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Abstract— Situational awareness in search and rescue mis-
sions is key to successful operations, e.g., in collapsed buildings,
underground mine shafts, construction sites, and underwater
caves. LiIDAR sensors in robotics play an increasingly important
role in this context, as do robust and application-specific
algorithms for simultaneous localization and mapping (SLAM).
In many of these scenarios mapping requires the utilization of
a vertically descended scanning system. This work presents a
mobile system designed to solve this task, including a SLAM
approach for descended LiDAR sensors with small field of view
(FoV), which are in uncontrolled rotation. The SLAM approach
is based on planar polygon matching and is not limited to the
presented scenario. We test the system by lowering it from a
crane inside a tall building at a fire-fighter school, applying
our offline SLAM approach, and comparing the resulting point
clouds of the environment with ground truth maps acquired
by a terrestrial laser scanner (TLS). We also compare the
SLAM approach to a state-of-the-art approach with respect
to runtime and accuracy of the resulting maps. Our solution
achieves comparable mapping accuracy at 0.2% of the runtime.

I. INTRODUCTION

Any search and rescue mission relies on situational aware-
ness, which means that the structure and geometry of the
environment must be monitored. Often such missions include
descending a mobile mapping system down a pit with a
crane, e.g., in underground mine shafts, collapsed buildings,
construction sites, underwater caves, bridges, dams, and even
exoplanetary subsurface exploration [1]. In these scenarios
many common pose estimation techniques that are estab-
lished in different domains, e.g., autonomous cars, drones,
are not available. For example, global navigation satellite
systems (GNSS) depend on signal reception, and visual-
inertial tracking with cameras works only with sufficiently
good lightingg conditions. Hence a popular choice in the
robotics community are active LiDAR sensors, as they are
independent of lighting conditions and inherently yield a
precise 3D representation of the environment. However, to
aquire a point-cloud scan, the sensor head usually moves,
which takes a non-negligible amount of time. If the system
itself is moving in the process, this leads to an effect known
as motion distortion. Adversely, especially in search and
rescue missions, sensor trajectories cannot be ensured to be
in a slow and controlled fashion as, e.g., in a lab environment.
As a result, the faster and uncontrolled motion leads to less
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Fig. 1: Post-processed 3D point clouds aquired by a sensor
that is rotating freely while beeing descended from the aerial
ladder of a fire truck. Prior pose estimates are available from
an IMU and an angular encoder, which encodes the rotation
of the cable reel. A video of the point cloud is available
at https://youtu.be/N6FGd4y6bJw.

overlap between subsequent scans and more motion distor-
tion, which makes laser-based SLAM especially difficult.
When descending an unactuated probe with a cable from a
crane, the internal cable twist leads to unrestricted rotation of
the probe around the descending axis. The larger the distance
of descent, the more oscillation is introduced to the system,
and the longer the descending duration is, the more IMU
drift accumulates. Furthermore, we deliberately refrain from
utilizing cameras, GNSS, or magnetometer measurements,
but focus on LiDAR and IMU data. Thus, the problem we
address is an LiDAR-Inertial SLAM problem, using only
data from a laser scanner, IMU, and a rotational encoder on
the cable reel to estimate the traveled distance.

The main contribution of this work is the development and
evaluation of such a mapping system, which we test by de-
scending it from an aerial ladder of a fire truck (cf. Figure 1).
The second contribution of this paper is a revision of the
SLAM system from our previous work [2]. We substitute the
local planar clustering (LPC) with a different plane detection
framework according to [3] Furthermore, we implement a
dynamic global plane model that builds up sequentially as
new range measurements arrive, instead of being initialized



only once. The key to situational awareness is creating pre-
cise maps as fast as possible, thus we compare the accuracy
and runtime of our SLAM approach to an existing state-
of-the-art method. In the evaluation, we apply both methods
offline to the same input and match the resulting maps against
a high-precise ground-truth point cloud, available from a
terrestrial laser scanner (TLS). We compare the accuracy of
the resulting maps, as well as the algorithms’ runtime. Note
that in this evaluation the focus lies only on the resulting
map and not on the pose estimates. Recording ground truth
trajectories and evaluating the pose estimates is a task for
future work.

