Knowledge-Based Systems 88 (2015) 45-56

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Knowledge-driven systems for episodic decision support

Joachim Baumeister *>*, Albrecht Striffler "

@ CrossMark

2 University of Wiirzburg, Institute of Computer Science, Am Hubland, 97074 Wiirzburg, Germany

b denkbares GmbH, Friedrich-Bergius-Ring 15, 97076 Wiirzburg, Germany

ARTICLE INFO ABSTRACT

Article history:

Received 4 November 2014

Received in revised form 24 July 2015
Accepted 15 August 2015

Available online 21 August 2015

Keywords:

Decision support systems
Knowledge engineering
Ontologies

The paper describes a new approach of developing and maintaining state-of-the-art decision support
systems. Such systems are able to capture the collaborative work on decision problems over time. Due
to the complexity of large problem spaces a multi-modal knowledge representation is proposed.
For the realization of a multi-modal knowledge base we integrate semantic technologies as a fundamen-
tal layer by combining the W3C ontologies PROV-O and SKOS. The approach is demonstrated by an
implementation report of an industrially deployed decision support system.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the past, decision support systems have been established in
numerous domains. The term decision support system gathers a
variety of system types helping humans to make appropriate
decisions for a corresponding problem. Power [1], for instance, dis-
tinguishes the following types of decision support systems (DSS):

e Data-driven DSS: Provide decision support based on the
analysis of large amounts of data. Business intelligence systems
are a typical system class of data-driven DSS.

o Model-driven DSS: Provide decision support by using account-
ing, financial, representational, or optimization models. These
systems provide access and manipulation of the model.

e Document-driven DSS: Support is provided by collecting,
retrieving, and (automatically) classifying large amounts of
(unstructured) information. Typical system classes are
document management systems and information management
systems.

o Communication-driven DSS: This system type adds capabili-
ties to support the communication and collaboration between
people working on the same task. Often this type is combined
with the other types.

* Corresponding author at: University of Wirzburg, Institute of Computer
Science, Am Hubland, 97074 Wiirzburg, Germany.
E-mail addresses: joachim.baumeister@denkbares.com (J. Baumeister), albrecht.
striffler@denkbares.com (A. Striffler).

http://dx.doi.org/10.1016/j.knosys.2015.08.008
0950-7051/© 2015 Elsevier B.V. All rights reserved.

o Knowledge-driven DSS: Use problem-solving capabilities to
derive appropriate actions for stated problems. Expert systems
and recommender systems follow the knowledge-driven
approach.

In this work we focus on knowledge-driven DSS as an imple-
mentation of knowledge-based systems, where solutions (deci-
sions) are derived from a given input of facts. The typical process
of such a system is depicted in Fig. 1 in BPM notation [2,3]: Initially
a data entry activity is required to start the decision making activ-
ity, where the findings are processed by a problem solver. The
derived solutions are returned in a decision output event.

Fig. 2 shows an extension of the classic decision process by
allowing repeated data entry. Here, updated data is processed by
the problem solver yielding a possibly updated set of decisions
by incorporating non-monotonic reasoning [4].

Examples of such systems can be found in almost all domains,
ranging from second opinion systems in medicine to fault diagnosis
systems in the technical domain. In the past, those systems were
built as monolithic applications, where single agents enter findings
to derive one or more suitable decisions. Examples are found in
medical consultation [5-7] and technical diagnosis [8-10].

In the context of the web and in the context of collaboration
new requirements arise that motivate a rethinking of some princi-
ples of classic decision support systems.

Collaborative Use A complex decision problem is often not solved
by a single user, but it is solved by the collaborative contributions
of different participants. Collaboration may have diverse faces:
Users participate in the decision problem by providing or

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2015.08.008&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2015.08.008
mailto:joachim.baumeister@denkbares.com
mailto:albrecht.striffler@denkbares.com
mailto:albrecht.striffler@denkbares.com
http://dx.doi.org/10.1016/j.knosys.2015.08.008
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

46 J. Baumeister, A. Striffler / Knowledge-Based Systems 88 (2015) 45-56

Knowledge
Base

' Data Entry

—
Making G ®

Decision
Output
Event

Fig. 1. Typical decision making process of knowledge-driven decision support systems.

