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Abstract— We propose a new approach to appearance based is transformed into a collection of smooth functions in
place recognition from metric 3D maps, exploiting the NDT  the following fashion. The space occupied by the scan is
surface representation. Locations are described with feare — g,,4jvided into a regular grid of cells (squares in the 2@ecas
histograms based on surface orientation and smoothness, @n .
loop closure can be detected by matching feature histograms cube; in the 3D_Case). Each Ce”_ store_s t_he mean v_ector and

We also present a quantitative performance evaluation usig ~ covariance matrix of the scan points within the cell; in othe
two real-world data sets, one of which is highly self-simila  words, the parameters of a normally distributed probabilit
showing that the proposed method works well in different density function (PDF) describing the local surface shape.
envirgnments. The covariance matrix can encode either a round, linear

I. INTRODUCTION (stretched ellipsoid) or planar (squashed ellipsoid) sh&ur

. . . . . _appearance descriptor is created from histograms of these
Being able to recognise previously visited places is egs

tial f t bil bot igati . IIocal surface shape descriptions.
sential for autonomous mobrie robot navigation, especlall i, orger to minimise the issues with spatial discretisagtion

with respect to the problem of simultaneous localisatiod a he cells are overlapping, so that if the side length of each

mapping (SLAM). There are algorithms that can distribut%e” is ¢, the distance between each cell's centre poiny/is
the accumulated pose error of pairwise registered scans ’

in order to render a consistent map once the robot h&s Appearance descriptor

detected that it has closed a loop. Some examples includewe classify the NDT cells based on the shapes of their

the tree based relaxation methods of Frese et al. [1], [2] amDFs. For each cell, the eigenvalugs > Xy > X3

the 3D relaxation method of Grisetti et al. [3]. Howeverand corresponding eigenvectars é,, €; of the covariance

detecting loop closure (in other words, place recognitionhatrix are computed. There are three main cell classes:

when faced with large pose errors remains an open problespherical, planar, and linear. Distributions are assigtoed

Place recognition is an instance of the more genda#h  a class based on the relations between their eigenvalules wit

association problem: how to determine which input datarespect to a threshold. € (0,1) that quantises a “much

correspond to the same external stimuli. Given a sequencegshaller” relation.

3D laser scans made by a mobile robot, place recognition can, Distributions are linear ifg /A1 < te.

be performed by matching the current scan to previous scans, Distributions are planar if they are non-linear and

If the current location has been visited previously, attleas As/Ag < te.

one of the previous scans should be similar to the current, Distributions are spherical if they are non-linear and

one, regardless of the robot's orientation. non-planar (in other words, if no eigenvalue ligt,
times larger than any other one).

It would be straightforward to use more classes such as

fferent levels of “almost planar” distributions by using

ffore eigenvalue ratio thresholds, but for the data predente

Il. TECHNICAL APPROACH

Our method is inspired by NDT: the normal distributionsdi
transform. NDT is a method for representing a scan surfa
as a piecewise continuous function. It has previously be re using more than orte did not improve the result.
used for efficient pairwise 2D and 3D scan registration [11], Each of the main classes can be divided into sub-classes,

[12]('j However, the NST su_rfz_ice r?pLesentatlon can alfso b(?ased on orientation for the planar and linear classes, and
used as a_ltl:(;)mpactl _esgnlptu?]r.] of t € appearance of a %Brface roughness for the spherical class. Usirgpherical
scan, as will be explained in this section. sub-classeg; planar sub-classes, ahinear sub-classes, the

A. The normal distributions transform basic element of the proposed appearance descriptor is the

The input to NDT is a 3D point cloud. The points arefeature vector

represented by the 3D coordinates of their position in space

(and we use fhe location of_ the laser scanner as _the onging — [ £ fo Farte s Forps fotpits e ot |
of each scan’s local coordinate system). The point cloud :
spherical classes planar classes linear classes
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vector of the plane that is approximated by the PDF. Assume This aligment is always possible to do, unless all planes

that there is a set op approximately evenly distributed have the same orientation. If it is not possible to find two

linesP = {P,...,P,}. For example, using an equal areamain directions it is sufficient to use onlR., because in

partitioning [13] to distributey points on a half-spher&? is  this case no subsequent rotation around tha&xis change

the set of lines intersecting the origin and one of the pointsvhich histogram bins are updated for any planar PDF.