II. RELATED WORK

The system presented here has been part of the
“DAEDALUS” project [1]. The project originated from the
European Space Agency’s (ESA) Open Space Innovation
Platform (OSIP). In their Concurrent Design Facility (CDF)
study the consortium developed a mission to autonomously
explore underground caves and lava tubes on the moon [4].
The mission uses a spherical mapping robot that descends
the entrance pit with the help of a crane. Another example
where a tethered vehicle is used for the mapping of extremely
steep environments is “TReX"” [5]. It is a four-wheeled rover-
like robot equipped with a rotating 2D laser scanner that has
been tested in an open-pit mine. Prior pose estimates are
available either from a constant-velocity or visual-odometry
(VO) aided approach. Unlike our approach, their work ac-
counts for motion distortion in the LiDAR scans, yet the
operations and post-processing itself took several days for a
total distance of 1km. The main drawback is the impact on
the walls, increasing the risk of debris loosening and falling
off. More examples of suspending tethered mobile mapping
systems exist, e.g., the underwater explorer “UX-1" [6].
In [7], terrestrial laser scanners (TLS) were utilized for
mapping vertical mine shafts. A recent commercial solution
for vertical shaft mapping is [8] provided by Geoslam. They
employ data format compatibility to existing mining software
such as Deswik and Micromine.

In terms of laser-based SLAM, many algorithms for six
degrees of freedom (6 DOF) are available, often based on
the well-known Iterative-Closest-Point (ICP) algorithm [9].
Lu and Milos [10] derive a graph-based 2D variant that
considers all scans simultaneously in a global fashion.
Later, their approach was adopted for 3D point clouds in
6 DOF [11] and extended further to a semi-rigid continuous
time method [12]. We use this method to compare it with
the proposed SLAM approach. Another recent continuous-
time graph-based framework is “IN2LAAMA” [13], which
can perform localization, mapping, and extrinsic calibration
between a laser scanner and IMU at the same time. It is an
offline-batch method optimized for 360° FOV mechanically
actuated multi-channel LiDAR devices and has been exten-
sively tested with a Velodyne VLP-16. We note the utilization
of a solid-state LiDAR in this work, which got received a lot
of attention in the past years due to “their superiority in cost,
reliability, and [...] performance against the conventional
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mechanical spinning LiDARs [...]” [14]. While traditional
LiDAR is based on electro-mechanic parts which move
the sensor head, solid-state LiDAR relies on micro-electro-
mechanical systems (MEMS), optical-phase-arrays (OPA), or
Risley-prisms. Despite their potential advantages, solid-state
laser scanners impose new challenges for established SLAM
algorithms, in particular, small FOV, an irregular scanning
pattern with non-repetitive scanning, making feature ex-
traction more difficult, and increased motion blur. There
also exist continuous-time graph-based online methods such
as [15], which organize and optimize the system poses using
a multi-level hierarchical graph. This method achieves com-
parable accuracy as similar offline-batch methods through
multiresolution surfel-based registration. However, the ap-
proach is also optimized for traditional multi-channel laser
scanners and has been tested on carefully controlled micro
aerial vehicles (MAVs). Alismail and Browning [16] provide
a marker-less calibration procedure for spinning actuated
laser scanners, where the extrinsic parameters concerning the
spinning axis are estimated. In this initial study, we present
the results without fine calibration of extrinsic as the constant
calibration errors are orders of magnitude lower than the
errors introduced by motion distortion.

