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Abstract— This paper presents a robust and real-time capa-
ble recognition system for the fast detection and classification
of objects in spatial 3D data. Depth and reflection data from
a 3D laser scanner are rendered into images and fed into
a saliency-based visual attention system that detects regions
of potential interest. Only these regions are examinated by a 3D laserscanner
fast classifier. The time saving of classifying objects in salient
regions rather than in complete images is linear with the
number of trained object classes. Robustness is achieved by
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. INTRODUCTION Attertion it Classification

The interpretation of sensor data in real-time is one o,
the most important tasks in robotic applications. One ap-
proach to achieve a robust interpretation is to fuse differertd. 1. _thé rscoggigoln system. Two laszr mcéd_e?, depth and réef;egti_or;,
e are proviae: y a aser scanner, rendered Into Images anad ftea Into
sensor modalities, e.g_. depth and reﬂe_(_:tance data fromag attention and a classification system. The attention system fuses
3D laser scanner. This enables to utilize the respecti@nspicuities of both modes in one saliency map (S). A focus of attention
advantages of the modes, e.g., there is a high probabilit§OA) is generated and fed into the classification system. The classifier
. P . . arches for objects of predefined classes in the neighborhood of the
that d|sgontan|F|es "f]. range data cor_respond .tO ObjG(ﬁ%A in both laser images and combines the results by an appropriate
boundaries. This facilitates the detection of objects: Afonnection. The rectangle in the result image (right) depicts a detected
object producing a similar intensity like its backgroundobject.
is difficult to detect in an intensity image, but easily in
the range data. Additionally, misclassifications of shadows,

mirrored objects and wall paintings are avoided (cf. Fig. glacks real-time _abilities. Object recognition in range _data
right). On the other hand, a flat object, e.g., a sign on Qas been considered by Johnson and Hebert [7] using an

wall, is likely not to be detected in the range but in the!CP algorithm for registration of 3D shapes, an approach

reflectance image. Furthermore, the scanner modalities df&ténded in [8]. Both use local, memory consuming surface
illumination independent, i.e., they are the same in sunshirudnatures based on prior created mesh representations of

as in complete darkness and no reflection artifacts confud Objects.
the recognition. In this paper, we present a new system for the fast

In computer vision, classifiers are a common approacfietection and recognition of objects in spatial 3D data,
for object detection and recently, fast classifiers hav&sing attentional mechanisms as a front end for object
been developed, e.g. by Viola & Jones [1]. Howeverfecognition (Fig. 1). Input is provided by the AIS 3D
the recognition time increases linearly with the numbefaser scanner [9], mounted on the autonomous mobile robot
of different Object classes. To preserve h|gh qua”ty 0KUTt3D. The scanner ylelds range as well as reflectance
recognition despite of limited time and computation powerdata in a single 3D scan pass. Both data modalities are
the input set has to be reduced. One approach is to restrnﬁ@nSfOTmed into 2D images and fed into a visual attention
classification to image regions of potential interest found bgystem. In the depth as well as in the reflectance image,
a saliency-based attention system. Similar to human visiofhe system detects regions that are salient according to
such systems identify salient parts of a scene by computirigtensity and orientations. Finally, the focus of attention
feature contrasts according to different features [2], [3], [4]iS sequentially directed to the most salient regions.

A combination of attention and classification was done A focus region is searched for objects by a cascade of
by Pessoa and Exel [5]; they focus attention on discrimielassifiers built originally for face detection by Viola et al.
native parts of pre-segmented objects. Miau, Papageorgifli. Each classifier is composed of several simple classifiers
and Itti detect pedestrians on attentionally focused imageontaining edge, line or center surround features. The
regions using a support vector machine algorithm [6]classifier is applied to both laser modes. It is shown how the
however, their approach is computationally expensive andassification is significantly sped up by concentrating on



regions of interest. In this paper, we show the performance
of the system for two object classes: office chairs and a
mobile robot. For each object class, the same set of salient
regions is considered, i.e., salient regions are computed
only once for a scene.

