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Abstract: This paper reports a method and results for solving the following problem: Given a
3D polygonal indoor map and a mobile robot equipped with a 3D time of flight (ToF) camera,
localize at frame rate the 6D robot pose with respect to the map. To solve the problem, the
polygonal map is represented for efficient usage as a solid-leaf BSP tree; at each control cycle,
the 6D pose change is estimated a priori from odometry or IMU, the expected ToF camera
view at the prior pose sampled from the BSP tree, and the pose change estimation corrected a
posteriori by fast ICP matching of the expected and the measured ToF image. Our experiments
indicate that, first, the method is in fact real-time capable; second, the 6D pose is tracked
reliably in a correct map under regular sensor conditions; and third, the tracking can recover
from some faults induced by local map inaccuracies and transient or local sensing errors.
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1. MOTIVATION AND BACKGROUND

Robot maps of indoor environments have often been 2D
occupancy maps in the past (Moravec and Elfes (1985);
Thrun et al. (2005); LaValle (2006)), allowing robots to be
localized in 3D poses (position and orientation). However,
as mobile robots enter applications, robot control has to
face the fact that real world is no 2D place. Avoiding safely
obstacles and steps needs to regard full 3D information;
mapping anything beyond flatland needs to use 3D maps;
and localization in a 3D map has to consider 6D robot
poses in general. In consequence, a considerable part of
recent literature has turned to tackling this increase in
dimensionality (see Niichter (2009) for an introduction).
6D poses are also required beyond robotics if hand-held
sensor modules get applied for sensing the environment.

Localization in 2D indoor environments is regarded as
solved. That changes when dealing with localization in 3D,
with six pose dimensions. Typical SLAM-generated maps
from that body of work are 3D point clouds as originating
from registered 3D laser scans (Niichter (2009)). This is
a useful sensing, representation and processing framework
in some cases, but it has two drawbacks for being used in
many service robot applications:

(1) Acquiring a single 3D scan takes a significant amount
of time, causing problems to handle ego motion and
independent motion in the scene;

(2) large 3D maps in the form of registered 3D scan
point clouds are inherently memory-intensive and
computing time intensive.

Polygonal 3D maps are a possible format for solving the ef-
ficiency problems, which is essential for large scale applica-

tions. They could be generated from 3D point cloud maps,
e.g., by region growing and meshing approaches used in
Computer Graphics (Hoppe et al. (1992)); alternatively,
they could come from importing facility management soft-
ware CAD building data. For acquiring 3D environment
information in short time cycles during robot operation,
two types of sensors get used in the robotics literature as
alternatives to 3D scanners: stereo vision and 3D time of
flight (ToF) cameras. Both could or should be used for
real-time localization in a polygonal indoor map, too.

However, only little work has been presented so far about
actually using polygonal maps. Morisset et al. (2009) de-
scribes a legged robot that builds such an environment
representation and employs it for path planning. Rusu
et al. (2008) presents a technique to extract cuboid repre-
sentations of kitchen furniture from 3D laser scans.

Currently, indoor applications are solved either by using
2D maps, or by reducing 3D maps to 2D for localization,
thus applying the same 2D methodology. This method
does not work, however, when dealing with sloping ground,
or, more common in indoor scenarios, with a robot that
displays uneven movement — or with no robot at all: Local-
izing a sensor, e.g., as part of a hand-held device, require to
deal with 6D movements and full 3D maps, all the while
respecting efficiency constraints. This paper describes a
system towards achieving this goal: We describe a method
and results for real-time 6D localization of a mobile robot
in a polygonal 3D map, given data from a 3D ToF camera.
“Real-time” here means the frame rate of the 3D ToF cam-
era. In this study, we have used a pose tracking approach
based on blending a sensor data expectation at the esti-



mated prior pose with the actual ToF camera data in every
time cycle, resulting in a posterior pose estimation. In the
discussion part below, we will get back to the possibility of
applying state of the art probabilistic methods like Monte
Carlo localization (Thrun et al. (2005)) in our scenario.

The rest of the paper is organized as follows. Next, we
sketch two technical ingredients used here. Then, the
main component is introduced: the localization procedure
itself, including the processing of the sensor data, the
generation of simulated data in the map, and the matching
of both. Experiments and results are described then, and
a discussion concludes the paper.