More approaches to laser-based SLAM exist that do not
rely solely on point-to-point optimization as ICP does. Popu-
lar model-based optimization methods often deal with finding
planes in the environment, as planar structures are abun-
dantly available in man-made environments. In [17], Forster
et al. successfully use plane-to-plane correspondences for
optimization. Their approach assumes that planar patches got
pre-extracted from the point cloud with a method of choice,
and incorporates possible uncertainties in the plane model.
Further recent examples of laser-based SLAM approaches
making use of the existence of planes include [18]-[21].
Two more recent SLAM approaches which specialize more
on solid state LiDAR, i.e., the massivley produced LiVOX
devices, are “Loam-livox” [14] and “Livox-mapping” [22].
The former is based on the well-known LOAM [23] algo-
rithm, while the latter is provided directly by Livox. Both
have been specially optimized for small FOV devices and
offer a feature extraction approach that is suitable for the
never repeating, flower-shaped scanning pattern. In [24], the
authors employ a continuous-time model of Livoxs’ solid-
state LiDARs scanning patterns - the Mid-40, Horizon, and
Avia. Using this model in their SLAM, they optimize every
single point and thus, account for motion distortion in the
scans. The approach runs in real-time on an Nvidia Jetson
AGX.

III. SYSTEM OVERVIEW

The sensor setup is shown in Figure 2. We use the Livox
Mid-100 solid-state LiDAR sensor. It produces 300.000
points per second using three beams that scan in a non-
repetitive, flower-shaped fashion, thus point density increases
over time. Each beam generates a circular field of view
(FOV) of 38.4°. Thus, three beams aligned in a row create
a vertical FOV of 38.4° and horizontal FOV of 98.4°.
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Fig. 2: Overview over the system hardware and connections.
The yellow connection represents the same physical cable.
It is a BlueRov 50m tether cable that provides power- and
data-connection via multiple wires.

The precision at 20 meter scanning distance is 2cm and the
angular accuracy is 0.1°. A ROS installation on a Rasp-
berry Pi 4 is used for onboard controlling and recording data.
Inertial measurements are performed by a PhidgetSpatial
Precision 3/3/3 IMU. We connect the system to an outsourced
processing machine via a 50 m tear-resistant tether cable
(Fathom ROV Tether by BlueRobotics) which was rolled
around a cable reel to perform the descending and ascending
movement (cf. left image of Figure 4). A PhidgetEncoder
HighSpeed spin encoder measures the rotation of the coil
which directly corresponds to the height of the system. As the
hardware used in this work is widely available for consumers,
we consider the setup to be in the low-cost segment.

IV. SLAM APPROACH

We initially proposed a version of our SLAM approach
in [2]. The approach is based on finding planar polygons
in the scans and matching them against a global model. In
this section, we build upon our previous work and introduce
several changes. The derivations of the homogeneous local
to global transformation, as well as the error function stay
the same (see [2] for further details).

A. Optimization

Let a point in 3D space be defined as p; = (7, vi, 2)"-
Further, a homogeneous transformation of that point along
the translation t = (¢;,t,,t.)" and rotation defined using
the roll-pitch-yaw (¢ — ¢ — v)) Tait-Brian angles is given:

T (pi)

2;CyCy — yiCySy + 2i Sy + ta
:c,-(C¢S¢ + C¢S¢Sg) + yi(Cwa — SQPSﬁSLL,) — 2iCySy, + ty
IZ(S¢S¢ — CLPCTI,S&) + yi(Cq/,Sw + CLPSﬁS,/J) + zijCﬁ +t,
(D
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where C, and S, denote cosine and sine with argument
a. Additionally, let a plane in 3D space be defined as
pr = {n,,,a, }, where n, is the normal vector of the
plane and a,, is its supporting point. The problem we must
solve is an optimization problem, where the sum of weighted
distances of all valid points to their respective plane must be
minimized. Thus, the error function E(7') is:

