-Transformation requires a 

parametrization because only a defined set of related elements 

A and B should be transformed and the name of the newly 

created element C has to be given. For all directly connected 

elements A and B the connection gets removed and instead a 

new element C gets created and connected to B. Furthermore, 

a new Equals operator gets created receiving A and C as 

parameters. 

Path-Transformations 

Path-Transformations provide the possibility to shorten or 

lengthen data model element paths. They are needed because 

elements from the source data model, which have to be 

mapped to their semantically identical counterparts in the 

target data model, might be encapsulated in additional element 

wrappers. These wrappers have to be removed if they do not 

exist in the target data model. E.g. the intermediate element 

valueQuantity in Observation.valueQuantity.value (FHIR) has 

no counterpart in Observation[LabResult]/value (openEHR). 

The transformation can be configured to either shorten or 

lengthen a path. In order to shorten a path, the transformation 

searches for nodes Q and R connected by a list of nodes B and 

removes the intermediate nodes. The reverse transformation 

introduces new intermediate nodes B into the graph between 

two directly connected nodes Q and R. 

Concept-Code-Mappings 

Concept-Code-Mappings map element identifiers of the 

source data model to element identifiers of the target data 

model by renaming nodes. 

Operator-Mappings 

Operator-Mappings map operators of the source query 

language to operators of the target query language by 

renaming nodes. 

Resolve-Quantity-Transformations 

AQL does not contain quantities as build in types. Therefore, 

operators on quantity types have to be exchanged by and-

connected clauses that check the requested value as well as the 

requested quantity type (e.g. days, cm) (e.g. [Encounter] A 

where A.length > 120 days → [Encounter] A where 

A.length.value > 120 and A.length.unit = ‘days’). The 

transformation looks for data model elements A contained as a 

parameter in an operation Op (with potential further 

parameters). The node A get connected to two newly created 

data model elements value and unit and gets removed from the 

parameters of Op. Additionally, a new equals operator is 

created which gets the new unit node and a newly created 

literal Y as parameters. The value of Y has to be given as a 

transformation configuration and defines the unit of the 

quantity to be computed. The new equals node and the Op 

node get connected in a newly created and. 

Resolve-Interval-Transformations 

Similar to quantity types, AQL does not contain intervals as 

build in types. Operators on interval types have to be 

exchanged by and-connected clauses, that check the requested 

constraints (e.g. [Patient] A where A.birthDate in 

A.contact[0].address.period → [Patient] A where A.birthDate 

> A. contact[0].address.period.low and A.birthDate < A. 

contact[0].address.period.high). 

Graphs to Queries 

After all necessary graph transformations have been executed, 

the graph can be translated into the desired target query 

language via respective Graph2QueryString writers 

implemented by the authors. 

The proposed method was tested on manually designed 

AQL/CQL queries and on queries contained in the AQL/CQL 

documentation. A query was (when translatable) translated 

into its respective counterpart and re-translated into its original 

language. The original query was compared for semantic 

equality to its translated counterpart as well as to its re-

translation into the original query language. 

Results 

Translations Constraints 

The proposed methodology using the currently available set of 

graph transformations allows the translation of all CQL/AQL 

queries having the following properties: A query has to 

contain the data type Patient (EHR in AQL) as a query source. 

The query may contain an arbitrary amount of additional data 

sources of arbitrary type. A query may return an arbitrary 

subset of query sources or data model elements that are 

reached from the data sources via paths. The paths can have 

arbitrary length. Data model elements can be constrained 

using the logical comparators listed below, parametrized with 

literals or with other data model elements. A query may 

contain the data types Boolean, String, Integer, Decimal, 

Timestamp, Date, DateTime, Quantity and Interval. Data 

model elements or literals can be processed with operators 

from the set of mutual operators listed below. 

Translations are only possible for queries containing 

exclusively operators which exist in both query languages 

with the same semantics and the same interface. These 

operators (using their CQL-displaynames) grouped into 

operator categories are:  

 Boolean operators { and, or, not } 

 comparator operators on numeric/date/timestamp 

types { =, <, <=, >, >=, != } 

 comparator operators on Strings { =, !=, matches }  

 operators on lists/iterators { in, exists, with, without }. 