Data Entry

S
Knowledge
Base
Decision
Making

Decision
Output
Event

New/updated data available

Fig. 2. Decision making process extended by repeated data entry thus yielding a non-monotonic decision process.

overriding important facts during a joint session. Alternatively,
users solve disjoint sub-problems that in sum help to solve the
overall decision problem.

Episodic Use Complex decisions are often not taken during a
single session, but the actual decision process is partitioned over
time into different episodes. We align to the semantics of the term
episodic introduced by Russell and Norvig [11], where subsequent
episodes do not depend on what actions occurred in previous
episodes. In our setting, each episode may cover a different aspect
of the decision problem. Commonly, the order of the handling of
the different aspects has implications of the final reasoning
process.

Mixing Knowledge Representations In traditional decision sup-
port systems a single knowledge representation is used to build
the entire knowledge base. Successful knowledge representations
are rules, decision trees, and Bayesian networks [12]. Complex
and larger systems benefit from the use of hybrid approaches,
integrating different representations into one knowledge base.
Typically, a large knowledge base is partitioned into smaller
knowledge spaces, where each knowledge space covers an aspect
and uses a specific knowledge representation for its implementa-
tion. Here, for a single decision or fact, different knowledge repre-
sentations can be continuously interweaved into a multi-modal
knowledge representation.

In summary, advanced decision support systems need to deal
with

o the collaborative use of the systems by a decision community,

o the episodic decision making of a problem,

e and multiple knowledge representations during the decision
process.

Fig. 3 depicts an updated version of the decision process. The
different knowledge spaces are represented by the different
sub-decision making processes. These processes can be handled in
parallel by different contributors of the decision making process.

A new episode is initiated by iterating the (same or different)
sub-processes in the next episode. After every parallel execution
of the sub-decision making processes the (final) decisions are
aggregated in a subsequent process.

In the following we describe a novel approach of decision sup-
port systems by integrating different types of knowledge within
reasoning for implementing the decision support. The rest of the
paper is organized as follows: In Section 2 we motivate the use
of a multi-modal knowledge base for building decision support
systems, i.e., the knowledge formalization continuum. We also
show how the use of multi-modal knowledge representations is
implemented by an ontology layer. Section 3 describes the reason-
ing and explanation in multi-modal knowledge bases. The experi-
ences with an industrial implementation of the presented concept
is introduced in Section 4. The design decisions and experiences
with building and running a collaborative decision support system
in the domain of chemical safety are reported. Section 5 concludes
the paper with a summary and a discussion of related work.

2. Engineering the knowledge formalization continuum

As we motivated in the introduction, complex decision support
systems benefit from combining different representations instead
of sticking to a single knowledge formalization. When the system
needs to cover a complex domain, then it usually considers many
aspects of the domain. However, for a number of practical reasons
not all aspects can be included in a single knowledge base:

e Uncertain domain knowledge: Some aspects of the domain are
not well-understood in a technical sense. In practice, decisions
are often based more on past experience, evidence, and intu-
ition than on strictly following domain laws and rules.

e Bloated domain knowledge: For some aspects, the explicit for-
malization of the knowledge would be too time-consuming
and complex. For instance, much background knowledge needs
to be included, that is required for proper decision making.
Here, the expected cost-benefit ratio [13, p. 56] is low, e.g.,
because many parts will be rarely used in real-world decisions.

J. Baumeister, A. Striffler / Knowledge-Based Systems 88 (2015) 45-56 47

New/updated data available

_| Sub-Decision
Making

| Sub-Decision
Making

_| Sub-Decision
Making

()

Next episode

Aggregate
Decision

Fig. 3. Collaborative decision support process, where a complex decision problem is handled by multiple simultaneous decision makings.

In this context, the ratio is defined by developing and maintain-
ing the knowledge base vs. the benefit/frequency of using the
knowledge elements in practice.

e Restless domain knowledge: Especially in technical domains,
some aspects are frequently changing due to engineering
changes. The explicit representation of these parts would
require frequent maintenance. Here, also the cost-benefit of
the maintenance vs. the utility of the knowledge needs to be
evaluated.