The paper is organized as follows: Section Il describes l - - l -
the 3D laser scanner. In section Ill we introduce the Seales
attention system and in IV the object classification. Sectio @ @

V presents the experiments performed by the combinatio ‘ Intensity
of attention and classification and discusses the resulty <<t
Finally, section VI concludes the paper.
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Il. THE MULTI-MODAL 3D LASER SCANNER

The data acquisition in our experiments was performe
with the AIS 3D laser range finder (top left of Fig. 1, [9]),
mounted on the autonomous mobile robot Kurt3D. It is T
built on the basis of a 2D range finder by extension with
a mount and a small servomotor step-rotating the scanner
around a horizontal axis. The areal®0°(h) x 120°(v) is
scanned with different horizontal (181, 361, 721 pts) and
vertical (250, 500 pts) resolutions. The scanner yields two Compute Focus
kinds of data: The distance of the scanned object (range next focus
data) and the intensity of the reflected light (reﬂeCtanC%ig. 2. The Laser-Based Attention System. Depth and reflectance images
data). To visualize the 3D data, a viewer program base@ndered from the laser data are processed independently. Conspicuities
on OPENGL has been implemented. The program projectgccording to intensity and orientations are determined and fused into a

. de-specific saliency map. After combining both of these maps, a focus
a 3D scene to the image plane, such that the data can gigattention (FOA) is directed to the most salient region. Reseting this

drawn and inspected from every perspective. Typical imregion enables the computation of the next focus.

ages have a size 6800 x 300 pixels. The depth information

of the 3D data is visualized as a gray-scale image: small

depth values are represented as bright intensities and largeale:. Feature computations on different scales enable the

Saliency map

|

depth values as dark ones. detection of salient regions with different sizes. Two kinds
of features are considered, intensities and orientations, and
Il. THE LASER-BASED ATTENTION SYSTEM represented in different feature maps. The intensity feature

The laser-based attention system detects salient regionsips are created by center-surround mechanisms which
in laser data. Rendering the laser data into images allowempute the intensity differences between image regions
the investigation by computer vision methods. Salienciegand their surroundings. The centers given by a pixel in
are determined by computing conspicuities of the featuresne of the scaleg — 4, the surrounds is determined by
intensity and orientation in a bottom-up, data-driven maneomputing the average of the surrounding pixels for two
ner. These conspicuities are fused into a saliency map ardifferent sizes of surrounds. The center-surround difference
finally, the focus of attention is sequentially directed to thel =| ¢ — s | is a measure for the intensity contrast in the
most salient points in this map. The system is shown ispecified region. This yields six intensity feature mdps
Fig. 2 (cf. [10]); it is built on principles of the standard to Ig.
model of visual attention by Koch & Ullman [11] used by To obtain the orientation maps, four oriented Gabor
many computational attention systems, e.g., [2], [4]. pyramids are created, detecting bar-like features of the

Since our sensor data consists of two modalities, dep#rientations{0°,45°,90°,135°}. The map=2 —4 of each
and reflection, the attention system has to process sevemiramid are summed up by inter-scale addition, i.e., all
input images independently, an ability not available inmaps are resized to scale 2 and then added up pixel by
any other attention systems the authors know about. Opixel. This yields four orientation feature maps of scale 2,
system computes saliencies for every mode in parallel arghe for each orientation.
finally fuses them into a single saliency map. This approach . .
enables a straight-forward extension to additional sens& Fusing Saliencies

modes, e.g., camera data. All feature maps of one feature are combined into a con-
_ spicuity map. The intensity and the orientation conspicuity
A. Feature Computations maps are summed up to a mode-specific saliency map,

Firstly, five different scales (0-4) are computed onone representing depth and one reflection mode. These
images of both laser modalities by Gaussian pyramidsre finally summed up to the single saliency m&pThe
which successively low-pass filter and subsample the inpsialiency map as well as some of the other maps are shown
image; i.e., scalé + 1 has half the width and height of in Fig. 3.
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Fig. 4. Left: Edge, line, diagonal and center surround features used
for classification. Right: The computation of the sum of pixels in the
shaded region is based on four integral image lookuf(&:, y, h, w) =

Iz +w,y+h)—I(z,y+h)—I(z+w,y)+ I(z,y). Feature values

are calculated by subtractions of these values weighted with the areas of
the black and white parts.