All other operators either have to be substituted by appropriate 

graph transformations or render a query untranslatable. 

CQL does not contain an equivalent to AQL’s contains 

operator. This operator, which performs a type matching on a 

given to be contained data type, returns the matched child data 

element. The operator is substituted by Meronyminity-

Equality-Transformations. 

The mutual set of operators is reduced by the following 

limitations of the two languages, which could not be 

substituted by graph transformations: 

AQL contains no arithmetic operators (e.g. +, -, *, /). AQL 

comprises a limited set of list operators (e.g. first, last, sort, 

count do not exist). It is only possible to access specific list 

elements via a given index or via the matches operator. The 

contains operator can only be used to constrain the data model 

structure and not to check the containment of a single element 

in a list (e.g. [ProcedureRequest] A where A.notes contains 

'x'). 

AQL allows no aliased valueset definitions. All valuesets have 

to be directly given as parameters to the operator using them, 

instead of having the possibility to reference a previously 

defined valueset with an alias. CQL, on the other hand, allows 

only valueset aliases based on valueset ids but no definition of 

valuesets by listing their contained codes. As the current 

implementations is restricted to CQL statements instead of 

CQL libraries, the usage of valuesets or therein contained 

codes still has to be resolved. 



Table 1 shows a selection of example queries that have been 

automatically translated given proper graph transformation 

configurations. 

Table 1 – Automatically translated example queries  

CQL AQL 

[Patient] A where A.active = true 
and A.gender = ‘male’ 

select e from EHR e where e/active = 
true and e/gender = ‘male’ 

[Patient] A where exists(A.name 

B where B.given = ‘John’) 

select e from EHR e contains 

composition a[HumanName] where 
a/given = ‘John’ 

[Patient] A with [Encounter] B 

such that not(exists(B.discharge)) 

and B.subject = A 

select e from EHR e contains 

composition a[Encounter] where not 

exists a/content[Discharge] 

[Patient] A with [Observation] B  

such that B.code = ‘Calcium’ and  

B.valueQuantity > 10’mg’ and 
B.subject = A 

select e from ehr e contains 

observation a[LabResult] where 

a/code = ‘Calcium’ and 
a/valueQuantity/value > 10 and 

a/valueQuantity/unit = ‘mg’ 

Figure 4 pictures an example of an CQL query being 

transformed into AQL. The query represents a request for 

patients having at least one Calcium laboratory measurement 

with a value of more than 10. The CQL query is parsed into 

the uppermost graph depicted in Figure 4. Successively, 

Meronymity-Equality-Transformations, Path-Transformations 

and Concept-Code-Mappings are applied to the graph 

(parametrized with the configurations from Table 1, CQL → 

AQL). The Meronymity-Equality-Transformation links the 

Patient node with the Observation node, which is the required 

representation in AQL. The Path-Transformation removes the 

valueQuantity node, because in the openEHR data model the 

value element is a direct child element of the LabResult 

archetype. The Concept-Code-Mappings rename the nodes 

Patient and Observation as Ehr and Observation[LabResult], 

as those are the semantically equivalent data elements in the 

openEHR data model. Finally, the transformed graph is 

translated into an AQL query String. 

Table 2 – Manually defined configurations used in the 

example in Figure 4. The column headings reference the 

nodes from Figure 3. 

CQL → AQL 

Path-Shorten-Transformations 

Q B R 

Observation[LabResult] {valueQuantity} value 

Concept-Code-Mappings 

Q R 

Ehr Patient 

Observation[LabResult] Observation 

AQL → CQL 

Equality-Meronymity-Transformations 

A B C 

Patient Observation subject 

Path-Lengthen-Transformations 

Q B R 

Observation[LabResult] {valueQuantity} value 

Concept-Code-Mappings 

Q R 

Ehr Patient 

Observation[LabResult] Observation 

 