We introduce an approach that welcomes the combination of
different knowledge representations into a single knowledge base.
This approach makes use of the idea of the knowledge formalization
continuum emphasizing the use of knowledge at varying formaliza-
tion granularities (multi-modality). That way, the best-fitting rep-
resentation for each aspect of the domain can be selected. Besides
the interconnection of different knowledge representations the
approach also considers the reasoning with knowledge at different
formalization levels. This work extends the knowledge formalization
continuum as presented in [14] by an implementation model of the
knowledge space, which facilitates the reasoning with continuous
and episodic knowledge. We are able to trace the reasoning process
of multiple knowledge representations. This is important for
decision support systems since we need a comprehensive
derivation of decisions and corresponding explanation capabilities
in the system, especially when multiple representations contribute
to a particular decision.

2.1. The multi-modal knowledge space

For the engineering of decision support systems, the knowledge
formalization continuum emphasizes the fact that a system can
make use of more than one knowledge representation. Elements
of the knowledge base can range from very informal representa-
tions (such as text and images) to very explicit representations
(such as logic rules). The order of explicit knowledge vs. informal
knowledge is defined by its capability of drawing automated infer-
ences using the knowledge. For instance, rules are more capable to
implement automated reasoning than plain images or textual
tables. Fig. 4 shows a simplified depiction. Please note that the
depiction is neither a precise nor a comprehensive scale but gives
rough orders of formality of the knowledge representations.
Approaches working with the knowledge formalization continuum
do not need to commit to one single representation but use the

Functional
models

Mindmaps Flow charts

Tabular data Ontologies

Images Rules

Decision

Tags
© trees/tables

Semantic Fault

annotations models

Segmented
text

Fig. 4. An idealistic view of the knowledge formalization continuum.

best fitting representation for each module of the knowledge base.
Specific domain knowledge can be represented in different ways,
where adjacent representations are similar to each other, e.g., tab-
ular data and cases. More extreme representations are much more
distinct, e.g., text vs. rules. On the one hand, data given by textual
documents denote one of the lowest instances of formalization. On
the other hand, functional models store knowledge at a very formal
level. The categorization of knowledge representations from infor-
mal to formal ones is also discussed by related research areas,
especially in ontology engineering [15-17].

The flexible interpretation of knowledge representations needs
strong tool-support to be useful for the development of decision
support systems. That way, we need to define how to share and
integrate decisions derived by the particular representations.
Further, there needs to be the possibility to represent the decision
making process of the diverse representations itself. We propose a
stack of semantic technologies depicted in Fig. 5 for implementing
these requirements.

Connecting the standard ontologies for provenance PROV [18]
and the simple knowledge organization system SKOS [19], we are
able to define the decision support ontology DSS. The reasoning
process of proprietary knowledge representations is mapped to
PROV, thus enabling the querying of the reasoning by the SPARQL
language [20]. In the following, we discuss the approach in more
detail.

2.2. Shared organization of decisions

In general, a decision support system derives appropriate
decisions for a given input description. Consequently, each module
of the system needs to know the set of possible decisions and it
needs to have the capability to derive these decisions. By the set

48 J. Baumeister, A. Striffler / Knowledge-Based Systems 88 (2015) 45-56

DSS | SPARQL |

PROV | SKOS

RDFS / OWL

Proprietary Knowledge Representations

Fig. 5. The stack of used technologies.

of derivable decisions the competence of the module is defined. We
propose the definition of decisions as ontology concepts, so that the
decisions can be shared by each participating knowledge module.

The modeling of decisions by an ontology has a couple of advan-
tages: First, a standardized interpretation of the decisions exists,
since ontology languages such as RDF(S) [21] and OWL [22] define
a clear semantics of the modeling primitives. Further, there already
exist ontologies that support the knowledge acquisition task: The
general vocabulary structure can be defined with the simple
knowledge organization system SKOS [19]. For the generality of
the approach we use SKOS for the organization of decisions,
although tailored ontologies for decision support were proposed
earlier [23,24]. In particular, SKOS defines the properties
skos:narrower and skos:broader as inverse roles to build-up
a hierarchy structure of concepts, i.e., the decisions.

For example, the decisions D= {d1,d2,d2.1,d22,d3,d3.1,d32}
are organized by skos:narrower relations as depicted in
Fig. 6. The particular decisions are typed as instances of the class
dss:Decision which is part of the general decision ontology. In
the next section we explain this concept in more detail.

Having a unified hierarchy of decisions, every part of the knowl-
edge base needs to align to this decision hierarchy to contribute to
the general decision process. In Fig. 7 the previous decisions are
linked to two different knowledge bases, where decisions
from the branch d2 are derived by a rule base and decisions from
d3 are derived by a workflow model.