E(T)=3 Y wi-lng [T(p:) —ay]|® =wi-Di?,

Pk Pi€pPk
(2)

where the weights w} are defined by a cost function, and
D} denotes the distance from a point p; to the plane py.
Minimizing E(T) yields the transformation required that
optimally matches all points p; to their respective plane
pk- Note that in our previous work [2], we did not use a
cost function. Babin et al. [25] provide a descriptive table
of robust cost functions, yet we decide that the L1-norm
is the best compromise between simplicity and robustness.
Therefore, we set the weight w? = |D%|~!. Note that point-
to-plane correspondences (p; € pi) have to be available,
which we establish by matching polygons similar to [2].
As in our previous work [2], we minimize Equation (2)
using AdaDelta [26]. The method is based on gradient
descent and accelerates convergence in the dimensions with
large residuals. Let II; = (t4,ty,t., ¢,0,1)" be the pose
corresponding to the j-th scan. Then, AdaDelta computes
the optimal pose estimation by iterating

vXjiite VE.
until convergence, where ¢ is an arbitrary number close
to zero, ag is the convergence initializion vector, X; is
an exponentionally decaying average of pose changes, and
G is an exponentionally decaying average of the weighted
gradient vector VE. See [2] for further details and the
analytical jacobians.

O =1I; —ao

3)

B. Dynamic Plane Model

In our previous work [2] we rely on local planar clustering
(LPC) to identify planes in each scan, as well as the points
that belong to those planes. LPC calculates normal vectors
for each point and clusters them into planar patches based on
their distance and angle. Then, after each point in a scan was
potentially identified to belong to one plane, correspondences
have to be established with respect to the global model.
In this work we replace LPC with [3] to identify planes
in each scan. The new approach is based on a randomized
version of the well-known Hough transformation. The 3D
Hough transform maps point data to parameter space, i.e.,
the Hough space. In this space, the parameters correspond to
plane representations, therefore finding local maxima in the
parameter space yields a plane model representation of the
input points. After a plane has been identified in the Hough
space, all points associated with that plane are considered,
and their convex hull is computed. However, instead of
deleting every point close to the newly identified plane (see



(a) From left to right: (1 - 3): Subsequent point cloud data from a laser scanner. The points are grouped in planar clusters, represented by
the point color, and a plane is fit through each cluster. (4) The global model that results from sequentially merging the plane observations
from 1 - 3. Identical planes from different frames get merged after registration

(b) (Left) Resulting global plane model, which gets created during the presented SLAM. (Right) Corresponding point cloud from the
same view for comparison. The grayscale values of the points represent reflectivity.

Fig. 3: Illustration of how the global plane model is obtained and sequentially extended from individual measurements.

Algorithm 5 in [3]), we save them in a point cluster and Algorithm 1: Updating the global plane model
link them to their corresponding plane. That way, we are Data: Global Model P, Matches My, = {px, P, }.
still able to establish point-to-plane correspondences. To do Missmatches M C {py,- - , px }

that, we compare the individual planar point clusters to the  ; Calc. PCA eigenvalues for {p1, - pK};

global plane model and match them based on the distance  , gor each Match {pr, Py} do

and angle between them as in our previous work [2]. Further,
we introduce a dynamic global plane model to our SLAM
system, instead of a model that only initializes once.

if eigenvalues of pj are OK then
Merge pj. into Pg;
if eigenvalues of P, are BAD then
L Undo merge;

A i B W

Suppose that in the dynamic global model there are
G planes. We denote this set of planes as P = L ~
{P1,--+ ,Pgy--+ ,Pc}. Let My = {pi, Py} be a match 7 for each Missmatch My, = pj, do
between any plane candidate p; and global plane P,. 8 | if eigenvalues of pj are OK then
Further, for a number of K plane candidates, let M C 9 L Insert py, into P;

{p1,--* ,pk, - pr} be the subset of all plane candidates
that have no correspondence in the global model. Algo-
rithm 1 describes how the matches and mismatches are
used to update the global model. It first calculates the frame are used to sequentially update the global model by
eigenvalues of the local planes pi, by applying Principal  merging corresponding planes. Merging two planes works by
Component Analysis (PCA) [27] to the corresponding planar  considering all points on both convex hulls, and recalculate
point clusters. PCA is commonly used in computer vision as  the convex hull and normal vector from those points. The
a plane fitting tool. The resulting eigenvalues e; < ez < ez bottom Figures 3b show the resulting global plane model, as
correspond to the extent of the plane in every dimension,  well as the point cloud after registration of all frames.