Inspired by these ideas, we detect objects in 3D range and
reflectance data using a cascade of classifiers composed of
several simple classifiers.

A. Feature Detection using Integral Images

The features used here have the same structure as the
Haar basis functions also considered in [13], [1]. Fig. 4
Fig. 3. First row: Orientation conspicuity map depth, intensity conspicu{left) shows the six basis features, i.e., edge, line, and center
ity map reflectance, saliency map depth, saliency map reflectance. Secoggrround features. The set of possible features in an object
L%V:ﬁtl;;z geonn;?e'nﬁ%S(fel'gerlceyg?as‘;”sr']%gt.' The 5 most salient reglons'Th(aetection area is very large, e.g. 361760 features for an

object detection area @0 x 40 pixels. A single feature is
effectively computed on input images using integral images

The summation of the maps is done by weighting them1], also known as summed area tables [14]. An integral
resizing them to scale 2 and pixel-by-pixel addition. If therdmage! is an intermediate representation for the image and
was no weighting, all maps would have the same influenc€ontains the sum of gray-scale pixel values ofax y
That means, that if there are many maps, the influence dhagen, i.e.,
each map is very small and its values do not contribute v
much to the summed map. To prevent this effect, we have I(z,y) = Z Z N(z',y).
to determine the most important maps and give them a 2/=0 /=0
higher influence. To enable pop-out effects, i.e., immediate, . _ . )
detection of regions that differ in one feature, important! "€ iNtegral image is computed recursively by the formula:
maps are those that have few popping-out salient region&(®>¥) = 1(x,y = 1) + I(z = 1,y) + N(z,y) — I(z —
These maps are determined by counting the number df¥ — 1) with I(~1,y) = I(z,~1) = 0, requiring only
local maxima in a map that exceed a certain threshol®N€ scan over the input data. This representation allows

To weigh maps according to the number of peaks, eacttt]'e computation of a.feature. valug using several lookups
map is divided by the square root of the number of Iocaf’md weighted subtractions (Fig. 4 right). To detect a feature,
maximam: w(map) — map//m. a threshold is required which is automatically determined

during a fitting process, such that a minimum number of
C. The Focus of Attention examples are misclassified.

To determine the most salient locationSithe brightest
point is located. Starting from this point, region growing
finds recursively all neighbors with similar values within The Gentle Ada Boost Algorithm is a variant of the
a certain threshold. The width and height of this regiorpowerful boosting learning technique [15]. It is used to
yield an elliptic FOA, considering size and shape of theselect a set of simple features to achieve a given detection
salient region. Finally, the values in the focused region arand error rate. The various Ada Boost algorithms differ in
reseted in the saliency map, enabling the computation dlie update scheme of the weights. According to Lienhart et
the next FOA. Fig. 3 (bottom, right) shows the five mostal., the Gentle Ada Boost Algorithm is the most successful
salient locations in a test image. learning procedure for face detection applications [14].

The attention system benefits from the depth as well as Learning is based onV weighted training examples
from the reflectance data, since these data modes comples, y:),i € {1... N}, wherex, are the images ang;
ment each other: An object producing the same intensity—1, 1} the supervised classified output. At the beginning,
like its background may not be detected in a gray-scalthe weightsw; are initialized withw; = 1/N. Three steps
image, but in the range data. On the other hand, a flare repeated to select simple features until a given detection
object, e.g., a letter on a desk, is likely not to be detectethte d is reached: First, every simple feature is fit to the

B. Learning Classification Functions

in the depth but in the reflectance image (cf. [12]). data. Hereby, the errar is evaluated with respect to the
weightsw;. Second, the best feature classifigris chosen
IV. OBJECTCLASSIFICATION for the classification function and the countés increased.