Using the ontology structure we can jointly consider all
decisions of the system and its parts correspondingly. However,
the collaborative and episodic system also demands for a trace of
the actual decision making process. We discuss an approach fulfill-
ing this requirement in the following section.

2.3. Ontological representation of decisions making

The representation of decision making can be interpreted as the
documentation of the reasons and facts for making a decision. Also
all contributors and temporal data need to be represented. We call
this documentation the provenance of the decision making process.
Using multiple knowledge representations in a system, the
representation of the decision making process also benefits from
an ontological representation, since it provides an abstract but
standardized language for this task.

We propose the use of the PROV ontology [18,25] to represent
provenance information of the decision making process. As a
W3C standard the PROV ontology already shows a wide range of
applications in different domains. The PROV ontology explicitly
represents the provenance of entities, i.e., in our case decisions,
entered data, users, etc. are interpreted as PROV entities. For
concepts defined in the PROV ontology the namespace prov is
used. The three basic classes prov:Agent, prov:Activity, and
prov:Entity are central for describing provenance information.
Fig. 8 shows the general structure: An prov:Agent (a user/a
problem-solving engine) is executing an prov:Activity (entering
facts/deriving decisions) and produces an prov:Entity (input
fact/derived decisions). Consequently, an prov:Entity can be
attributed to an prov:Agent and the prov:Entity was generated

dss:Decision

rdfitype !

skos:narrower skos:narrower

skos:narrower

skos:narrower

) () (@

Fig. 6. An example hierarchy of decisions.

skos:narrower skos:narrower

Rule Base Workflow Model

Fig. 7. Knowledge bases used for deriving decisions.

xsd:dateTime

: f
generated AtTime /
invalidated AtTime

xsd:dateTime

value
wasRevisionOf
wasAttributedTo prov:Entity specializationOf
wasDerivedFrom
Wrﬁource
prov:Agent
used wasGeneratedBy
wasAssociatedWith /

\;

prov:Activity

started AtTime endedAtTime

o ~a

xsd:dateTime

xsd:dateTime

Fig. 8. The basic elements of the PROV ontology.

by a specific prov:Activity. An prov:Activity is also associ-
ated with an prov:Agent. In some processes an prov:Activity
uses an prov:Entity for the creation of another prov:Entity, e.g.,
an entered fact is used for deriving a decision. An prov:Activity
has a start and an end time; this is related to the generation time

J. Baumeister, A. Striffler / Knowledge-Based Systems 88 (2015) 45-56 49

of an prov:Entity. When the prov:Entity is superseded by a
revision (prov:wasRevisionOf), then the prov:Entity is
invalidated at a specified time. The following properties are also
worthwhile to introduce: The property prov:wasDerivedFrom
states that an instance of prov:Entity was transformed into
another instance.

In its basic setting we see that the PROV ontology is suitable to
generally represent the provenance of decision making. Concrete
decisions are represented as prov:Entity instances. Participants
of the derived decisions are represented as prov:Entity, prov:
Activity, and prov:Agent instances.

For a more detailed representation we sub-class the concept
prov:Entity into a decision support ontology (using the dss
namespace). In Fig. 9 we see that decisions are instances of the
dss:Decision concept, whereas entered data can depend on the
knowledge representation used by the system. In the figure, we
see examples of a formal rule base (dss:RuleFact) and an infor-
mal decision memo (dss:DecisionMemo). We further see that the
state of a decision is represented by a dss:DecisionAccount.
That way, the knowledge base stores the derivation state by using
an instance of a dss:Weight instance. In principle, multiple repre-
sentations can store different (and thus conflicting) dss:Weight
instances. Then, the application needs to implement a conflict
resolution strategy to avoid inconsistent decision states. We will
discuss this topic together with other reasoning topics in the next
section.

3. Episodic decision making with continuous knowledge
representations

In this section, we do not discuss the different knowledge
representations and their corresponding reasoning algorithms.
There exists a broad range of approaches that all have strengths
and weaknesses with respect to reasoning accuracy, knowledge
acquisition costs, and maintenance processes. For a thorough intro-
duction into knowledge representation and reasoning we refer to
[4,26].