2. TECHNICAL INGREDIENTS

First, we describe briefly two technical components that
are important for the method described next: 3D ToF
cameras as the sensor, and BSP trees as a data structure.

2.1 Time of Flight Cameras

ToF cameras have attracted roboticists’ interest recently.
They yield 3D point clouds at good frame rates and are
compact and energy efficient. On the other hand, their
resolution, measurement range and aperture are currently
limited and their point clouds suffer from noise and arte-
facts. Yet, 3D ToF cameras have proven to be of use in
robotics, such as for obstacle avoidance (Weingarten et al.
(2004)), localization (Ohno et al. (2006)), and mapping
(May et al. (2009)). Smart filter techniques reduce noise
and artifacts in the point clouds to get reasonable results
(Fuchs and May (2008)). ToF cameras can be calibrated
using photogrammetric methods to reduce distortions.

All experiments for this paper were carried out with a
03D100 camera by PMDTechnologies, here referred to as
PMD camera. It yields a resolution of 50 x 64 pixels at
a frame rate of up to 24 Hz, subject to the environment-
dependent integration time.

2.2 BSP Trees

For efficient localization, our polygonal map is stored in an
optimized way as a Solid Leaf BSP Tree (Ericson (2005)).
Binary Space Partitioning (BSP) trees recursively subdi-
vide space into convex sets by hyperplanes, as described

Fig. 1. A 3D polygonal model of our office floor at the
University of Osnabriick. The model is hand-made
based on laser distometer measurements.

by Fuchs et al. (1979). For a given point, the Solid Leaf
BSP tree allows the closest polygon in the model to be
determined in O(logn) time, where n is the number of
stored polygons in the tree. Additionally, it can efficiently
be determined whether a given point is accessible, i.e.,
whether it is inside a defined area of the model. This
excludes space within walls, pillars and such.

3. THE LOCALIZATION PROCEDURE

The localization procedure follows the following scheme:
Between two readings of the camera, the robot’s pose
is tracked by means of odometry or IMU information,
resulting in the 6D prior pose estimate P, € RS at time t.
As soon as we receive new range data, a simulated point
cloud based on Py is calculated, using the 3D polygonal
map and a ToF camera sensor model. This produces the
sensor data that is expected at P,. Next, this expectation
is matched with the actual sensor data, using an efficient
version of the ICP algorithm. Finally, the quality of the
matching result is evaluated and used to correct Py, if
found reliable, resulting in the posterior pose Pc: at
time ¢. This scheme is illustrated in Fig. 2. The following
subsections unfold the details.

3.1 ToF Data Filtering

In a first step, the PMD data has to be preprocessed, since
it suffers from significant noise. This has two main sources:
Misreadings caused by reflections or external light, and
artifacts that appear at depth discontinuities. In these
situations, the sensor averages the distance measurements
of two surfaces. To filter out these artifacts, we use a noise
reduction algorithm by Huhle et al. (2008).

This algorithm evaluates each point by rating it according
to the distance difference to its neighboring pixels. Points
that are part of a homogenous area score higher than those
with no or only few neighbors within a similar distance. If
the score misses an empirically chosen threshold, the point
is classified as an outlier and gets removed.

Fig. 3 shows the results of the filtering process. Data
points in areas with varying point densities and without
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Fig. 2. The localization procedure’s basic scheme.



neighbors are removed. The remaining points have a high
probability of belonging to a physical surface.

3.2 ToF Camera Model for Generating Ezxpected Data

Sensor Model. To create a correspondence between the
ToF camera readings and the given 3D polygonal map, we
create a virtual point cloud that samples the surfaces in the
map, assuming the current prior pose estimate P,. This
process is based on a sensor model for the camera and a
pose estimation. In our experiments, this pose estimation
is delivered by the robot odometry. It could also be given
by other sources, such as an IMU.

The ToF camera configuration is modeled as a pinhole
camera with a mirrored image plane, cf. Fig 4. Accordingly,
rays from the origin are cast o through a discrete grid
on the image plane. Since the internal camera parameters
(focal length, chip size, physical pixel size) are unknown,
the model is parametrized by

e min and max vertical field-of-view angles (o, f3),
e min and max horizontal field-of-view angles (¢, 7).