Recently, Viola and Jones have proposed a boostdeinally, the weights are updated with; := w; - e~¥i"(:)
cascade of simple classifiers for fast face detection [1hnd renormalized.
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Fig. 5. Left: The first three stages of a cascade of classifiers for an office chair in depth data. Every stage contains several simple classifiers that use
Haar-like features. Right: A camera image of the robot next to a poster showing a robot (top). In the laser data of the same scene, the poster is not
visible due to the infrared light and the range information (bottom); this prevents misclassification: Only the real robot is detected.

The final output of the classifier is si@:tT:1 ht(z)), detects objects at regions of interest. These three points
with h(z) = a, if z > thr. andh(z) = 8 otherwise.«w and  will be investigated in the following.
0 are the outputs of the fitted simple feature classifiers, that Firstly, the performance of attention systems on camera
depend on the assigned weights, the expected error and tieta was evaluated by Parkhurst et al. [16] and Ouerhani
classifier size. Next, a cascade based on these classifiergisal. [17]. They demonstrate that attention systems based
built. on the Koch-Uliman model [11] detect salient regions with
a performance comparable to humans. We showed in [12]
and [10] that attentional mechanisms work also reliably on

The performance of one classifier is not suitable fotaser data and that the two laser modes complement each
object classification, since it produces a high hit rate, e.gother, enabling the consideration of more object qualities.
0.999, but also a high error rate, e.g., 0.5. Nevertheles§wo examples of these results are depicted in Fig. 6.
the hit rate is much higher than the error rate. To construct
an overall good classifier, several classifiers are arrangedy
in a cascade, i.e., a degenerated decision tree. In every;
stage of the cascade, a decision is made whether the images
contains the object or not. This computation reduces both
rates. Since the hit rate is close to one, their multiplication §
results also in a value close to one, while the multiplication
of the smaller error rates approaches zero. Furthermore, the
whole classification process speeds up, because the whol
cascade is rarely needed. Fig. 5 left shows an example
cascade of classifiers for detecting chairs in depth images

An effective cascade is learned by a simple iterative =
method. For every stage, the classification functign) is
learned until the required hit rate is reached. The process ™
continues with the next stage using only the currently
misclassified examples. The number of features used in
each classifier increases with additional stages (cf. Fig. 5, E

left).
) . . . . Fig. 6. Two examples of foci found by the attention system on laser
An object is detected by laying a search window OVEata. L eft: Camera image of the scene. Right: The corresponding scene in

several parts of the input image, usually running over theser data with foci of attention. The arrows indicate the order of saliency

whole image from the upper left to the lower right c:Omer.of the foci. The traffic sign, the handicapped person sign and the person
. . . were focused (taken from our results in [10]).

To find objects on larger scales, the detector is enlarged by

rescallng_the fgatures. j’h|s Is effectively done by several Secondly, we tested the performance of the classifier. Its

look-ups in the integral image. In our approach, the searclgl

windows are only applied in the neighborhood of the region 'gh performance for face detection was shown in [1], here
. y app >19 90N e show the performance on laser data. The classifier was
of interest detected by the attentional system.

trained on laser imagesd0 x 300 pixels) of chairs and

of the robot. We rendered 200 training images with chairs

from 46 scans and 1083 training images with the robot
To show the performance of the system, we claim threbom 200 scans. Additionally, we provided 738 negative

points: Firstly, the attention system detects regions oéxample images to the classifier from which a multiple of

interest. Secondly, the classifier has good detection armlib-images is created automatically.

false alarm rates on laser data. And finally, the combination The cascade in Fig. 5 (left) presents the first three stages

of both systems yields a significant speed up and reliablgf the classifier for the object class “office chair” using

C. The Cascade of Classifiers

V. EXPERIMENTS AND RESULTS



depth values. One main feature is the horizontal bar ifor two different object classes the return of investment
the first stage representing the seat of the chair. To test tie reached: The exhaustive search needs 400 ms, whereas
general performance of the classifier, the image is searchéuke attentive search requires only 350 ms. The time saving
from top left to bottom right by applying the cascade. Thancreases proportionally with the number of objects.
detection starts with a classifier of si2é x 40 pixels for
a chair and24 x 24 for the robot. To detect objects at , VI. ConcLusions

larger scales, the detector is rescaled. The classification is!" this paper, we have presented a new system for
performed on a joint cascade of range and reflectance dafombining visual attention mechanisms with a fast method