Here, we discuss the representation of the reasoning process
within an episodic decision support system using multiple knowl-
edge representations. In the previous section we proposed the use
of the PROV ontology for this task. We show how this ontology is
populated by instances generated during the reasoning process.
Furthermore, we tackle the problem of explaining the reasoning
process. In an episodic and collaborative application the explana-
tion of made decisions is very important for users, since not all
(sub-)decisions of a specific decision task are made by the same
group of persons. Furthermore, some decisions may have been
taken in the far past. Then, the 3W explanation of taken decisions
(what?, why?, when?) will support the trustworthiness of the
entire system. We will detail this in the following.

3.1. Broadcasting of decision making

In the introduction we depicted the general decision making
process (Fig. 2), where a data entry initializes the reasoning and
decision making. After the derivation of decisions the results are
reported, for instance by simply presenting them to the user. In
Fig. 10 we extend this process in the light of the requirements of
collaborative and episodic decision making using mixed knowl-
edge representations. Here, the solutions are not simply reported
to the user anymore, but are broadcasted to a decision making
ontology. Possible conflicts between decision making modules
are also resolved in the ontology and the users are notified with

dss:Decision-

dss:Data
‘ ’ Account

e

‘ dss:RuleFact ’

dss:Decision }—dss:hasAccoum

dss:contains

dss:Weight

Fig. 9. prov:Entity concepts used for the decision making.

dss:DecisionMemo

the final decisions. In many cases, the concrete conflict resolution
strategy is implemented as a simple “last-come-first-serve”
algorithm, i.e., in case of a conflict the latest decision will be
established and will be presented to the user. In cases with strong
user-interaction, this strategy may be extended by the
“human-is-always-right” rule, i.e., decisions manually set by
humans will always overrule decisions automatically derived by
decision modules. The following example shows a decision process
in ontological representation, where data is subsequently entered
and decisions are derived.

Example. A given user (userl) enters new data in a data entry
activity. The entry consists of the two facts f1 and f2. Based on this
entry and the facts, respectively, the knowledge base k1 creates a
new rule fact (ruleFact 1), that in turn derives the decision d1. The
resulting ontology triples are given in Turtle [27] syntax:

1 ex:entry1 a dss:DataEntry ;

2 prov:wasAssociatedWith ex:user1 ;

3 prov:startedAtTime "2014-05-12+10:00"""xsd:date ;
4 prov:endedAtTime "2014-05-12+11:00"""xsd:date .
5

6 ex:f1 a dss:InputData ;

7 prov:hadPrimarySource ex:entry1 .

8

9 ex:f2 a dss:InputData ;

10 prov:hadPrimarySource ex:entryl .

11

12 ex:ruleFact 1 a dss:RuleFact ;

13 prov:wasDerivedFrom ex:f1, ex:f2 ;

14 prov:wasAttributedTo ex:k1 .

15

16 ex:d1 a dss:Decision ;

17 prov:wasDerivedFrom ex:ruleFact 1 ;

18 prov:wasAttributedTo ex:k1 ;

19 prov:wasGeneratedBy ex:dataEntryActivity ;

20 prov:generatedAtTime "2014-05-12+10:00"""xsd:date ;
21 prov:value "Established” .

Later, the user enters an informal memo (entry2) and connects
this memo via the memoFact 1 to the derivation of decision d2
included in the knowledge base k2. The resulting triples added to
the decision making ontology are:

50 J. Baumeister, A. Striffler / Knowledge-Based Systems 88 (2015) 45-56

Knowledge
Base

v

Global
Decision
Ontology

Data Entr Decision Broadcast
Y Making Results

New/updated data available

Fig. 10. Refined decision making process also broadcasting the results to the decision making ontology.

1 ex:entry2 a dss:MemoEntry ;

2 prov:wasAssociatedWith ex:user1 ;

3 prov:startedAtTime "2014-05-13+10:01"""xsd:date ;
4 prov:endedAtTime "2014-05-13+11:01"""xsd:date .
5

6 ex:f3 a dss:MemoFact ;

7 prov:hadPrimarySource ex:entry2 .

8

9 ex:memoFact 1 a dss:MemoFact ;

10 prov:wasDerivedFrom ex:f3 .

11

12 ex:d2 a dss:Decision ;

13 prov:wasDerivedFrom ex:memoFact 1 ;

14 prov:wasAttributedTo ex:k2 ;

15 prov:wasGeneratedBy ex:memoEntryActivity ;

16 prov:generatedAtTime "2014-05-13+10:00"""xsd:date ;
17 prov:value "Established” .