Figure 4 – Translation of an CQL query into AQL. Underlined 

nodes denote elements that have to be included in the result  

The translation from AQL to CQL goes accordingly with the 

transformation configurations from Table 1, AQL → CQL. It 

is noted that the order of the execution of the different 

transformation types remains the same, so the re-translation is 

not according to the reverse direction in Figure 4, which has to 

be considered in the transformation configurations. The AQL 

query is first parsed into a graph. Subsequently the Equality-

Meronymity-Transformation creates the child node subject, 

connects it to the Observation[LabResult] node, removes the 

relation between Ehr and Observation[LabResult] and adds a 

new Equals operator with subject and Ehr as parameters. The 

Path-Transformation adds the node valueQuantity between 

Observation[LabResult] and value. The Concept-Code-

Mappings rename the nodes Ehr and Observation[LabResult] 

as Patient and Observation. Finally, the graph is translated 

into a CQL query String. 



Discussion 

The approach to translate a query into another query to 

improve or facilitate its evaluation is known as query 

rewriting [10]. The early work on query rewriting is related to 

view-based relational database querying and deals with the 

translation of queries formulated in the same language for 

both, source and target. In recent years query rewriting was as 

well used in conjunction with graph data query system, e.g. 

[11] resembles the presented approach, whereas there XQuery 

was translated into SPARQL. 

The discussed graph model and the graph transformations 

have been specified and implemented by the authors. Both 

elements could be exchanged by a standard from the graph 

computing community like e.g. Owl to model graphs and 

graph transformation frameworks like GROOVE to model the 

transformations.  

Although the used graph model is similar to the parser graphs 

produced by each of the systems, it was more convenient for 

the authors to use a separate model in order to be independent 

of possible system specific modeling paradigms. 

The concept-mappings and path-transformations could be 

substituted by a mechanism using FHIR ConceptMaps, which 

encode the mappings from elements of one data model to 

equivalent data model elements in a target system. 

When applying the presented approach on productive data 

models, the configuration of the various transformations could 

become cumbersome when the data models are large. It would 

be beneficial if some configurations could be automatically 

deduced by an analysis of the source and the target data 

model. When both data models are annotated with 

terminology codes, the configuration of concept-mappings 

could be deduced automatically by identifying equivalent data 

model elements annotated with the same codes. 

An issue that could appear when applying query translations 

in combination with concrete query engines system 

implementations could be that the translations are 

semantically equivalent, but they can contain differences in 

their syntactical structure. E.g. the two CQL queries [Patient] 

A with [Encounter] B such that B.patient = A and [Patient] A 

where exists [Encounter] B where B.patient = A are 

semantically equivalent, but a query execution engine could 

handle the execution of a with-such-that expression differently 

than a where-exists with a nested sub query. 

An aspect not yet covered by the presented approach is the 

translation of valueset, concept, code and codesystem 

definitions. Due to the omnipresence of valueset references in 

the query examples of both query languages, the presented 

approach could have difficulties to be applied in productive 

systems without this issue being solved.  

A further aspect not tackled in the presented approach is how 

query results are returned by the respective systems. Both 

systems have their own method and syntactical encoding for 

delivering results. For that topic, proper adapters would have 

to be developed as well. The example from Figure 4 for 

example returns complete patient objects, which are serialized 

differently by the respective systems. In order to prevent 

differences in serializations, the return types of translatable 

queries could be restricted to primitive types (e.g. patient ids 

instead of complete patient objects). 

As the presented approach is still work in progress, it can be 

extended whenever the query language specifications are 

changed or extended and thus set of mutual operators grows. 

E.g. the AQL specification already contains announcements of 

future language elements like arithmetic operators, an 

extended matches operator or alias definitions (i.e. let). 

Conclusions  

An approach was presented to translate Clinical Quality 

Language (CQL) queries into Archetype Query Language 

(AQL) queries and vice versa. Several examples were shown 

to illustrate the capabilities of the presented apprach and for 

one example the translation process was illustrated in detail. 

As CQL and AQL do not comprise the same sets of 

operations, the translation capabilities of the presented 

approach are restricted to a subgroup of possible queries, 

which have to be composed of a set of common operators of 

both query languages. Despite this limitation, queries 

expressible in both languages can be automatically translated, 

which would allow both query systems to be transparently 

included in a distributed research network of the other type. 
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