where the smallest eigenvalue corresponds to the normal
direction of the plane. Thus, we check the quality of the

V. EXPERIMENT AND EVALUATION

planes by considering “flatness” of the plane via the eigen- We executed the experiment in an environment that al-
value ratio ﬁ If the ratio is above a certain threshold, lowed for a long descent, i.e., in the building of the state

the plane is not considered in the global model. For the firefighters school in Wiirzburg, as shown in Figure 4. In this
system presented in this work particularly, the threshold is  experiment the sensor freely rotates around the descending
0.05. Figure 3 illustrates how the extracted planes from each  axis, corresponding to the cable direction. Note that the
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Fig. 4: Setup for the experiment. We descent the system with
a tear-resistent tether cable, which is rolled around a coil. The
internal sensors are protected using a spherical plastic shell.

rotation itself is induced by the internal twist of the cable, not
by any actuators. A spin encoder estimates the position, as it
measures the rotation of the coil which directly corresponds
to the height of the robot according to the helix arc length
formula [28]. The descent of the system covered a distance
of 22m and was performed within a duration of 402s.
The post-processing is performed after the experiments on
a separate server. Figure 6 shows a birds-eye view of the
3D point clouds before and after we apply our algorithm.
Note that the initial pose estimates are especially erroneous
in one rotational dimension, i.e., the yaw angle, which is
especially difficult to detect for IMUs without the use of a
magnetometer. As this experiment originated in the context
of a space mission, using the magnetometer for inertial
measurements was not an option. Despite the large rotational
errors, the resulting map resembles the environment well.
Some error remains due to the significant effect of motion
distortion, considering the fast rotations. However, we con-
sider that qualitatively, the resulting point cloud is sufficient
for basic situational awareness, e.g., the walls intersect at
right angles, the map is true to scale, and objects are
recognizable despite being noisy. The resulting point cloud
is analyzed in the next subsection in terms of the achieved
mapping accuracy, which we perform by matching it against
a high-precise ground-truth model of the environment, given
by a RIEGL VZ400 terrestrial laser-scanner (TLS), which
has an angular resolution of 0.08° and accuracy of 5mm.
To establish the error distribution we match the resulting
point cloud against the ground truth map, using ICP from
3DTK [29]. Then, we create a three-dimensional difference
image by measuring all point-to-point errors. We note that
since the resulting point cloud is still subject to motion
distortion and noise, the alignment to ground truth due to ICP
might be imperfect, i.e., the remaining root mean square of
point-to-point errors (RMSE) after matching is non-zero. For
matching, we discard any point-to-point correspondences that
have distances larger than 20 cm. After matching, 3DTK’s
ICP reports approx. 11.4 cm remaining RMSE.
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Fig. 5: Birds-eye view of the ground truth point cloud,
aquired with a terrestrial laser scanner (TLS). The ceiling
has been cropped for a better view. Ground truth point cloud
of the state fire fighters school in Wiirzburg.

Fig. 6: In the images of 3D point clouds, the ceiling has
been cropped for a better view. (Left) Birds-eye view of the
resulting 3D point cloud, aquired with the descending system
using a spin-encoder and IMUs for pose estimation. (Center)
Birds-eye view of the post-processed 3D point cloud. (Right)
Profile view of the mobile systems pose, movement from top
to bottom.

A. Comparison with SRR

In this section, we quantitatively compare the pre-
sented approach with another state-of-the-art, high-precise
offline-batch method: “Semi Rigid Registration” [12] (SRR).
SRR uses a metascan-ICP-based implementation as a pre-
registration and afterward considers all scans simultaneously
in a continuous-time fashion using a pose graph. In the graph,
each pose is represented by a node and is connected via edges
to other poses if the overlap between the corresponding scans
is large enough. After one iteration of the algorithm, SRR re-
calculates the edges. We first discuss the mapping accuracy
that both algorithms achieved.