3.2. Explaining decisions and the decision process

When complex decision support systems are deployed into a
collaborative and episodic environment, the system essentially
needs to provide an explanation of derived decisions. Different
people contribute to one decision over a longer period of time
and a decision is derived by potentially heterogeneous knowledge
representations. Then, transparent explanations improve the gen-
eral acceptance of the system, but can also be used for tutorial
and legal purposes by showing the reasons for a particularly
derived decision [28].

An explanation approach for the described decision support
system should give answers to the 3Ws (what?, why?, when?)
and at least needs to meet the following requirements:

e What: Which decisions are derived?

e Why: Which knowledge and which users contributed to the
derivation of a particular decision? The handling of different
knowledge representations is an important requirement.

e When: What is the temporal development of a particular
decision, i.e., the values within the past episodes?

Answering these questions requires the availability of the rep-
resentation and versioning of each activity made in the decision
support system. Every change needs to be traceable as it was
described for instance by [29,30]. Also, the decision process itself
needs to be represented as we introduced in the previous
paragraphs.

Since we represent all activities as instances of the decision
ontology, we are able to formulate the explanation queries as
SPARQL statements [20]. The following SPARQL query gives an
example answer to the 3Ws: It lists all derived decisions together
with the primary acting agent (e.g., user responsible for deriving
this decision) and the derivating sources of the decision. Also, the
time of the decision derivation is shown. Due to the FILTER NOT
EXISTS constraint all invalidated decisions are excluded from
the result.

1 SELECT ?entry ?agent ?source ?generatedTime
2 WHERE {

?entry rdf:type dss:Decision ;

4 prov:wasDerivedFrom+ ?source ;

5 prov:wasGeneratedBy ?activity ;

6 prov:generatedAtTime ?generatedTime .
7
8

w

?activity prov:wasAssociatedWith ?agent .

FILTER NOT EXISTS {
9 ?entry prov:invalidatedAtTime ?invalidatedTime .
10 }
11}

Typically, the query is specialized to a particular decision.
Please note, that ad hoc explanations can easily be constructed
by defining variants of the shown query.

4. Case study: collaborative decision support for chemical safety

The previous sections introduced a general approach for the
implementation of collaborative decision support systems. There
are many different possibilities for the realization of an episodic
decision support system using mixed knowledge representations.
In this paper, we describe the implementation of a decision sup-
port system that was deployed in 2012 in its first version and since
then was extended and improved continuously until now. We
describe the goals, development decisions, and experiences made
with the collaborative decision support system KnowSEC (“Manag-
ing Knowledge of Substances of Ecological Concern”). The system is
mainly in use by the unit chemical safety of the Federal Environ-
ment Agency of Germany (Umweltbundesamt).! The Federal
Environment Agency of Germany is a scientific agency with about
1500 employees, and it observes the environment from different
scientific disciplines and assesses the status of the nature. It advises
politics and works on regulations in cooperation with other
European environmental agencies. The main goal of KnowSEC is

T http://www.umweltbundesamt.de.

http://www.umweltbundesamt.de

J. Baumeister, A. Striffler / Knowledge-Based Systems 88 (2015) 45-56 51

the semi-automated support of expert users by ranking, assessing,
and regulating new chemicals. As the foundation of the system,
the semantic wiki KnowWE [31] is used for the development of
the knowledge base but also for the application of the decision
support system.