Using these, the coordinates of the corner vertices Z1, Zs, Y3
and Y5 of the mirrored image plane are calculated as

Fig. 3. Noise reduction in PMD camera data. Top: Perspec-
tive view of a single PMD image. Bottom: View of the
same data with noise reduction applied as described.
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Fig. 4. Sketch of the PMD camera geometry with a
mirrored image plane.

Table 1. PMD camera simulation parameters.

Resolution [px] Range [m)] Field of view angles [°]
(A% TH tmin tmax (&4 B ¢ Y
64 50 0.0 7.5 249 197 228 116

f f
Zl:(—tanoz~f>’ ZQ:(tanB-f)’

f f
Yl:(—tan¢~f)’ YQ:(tan’y-f)'

The focal length f has no influence on the result of the
ray casting process, because if the field-of-view angles
are known, it is unimportant where the image plane is
positioned. For simplicity we therefore assume f = 1.
Using the equations above, the specific dimensions (width
w and height h) of our virtual PMD camera are:

w=d(Z1Z3) = \/1+ (—tan a — tan )2,
h=d(Y1Ys) = /1 + (—tan ¢ — tan )2

Based on the pixel resolution of the real camera (r,, ),
the virtual image plane is discretized with the pixel sizes

w h
dy = — dy = —.
Th Y Ty

Ray Casting.  Each discrete point p,; on the image plane
produces a ray of light through o in direction w. Thus, each
direction vector u is transformed by a matrix T'c; € R?*4
that corresponds to the robot pose Pc ;:

(1) =7es (1)

where u’ represents the transformed direction vector. For
each direction vector u’, a ray can be calculated,

r=0+thy U, (1)
where » € R? denotes the ray, tni; € R is a scalar and
u € R3 the direction vector. The point of origin o € R3
describes the camera position. Each ray is now intersected
with the model, or, to be exact, with the polygon closest
to o in the model, which is determined by traversing the
BSP tree. This results in the parameter t;;; that can be
used to calculate the intersection point p € R3,

P = thit - U.

Note that in contrast to Eq. (1), o is omitted. Moreover, u
rather than the rotated ' is used as the direction vector.
This is due to the nature of the camera’s raw data, which
contains no information about the camera pose.

Fig. 5(a) contrasts the result of the ray casting procedure
with the actual camera data. The real and the simulated
cameras were both placed in front of a flat wall /polygon for
calibration. Obviously, both point clouds share a common
shape. Their resolution matches, too, but they cover dif-
ferent areas of the wall, due to (initially) incorrect field-of-
view angles. The correct parameters are then determined
by modification until the two datasets matched. The result
of this calibration is shown in Fig. 5(b), Table 5 displays
the empirically determined parameters for the PMD ToF
camera used in our experiments.

Here both point clouds match almost perfectly. If the
estimated pose is very accurate, these parameters provide



the most efficient way of simulating the point cloud. In
practice, however, the odometry-based pose estimation p,
is most likely erroneous. In the extreme, this could result
in losing the pose if the simulated point cloud would not
overlap the real one. To exclude this problem, we increase
field of view and resolution of the simulated sensor.

3.8 Point Cloud Matching

The simulation result is a point cloud representing what
the ToF camera is expected to sense at the estimated
pose. To correct the pose estimation, a transformation
A, € R4 (consisting of a rotation R and a translation
t) between the expected and the measured point clouds
is computed. This transformation is determined using an
optimized ICP implementation Niichter et al. (2007).

3.4 Ewvaluation of the Matching Result

Optimally, i.e., if the map were correct, robot motion
between two frames were small, and the environment
were free of features spoiling the camera image, A,
would quantify the prior pose estimate error precisely.
However, reality is suboptimal. For example, unmapped
obstacles may cause differences between the expected and
the measured point cloud, resulting in matching errors.
Specular objects like mirrors or windows may cause noise;
this can be reduced by the noise reduction procedure
mentioned in Sec. 3.1, but at the cost of losing resolution.

(b)

Fig. 5. Camera model calibration. Simulation (red), PMD
camera (green). (a) Simulation with incorrect angles.
(b) Simulation with correct angles after calibration.

Fig. 6. 3D map of the environment, with simulated (pink)
and real scan (turquoise), before matching.