Figure 7 shows the evaluation of the point distances to
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Fig. 7: Evaluation of point distances after SRR (left) and after the presented method (right). Lateral images always have
the same orientation. The color-space maps all values with a distance greater than 100 cm to the same color. Points that
have distances larger than 300 cm are excluded from the analysis. The means of the distributions are represented by the red
dotted line and are 37.2 cm for SRR (left), and 31.6 cm for the presented approach (right).

ground truth after SRR and after the presented method has
been applied to the same input. The color in the images
denotes point-to-point error and corresponds with the color
in the histogram. The presented method combines 25 suc-
cessive frames into metascans which ensures that planes
are robustly found and registers them. SRR optimizes every
single frame individually. Further, both methods process only
a subsampled version of the input, where the smallest voxels
of size 10 cm are allowed to have only one point. This is
especially useful considering the less dense flower-shaped
scanning pattern of the Livox Mid-100, but also decreases
processing time. When evaluating the accuracy we ensure
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similar point density at any distance from the sensor, by
considering only subsampled versions of the resulting point
clouds, where the smallest voxels of 10 cm must only contain
a maximum of 50 points. The difference images of SRR
and the presented method look similar, i.e., both methods
achieve a good approximation to ground truth. In particular,
the mean point-to-point error according to the histograms
are 37.2 cm after the application of SRR, and 31.6 cm after
the application of the presented method. Table I also shows
that for lower percentiles (90% of the points), the presented
method achieves smaller point-to-point distances than SRR.
However, for larger percentiles (95% or above), the points



TABLE I: Comparison of point-to-point-distance percentiles
to ground truth, as well as runtimes for SRR and the
presented method.

P90 P95 P98 Runtime
SRR 82.5cm  127.8cm  213.4cm  6069.04 min
presented method 74.3cm  133.7cm  217.2cm 13.63 min

have distances less than 213.1cm after the application of
SRR, and 217.2cm after the application of the presented
method. Thus, we argue that the accuracy of both methods is
comparable in the presented scenario. The runtime evaluation
yields a more distinctive result, though, as the runtime for
SRR is significantly higher. We run both methods multi-
threaded on a mobile Intel i7-10750H 12-core CPU with
5GHz frequency per core and 64 GB of RAM. Overall,
SRR needs 6069.04 min (approx. 4.2days) to achive the
result shown in Figure 7 (left column). The presented method
achieves comparable accuracy in only 13.63min, which
corresponds to a 445271 % speed-up. Note that the duration
of descent was 6.73 min, which is approximately half of the
processing duration.

VI. CONCLUSION

In this work, we presented a cost-efficient approach to
vertical mapping, which is applicable in search and rescue
scenarios such as collapsed buildings, underground mines,
construction sites, etc., as well as for exploration mis-
sions. While many existing approaches utilize high-priced
terrestrial laser scanners or mechanical actuated LiDAR, we
rely on more consumer-available solid-state LiDAR. Thus,
our prototype showcases how future affordable solutions
might evolve. We employed the proposed approach to the
SLAM problem on a freely rotating, vertically suspended
system. The approach is a revision of our previous work [2],
which we want to make real-time capable in the future. We
compared the presented method with a state-of-the-art high-
precise globally consistent graph-based method, SRR [12].
Our method relies on polygon-matching and has comparable
accuracy to SRR while being significantly faster (445271 %).
Nevertheless, a lot of work remains to be done. As of now,
the processing time needed to create the full map is twice
the duration of the descending process. We plan to address
this issue soon by further revising the correspondence model
according to [14], which uses a specialized feature extraction
technique for Livox devices. This will allow us to skip the
creation of metascans, reducing processing time. Further,
there would no longer be a need to subsample the scans but
rather use only feature points, which decreases processing
time even more. To verify the accuracy of our system, we
also want to compare the trajectories against ground truth
measurements, e.g., from an opti-track system. Moreover, we
seek to reduce the effects of motion distortion by considering
a model of the Livoxs’ scanning pattern and the timestamp
of every point, as in [24]. We also want to reduce IMU drift
by considering more accurate sensor calibration.
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