4.1. Knowledge base development

The development of the knowledge base started in 2011 with a
small group of three domain specialists. Until now, eleven domain
specialists have contributed to the knowledge base. Generally, the
experts are organized in specialist teams, whereas these teams
work on specific aspects of the knowledge base. For instance, there
exists a team for the assessment of the persistence of chemicals, a
team focusing on the bio-accumulation of chemicals, and a team
for the exposure of chemicals. See Fig. 11 for different aspects that
need to be considered for the assessment of a chemical. Each
aspect corresponds to a single knowledge base, also called module.
Initially, the modules were developed independently in order to
facilitate faster development cycles, since no coordination was
required between the teams. After the finalization of the first
two modules we established knowledge formalization patterns
[32] for the organization of the modules. That way, the modules
are structured as similar as possible, using the same naming con-
ventions, similar structures of decisions, and use similar inference
strategies for decisions. In consequence, the maintainability was
improved for existing modules, and the development of new mod-
ules was simplified significantly. When a module reached a steady
state it was linked to the master knowledge base thus inter-
weaving the linked modules. In the past and still now the teams
are supported by two internal knowledge engineers that are
mainly responsible for the organization and refactoring of the mas-
ter knowledge base. Since, different (mainly independent) aspects
are covered by the knowledge base, the development runs in
parallel. At the moment of writing the knowledge base comprises
eight decision modules, where the particular modules are imple-
mented using different knowledge representations, see Fig. 12.
The appropriate knowledge representation was selected according
to the reasoning practice of the contributing expert team. For
instance, some modules aggregate rather independent facts for a
decision, whereas other modules show a strong dependency
between particular facts. Simple decision modules with categoric
logic are implemented by decision tables [32]. Complex
decision modules elaborate sophisticated dependencies between
different substance criteria. Those modules were implemented by
scoring rules and diagnostic flowcharts [33]. Fig. 13 shows a non-
monotonic scoring rule (simplified) included in the module assess-
ing the persistence of a chemical.

As another example, the assessment knowledge of bio-
accumulation was implemented by diagnostic flowcharts. A simple
excerpt of the flowchart covering a part of the REACH regulation is
depicted in Fig. 14: On the left, questions are depicted that are asked
to the user (e.g., BCF value and source), whereas on the right a
number of (sub-)decisions are inferred.

The modules are connected by an ontology of inputs and
decisions as described in Section 2.2. Each decision module defines
(sub-)decisions and corresponding input values; some inputs are
shared with other decision modules. In total the ontology formu-
lates 916 hierarchically structured decisions and 393 hierarchically
structured input questions. Questions can provide multiple
one-choice values, numeric inputs, and text values. The integrating
concepts, however, are formulated in the decision hierarchy, where
each module adds its own sub-tree of decisions. A part of the
combined decision hierarchy is depicted in Fig. 15; here decisions
of the module bio-accumulation are shown.

Climate change
potential?

Exposed?

Endocrine
disrupting
properties?

Bioaccumulative?

Persistent?

Fig. 11. Different target criteria during the decision process of a chemical
substance.

Flow charts

Ontologies

Images Decision Rules

trees/tables

Fig. 12. Used and connected knowledge representations in the KnowSEC system.

IF "10-d window fulfilled" = Yes
AND ("ThCO2 (% degradation in 28 days)" >= 60
OR "ThOD (% degradation in 28 days)" >= 60
OR "DOC (% degradation in 28 days)" >= 70)
EXCEPT "Not readily biodegradable" = established
THEN "Readily biodegradable" = P6

Fig. 13. Assessment of the persistence of a chemical using non-monotonic rules.

4.2. The decision process

The initial goal of the system was the support of complex and
time-consuming decision making on the chemical substances. A
large number of specific chemical properties and their conse-
quences need to be taken into account. Only substances under
REACH? are managed. Typically, many different working groups
(> 5 groups) are involved in the decision process that could run
for months or years. For this reason, decisions need to be docu-
mented and traceable over time. The decision process is a collabora-
tive task, where different sub-groups of the unit work on different
aspects of the substance, for instance concerning safety (toxicity,
persistence, bio-accumulation) or regulatory aspects, see Fig. 11 for
some criteria. Every aspect is considered as an episode in the deci-
sion process, as we introduced in Section 1, since decisions taken
for the particular criteria usually do not interact with each other.
These criteria are tested in parallel or (more typically) subsequently,
i.e., in true episodes.

Since the system is designed to not only support the decision
process of a substance but also for its documentation, all actions
and decisions about the substance are stored in the system. For
that, each covered substance is represented by a distinct page in
the system. That page gives an overview of the facts of the

2 REACH stands for the European Community Regulation on chemicals and their
safe use (EC 1907/2006).

52 J. Baumeister, A. Striffler / Knowledge-Based Systems 88 (2015) 45-56

Start

@/ BCF lipid-normalised? (5%
lipid content, caution if

No

" s Normalise except for cases
where known that lipid is not the
main compartment of

A

protein)

perfluorinated or known to bind
ask ’

known

accumulation
P6

Y # Assessment level: Not B or vB
(for PBT/vPvB)