The detected results have to be combined by an appropridfy Obiect classification. Input data are provided by a 3D
connection, in this case we used a logical “and”, yieldin aser scanner mounted on top of an autonomous robot.

a reduction of false detections. he scanner provides illumination-independent, bi-modal

Table | summarizes the results of exhaustive classificdat@ that are transformed to depth and reflectance images.

tion with a test data set of 31 scenes with chairs (cf. ouf "€S€ Serve as input to an attention system, directing

results in [18]) and of 33 scenes with the robot. It show§he focus of atte_ntion se_quentiall_y to re_gions of potential
that the number of false detections is reduced to zero by tHaterest. The foci determine starting regions for a cascade

combination of the modes while the detection rates chandd classifiers. By concentrating classification on salient
regions, the classifier has to consider only a fraction of

only slightly. ; 4
the search windows of those of an exhaustive search over
TABLE | the whole image. This speeds up the classification part
DETECTIONS AND FALSE DETECTIONS OF THE CLASSIFIER ApPLIED  Significantly. The time saving of classifying objects in
TO 31 CHAIR AND 33 ROBOT IMAGES. salient regions rather than in complete images is linear
object | no. detections false detections with the number of trained object classes. The saving is
class | of | refl.| depth| comb.| refl.| depth| comb. especially important in time critical robotic applications.
obj. | im. | im. im. | im. The architecture benefits from the fusion of the two laser
charr | 33 |30 |29 |29 |2 |2 0 modes resulting in more detected objects and a zero false
robot | 33 | 29 | 29 29 101 0 classification rate. The range data facilitates the detection

of objects with the same intensity like their background
Finally, we show the results of the combination ofWhereas the reflection data is able to detect flat objects.

attention and classification system and analyze the tirfdOreover, misclassifications of shadows, mirroring objects
performance. The coordinates of the focus serve as inp@f'd Pictures of objects are avoided.

for the classifier. Since a focus is not always at the center We have investigated the performance of the system
of an object but often at the borders, the classifier search¥dth two different object classes: Office chairs and a

for objects in a specified region around the focus (herdnobile robot. In future work, we will integrate camera
radius 20 pixels). In this region, the classifier begins itsdat@ into the system, allowing the simultaneous use of
search for objects. color, depth, and reflectance. Furthermore, the attention

In all of our examples, the objects were detected if a{nodel will be extended by top-down mechanisms, enabling

focus of attention pointed to them and if the object was dego_al dependent' .search fpr objects. The classi.fier will be
tected when searching the whole image. If no focus point{@inéd for additional objects compete for saliency. The

to an object, this object is not detected. This is confornfverall goal will be aflexible vision system that recognizes
to our goal to detect only salient objects in the order ofalient objects first, guided by attentional mechanisms, and

decreasing saliency. Fig. 7 and 8 show some examplé@giSters the recognized objects in semantic maps which are

of our results. The objects are successfully detected ev&ytonqmoufsly bg'lt by a mokl;nle rotéokt{ The maps will serve
if the focus is at the object’'s border (Fig. 7, left) and ifas an interlace between robot and humans.
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Fig. 7. Top row: The first resp. the first 5 foci of attention computed on depth and reflection data. Bottom row: Classified objects in the focus regions.
Left to right: 1) Chair is detected even if the focus is at its border; 2) detection of two chairs; 3) chair is detected although it is presented sidewards
and partially occluded; 4) only the chair is focused, therefore the chair but not the robot is classified; 5) both objects are focused and classified.

y

Fig. 8. Top row: The first resp. the first 5 foci of attention computed on depth and reflection data. Bottom row: Classified objects in the focus regions.
Right: A robot rotated by30° is still detected.
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