The index for planar sub-classes is It is possible to choose one of two rotations (in opposite
directions) when aligning the scan. However, since the ap-

i = s+ argmin d(€3, F;), (2)  pearance histograms are based on lines (as opposed to rays),
’ it does not matter which of the two rotations is used.
whered(€, P) is the distance between a poifitand a line In the case of ambiguous peaks (that is, wior ) has
P. In other words, we choose the index of the lifgthat more than one member), we generate multiple histograms.
is closest toe. For each combinatiodi,jli € Z,5 € ZUY,i # j} we

The same method can be used for linear distributions, bepply the rotationR,R. to the original scan and generate
usinge; (which corresponds to the linear axis) insteadof a histogram. The outcome is a set of histografis=

Spherical sub-classes can be defined by the rafjo\;, {F,, .. -, F|z||zuy|—|z|}. For highly symmetrical scans, this
although for the data used here, one spherical class sufficgduld lead to a large number of histograms. For a scan

The distance from the scanner location to a particulagjenerated at the centre of a sphere, where the histogram
surface is also important information. For this reasonheadins for all directions have the same valpé—p histograms
location is described by a matrix would be created. In practice, this has not been a problem.

F = (flT : ﬁT) (3) D. Difference metric

To quantify the difference between two appearance de-
scriptors F and G we normaliseF and G with their
entrywise 1-norms, compute the sum of Euclidean distances
between each of their columns (that is, each range interval)
and weight the sum by the ratio of the number of NDT cells
in the scans:

and a corresﬁponding set of range intenv@ls= {ry,...,7},
where eachy; is the histogram of all NDT cells within the
range defined by interval;,, measured from the origin.

C. Rotation invariance

Because the appearance descriptor (3) explicitly uses the ”
orientation of surfaces, it is not rotation invariant. Irder o(F,G) = Z (‘
for the appearance descriptor to be invariant to rotatioa, t
orientation of the scan must first be normalised.

Starting from an initial histogranf” with R = {[0,00)}, The factormax(||F||, ,||G||,)/ min(||F||,,||G||,) is used
we want to find two peaks in plane orientations and orient th@ differentiate between large scans (with many NDT cells)
scan so that the most common plane normal is aligned aloagd scans of more confined spaces (with few cells).
the z axis, and the second most common is aligned imthe  Given a scan paifS;, Sz) with appearance descriptor sets
plane. The reason for using plane orientations insteadef li (¥, G), all members are compared to each other using (8),
orientations is that planar cells are much more common thamnd the minimumy is used as the difference measure for
linear ones. For an environment with more linear structurdfe scan pair.
than planar ones, line orientations could be used instead. , )

There is not always an unambigous maximum, so we ¢ (#,9) :n?,ljna(Fi’Gj) FicF.Gieg 9
generate twasets of directions:Z and y: G_lven the planar E Parameters
party = (pi1,...,pp) Of f/ and an ambiguity ratio treshold .
te € [0,1] that determines which histogram peaks are The parameters of the proposed appearance descriptor are

fi G

E[l, 1G]

max(||F],, |G[,)
o) win([[F[[,[|Gll,)

=1

“similar enough”,Z and)’ are generated as follows: « class countss, p, and/,
) « eigenvalue ratio threshold,
i’ = argmaxp; (4) « range limitsR,
! « ambiguity ratio threshold,,,

o NDT cell sizeg.

We have chosen the values of these parameters empirically.
Y={ie{l,....p}[i &€ Z,pi = tapir} (77 Some parameters depend on the scale of the environment, but
we found that a single parameter set worked well for all our
For eachi € Z, we create a rotatiolR. that encodes a data. If using a scanner with different resolution or difetr
rotation of —arccos(; - (0,0,1)) radians around the axis max range;R andq should probably be adjusted.
P, x (0,0,1), where P, is a unit vector along the line We found that using one spherical class, nine planar
P;. For eachi € ), the corresponding rotatiolR, is classes, and one linear class worked well for all of the
— arccos((R..P;)-(0,1,0)) radians around the ax{®,0,1). presented data sets. The reason for using only one spherical

The descriptoiF® is created for the rotated scd, R.S. and linear class is that these classes tend to be less stable

i"" = argmaxp;|i ¢ Z (6)



than planar ones. Linear distributions with unpredictable % e posiives —o
directions tend to occur at the far ends of a scan, where the s {  Febostves —— -
point density is too small. Spherical distributions oftexcar 80 -
at corners and edges, depending on where the boundaries of
the NDT cells end up, and may shift from scan to scan.
However, using only the planar features & | = 0)

decreased the obtainable recall rate without false pesitiv

60 - =57 -

50 - / -

% of scans

or mismatches with around one third for our data. 401 i
The eigenvalue ratio thresholt, and ambiguity ratio 30 1 / -
thresholdt, were also chosen empirically. In our experi- 20 - L

ments, using. = 0.10 andt, = 0.60 produced good results. /
The best cell sizeq depends mostly on the scanner
configuration. If the cell size is too small, planes at the 0 00737 01 02
further parts of scans (where the scan points are sparse) bifference threshold t
may show up in the histogram as lines with unpredictable
orientation. Previous work [12] has shown that cell Sizegig. 1. Relationship between differen_c_e threshold :_:\ndexs:cate for the
between 0.5 m and 2 m work well for registering scans of thgggizs\éesrivi?ﬁ tr?OS::I.'O-rrSh(ieS tgr:igzldwgév'ggb;?e maximum number of true
scale encountered by mobile robots. We have ysed).5 m
andR = {]0,3),[3,6),[6,9),[9,15),[15,00)}. 25
Two more parameters determine the outcome when exam-
ining the similarity matrix for detection of loop closure:
« minimum loop sizes,
« difference threshold,.