W
&2BCF
ask

<2000 known

<1800

P6

B
o’ Assessment level: Near B (for

PBT)
P6

B

P Assessment level: B (for PBT),
criterion considered to be

[1800 .. 2000 definitely fulfilled

Experimental = 5000

_— [C
ﬁ 2000 .. 5000
&@°BCF source | gxperimental.] ©2BCF Pé
J;q 0
lask) [4500..5000[¥ 4 Assessment level: Near vB (for

vPvB)
P6

"« Assessment level: vB (for
vPvB), criterion considered to be

A

definitely fulfilled
P6

[}
7 u Assessment level: Potential
B/VvB (for PBT), further

1210

“| information needed
P6

B

o Substance possibly not B, but

-

42log KOW |
ask [6.10(

maybe metabolites
P6

|
" # Caution on experimental

-

aquatic BCF data
P6

Fig. 14. Assessment of the bio-accumulation of a chemical using diagnostic flowcharts.

substance, summarizes all past decision actions, and offers the
entry of new data and decisions. Provenance data is attached to
each information displayed on the substance page, so that the
involved users and the time of a particular decision is transparent
to the visiting users. In Fig. 16 the page of the toy substance
Kryptonite is shown (this substance is used for demonstration pur-
poses, since no real substance data can be shown). On the right of
the page the Identifier pane prints all known names and identifiers
of the current substance. This pane is very important for the orien-
tation of the users, since one substance can have many identifiers
with inconsistent naming in the worst case. At the top of the center
pane the made decisions are listed in the Decisions pane; explana-
tion for selected decisions are generated when requested by the
user. Below the overview pane, all informal decisions and com-
ments are listed historically in the Memos pane. These memos
can be filtered and sorted in various manners. At the left of the
page a navigation bar offers quick links to frequently used services
of the system. One important service links to (dynamically gener-
ated) Substance Lists, where users can define SPARQL queries to list
substances with specific properties (please note that all actions are
represented in the ontology and are thus SPARQLable). In the pane
Decision Making the user can select different decision modules to
be started for the current substance. When clicking on one of the
module names, an interview form is opened asking for relevant

input values. Fig. 17 shows the interview form for the aspect
Persistence and its sub-aspect Biotic degradation, respectively. For
each given answer the decision module tries to derive new (sub-)
decisions that are communicated to the user immediately.

4.3. Technical aspects

The open-source system KnowWE [31,34] was extended for the
implementation of KnowSEC. KnowWE is a full-featured semantic
wiki for the development of diagnostic knowledge bases and OWL/
RDF(S) ontologies. A broad range of intelligent applications were
already developed with KnowWE, for instance, clinical guidelines
[35,36], the configuration of HCI devices [37], and the ontological
formalization of ancient history [38]. KnowWE provides plugins
for the automated testing and debugging [39] of knowledge bases
including a continuous integration framework. In general, the use
of a semantic wiki [40] offers a number of helpful features:

e Distributed and collaborative use due to a web-based interface.

o Different types of knowledge are already mixable such as text
and images (informal) and ontologies (formal).

e A number of technical engineering features are commonly
included like the versioning of content, access control of users,
etc.

[

J. Baumeister, A. Striffler / Knowledge-Based Systems 88 (2015) 45-56

Final decision: Not B or vB
(for PBT/vPVB)

Probably not B

Potential B/vB (fore PBT),
further information needed

Near B (for PBT)

Overall decisions on B ————»

Near vB (for vPvB)

Unable to decide about B/vB,

Screening level:
___——» NotB or vB (for PBT/vPvB)

Decisions for bioaccumulation —® Decisions on aspect screening level
- Screening level: Potential B/vB
(for PBT), further information needed

Screening level: Potential Not B or vB

(forPBT/VPVB),
further information needed

Final decision: B (for PBT), criterion
considered to be definitely fulfilled

Final decision: vB (for vPvB), criterion
considered to be definitely fulfilled

not enough or inconsistent information

Fig. 15. An excerpt of the decision hierarchy; here a part of the decisions for evaluating the bio-accumulation of a substance is shown.

Navigation

* Home

* Teams

o Internet Resources

o Glossary

o Administration

* Recently Changed
® Module Status
Substance Lists
International Organisations
International Authorities
European Organisations
ECHA
European Authorities
German Au