In consequence, the ICP matching result is checked heuris-
tically, before being applied to correct the prior pose esti-
mate. If it is likely to err, it gets discarded and the prior
pose P estimate is used as the posterior, i.e.,

Pc, =P,
The heuristic evaluation is based on the following criteria:

® i;cp € N denotes the number of iterations needed to
determine the ICP result. If it equals 0, the ICP
algorithm was unable to find any point pairs and
obviously did not compute a transformation at all.

® n.m € N represents the number of points in the real
camera’s point cloud. If the data is noisy, many points
are removed by the noise reduction and 7,4y, is small.
The ICP result is rejected, if neqm fails to exceed an
empirically chosen threshold t.q.,. In practice,

TVvTrH
team = 2 (2)

has been reasonable, where ry and rg represent the
vertical and horizontal resolutions of the sensor.

® nicp € N represents the number of corresponding
point pairs found by ICP in the last iteration. If
Njep is significantly smaller than neqm, the ICP result
is possibly erroneous. This phenomenon would most
likely occur when the real world has an obstacle that
is not in the map. The transformation is rejected if

Micp < 5T = 1600,

which again has been empirically determined.

® ¢;cp € R denotes the mean distance between all
corresponding point pairs in the last iteration. Our
rejection criterion is chosen with respect to the accu-
racy of the map and the noise of the used sensor.

e Finally, the plausibility of the pose update is checked.
This is achieved by applying A, to the robot’s pose
and performing a “pose-in-solid-space” test, which
makes sure that the updated pose is in free space
rather than inside an object in the map. If the pose
were in solid space, the update is rejected.

If the ICP transformation is trusted, it is applied to the
pose estimation P, and generates the posterior pose:

PC,t = ptAicp-
4. EXPERIMENTS

We have tested the accuracy of our procedure in several
experiments. In this section we will present two examples
to demonstrate the ability of tracking the robot pose in
6D. The first example demonstrates planar pose tracking
by driving a closed loop in a classroom. The second one
extends pose tracking to a non-planar environment by
driving over a ramp, thus introducing true 6D poses.

4.1 Pose Tracking in a classroom

The first experiment was done in a classroom of size
7.0m x 4.7m. Fig. 7 shows the setup and results. The
robot was teleoperated to drive a loop, starting and ending
in the lower right corner. The turning points were marked
on the floor to make the experiments reproducible and
have ground truth. The PMD camera was mounted with
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Fig. 7. Setup and results of the classroom experiment. The
map and trajectories are shown in projection from top
(z and z values).

an upwards tilt (about 30°). The 3D map was hand-
modeled and is, therefore, subject to inaccuracies: In the
area labeled green, the room was modeled as solid space,
where there is really just a small pillar. Another map fault
was the presence of a unmapped blackboard protruding
into the room by about 35c¢m (area D). The left wall
contains several windows, indicated by the blue marking.

The results in this environment proved to be highly
reproducible. The proposed algorithm outperforms pure
odometry. The loop closure was almost successful (see A).
Start and end position differ by about 50 cm, which is in
the order of magnitude of one robot length. However, three
sections in the trajectory deserve further discussion.

Section B shows a trajectory that is smooth compared
to the others. This effect is due to the windows in the
left wall. In this region the PMD suffers from significant
noise. More and more points get filtered out, and the
point clouds become too sparse to find a confident ICP
match, so these pose corrections are rejected and the
pose update is based on odometry alone. Another severe
disturbance occurs while driving in parallel to the windows
where reflections distort the results of the ICP matching
(section C'). However, as soon as a more benign section
is reached, the camera based localization takes on the job
again. Despite the inaccuracy of the map in the upper left
corner, the algorithm is able to correct the pose until the
estimation nearly matches ground truth.

In C the trajectory deviates significantly but stably from
ground truth. This is due to the blackboard. It is perceived
by the PMD camera, but not present in the map. In
consequence the real blackboard and the mapped wall are
matched, resulting in the obvious displacement. After the
area with the faulty map is left, the localization recovers.

4.2 Pose Tracking involving a Ramp

In the second experiment, localization in true 6D is tested.
The robot had to drive over a ramp raising by ca.30cm at
a pitch angle of ca. 10°. The localization result is compared
to a run on the flat floor. Fig 8 shows the results. Label A
covers the part of the trajectory in front of the ramp. Here,
both results show strong, but uniform deviations from
ground truth. As soon as the robot reaches the ramp, the
result becomes stable and almost exactly resembles ground
truth. Without the ramp, the localization results climb
constantly until they reach ground truth. In section C,
the robot approaches a wall without recognizable features.
Thus, the height information can no longer be determined
and the estimation error accumulates resulting in an
increasing height estimation.

The localization results on the ramp become stable as soon
as ceiling points get into view. Even without prominent
features, the matching between the simulated and the
measured point cloud succeeds because of the camera tilt
angle. Odometry gives no height information at this point.
Therefore, the simulated results would expect a constant
height of the ceiling, which results in a detectable offset
between the perceived and the simulated point clouds that
can be determined by ICP.

4.8 Performance

The desired real-time capability of the procedure means in
practice a cycle time lower than the shutter speed of the
PMD camera, which itself depends on the integration time.
In the experiment, we have achieved this. In general, the
cycle time depends mainly on two components: generating
the simulated point cloud, and ICP matching. Based
on BSP trees, the simulation time is logarithmic in the
number of map polygons. For the small point clouds
involved here (remember that the resolution of the O3D100
is 64 x 50), the time for ICP matching using the optimized
ICP implementation (Niichter et al. (2007)) is negligible.

5. DISCUSSION

The state of the art localization approach for mobile
indoor robots is arguably Monte-Carlo localization in a
2D occupancy map based on 2D laser scans (Thrun et al.
(2005)). We have done three related things differently here:
Used a 3D ToF camera, used a polygonal 3D map, and
used maximum-likelihood mono-modal pose tracking. We
will address the three deviations from the state of the art
in turn, and finally reflect on what we have achieved.

3D ToF cameras are around for a while now. They are
an attractive type of sensor for robotics in principle, but
current exemplars have a number of drawbacks compared
to other sensors, as stated above (Sec. 2.1). For localization
based on the PMD 0O3D100, the combination of low aper-
ture and limited range (7.5m) is bad: Frequently, all that
the sensor sees is a flat wall, allowing precise localization
regarding one horizontal dimension only. Ideally, concave
wall/wall or wall/ceiling edges should be tracked, but the
range limit makes this often impossible. In consequence,
the pose estimation may drift away in some dimensions. It
will typically recover, but if precise localization is needed
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Fig. 8. Setup and results of the “ramp” experiment. The Trajectories are shown in projection from the left side (y and
z values). In the beginning (section labeled A), the initial y pose estimation was wrong. When the robot enters the
ramp, the ceiling comes into the view of the camera, and the pose is corrected successfully.

at any time, fusion with other sensor data is mandatory
for today’s 3D ToF cameras.

Using 3D polygonal maps is uncommon in robotics. Yet,
as generating 3D point cloud maps is under intensive
research, as point cloud maps are costly, and as polygonal
maps are a natural choice for human-made environments,
they are moving into focus. In our experiments, they have
kept the promise of computation and storage efficiency.
The approach of matching an expected data sample with
the actual 3D camera data for generating a posterior pose
estimate, exploits the real data well and has proven robust
against map inaccuracies. Matching methods other than
ICP matching point clouds are possible: For example,
principal planes could be identified in the 3D ToF data
and fitted with the polygonal map. This is future research.

Finally, our mono-modal pose tracking approach is obvi-
ously compatible with multi-modal particle filter localiza-
tion. A particle filter version could be realized by sampling
a prior pose distribution from odometry and/or IMU data,
and basically applying our method locally for each particle.
The evaluation described in Sec. 4 would have to be turned
into estimating the posterior pose distributions per parti-
cle. So we are not arguing for localization by mono-modal
pose-tracking, but our experiment rather serves for formu-
lating the localization method for 3D ToF camera data and
polygonal maps, independent of its mono- or multi-modal
usage. This will be examined in future research.

We have presented a method for 6D localization using 3D
ToF camera data. Current cameras suffer from some tech-
nical deficits, and so, in consequence, does the localization
performance. We reckon these deficits will go away, and
then 6D localization will be solved naturally with their
data. Our experiments make plausible that the localization
can recover from faults induced by unfavorable sensing
conditions, moderate map faults and prior pose errors.
Polygonal maps are the map format of choice here, owing

to their storage and time efficiency. Our experiment shows
that they are a handy format for real-time 6D localization.
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