20 4 r

The minimum loop sizeS should be set to the minimum ? ] I
number of scans that can be expected to be recorded betweery
two visits to any location. Each sca$) is compared to all 5 101 -
other scans, except for the closest oRé€s_g, ..., S;1s}.
We setS to 30 when testing the algorithm in order to make 5 | i

sure that it doesn’t only detect consecutive scans, but true

revisits to a location. If set too small, a number of correct

but uninteresting “loops” will be detected. o 00657 01 02 03
It is important to find a good value for the difference Closest difference value

treshold ¢4, which determines which pairs are considered

overlapping (positives). Setting it too small decreases ttFig. 2. Determiningt for the Hannover2 data set using EM with three

number of rue positves. Seting it 100 large increases URASA lenes, A g Shou e Sernce whial S

number of false positives. Fig. 1 shows how the numbers @fe histogram are overlayed. In this case~ 0.0657 would be used.

true positives, false positives, and mismatches chande wit

various difference thresholds. Mismatches are overlappin

scans that are matched to the wrong scan. as overlapping (false positives) and mismatched scansegtho
A method for determiningy that has been useful for our that were correctly regarded as overlapping, but whose

experiments is to perform expectation maximisation (EMgorresponding most similar scan was incorrect). Pleass ref

to fit a mixture of three Gaussian curves to the smallesb Table | to see how scans were labelled.

difference values of all scans of a data set and choosing the

point where the first and second curves intersect (see Fig. g} Data

The reasoning for using three kernels is that we assume that! he Hannover2 (Fig. 3(a)) data set was recorded at the

difference value comes from one of three distributions: ongniversity campus of Hannover, Germany. It contains 922 3D

with overlapping scans, one with non-overlapping ones, arRimni-scans (with 360field of view), covering a trajectory of

one with random values where the proposed method fails fP0ut 1.24 km. Each 3D scan contains approximately 15000

give a meaningful difference measure. data points. (The original data set contains 923 scans, but
scan number 601 was corrupt and therefore not used here.)
1. EXPERIMENTS The Kvarntorp data set (Fig. 4(a)) was recorded in the

In order to evaluate the performance of the proposedvarntorp mine outsideOrebro, Sweden. The data set is
algorithm, we used two data sets: one outdoor set fromdivided into four “missions”. For the experiments presente
campus area, and one from an underground mine. in this paper, we used “mission 4" followed by “mission

To quantify the performance of the place recognitiorl”. This combined mission sequnce has 131 3D scans, each
algorithm, we counted the number of correctly detectedovering a 180 field of view and containing around 70 000
overlapping scans (true positives), scans incorrectlgneigd data points. The total trajectory is about 370 m.



TABLE | TABLE Il

TAXONOMY FOR EVALUATING RESULTS. GIVEN A SCAN S, S 1S THE SUMMARY OF CLASSIFICATION RESULTS FOR MANUALLY SELECTEDI.
SCAN NEAREST TOS (EXCEPT THOSE WITHIN THE MINIMUM LOOP SIZE

S), AND S IS THE MOST SIMILAR SCAN TOS. Set pos. neg. tqg true pos. false pos.

Sis if /(S,S’) and distance t& and distance t& Hannover2 575 372 0.0737 35.3% 0%
0, 0,

true positive < ty <10m <10m Kvarntorp 35 95 0.0894 31.4% 1.1%
false positive < tg4 >10m any
true negative > tg4 >10m any
false negative > ¢4 <10m any The stretch E-F (scans 251-350) is revisited while travel-
mismatch < td <10m 2 10m ling in the opposite direction (scans 612—715). These are th

longest sequences of scans that are taken in different-direc
tions, and should give a good indication of the algorithm’s

The Kvarntorp data set is rather challenging for a numberobustness under viewpoint changes. The recall rate when
of reasons. Firstly, the mine environment is highly selfexamining only E-F and F-E is 45.1% usihg= 0.0737,
similar. Without knowledge of the robot’s trajectory, it isand the maximum recall rate with no errors is attained using
very difficult to tell different tunnels apart. The fact thatt; = 0.0821 which gives a recall rate of 53.4%.
the scans of this data set are not omnidirectional also 2) Underground mine data: Ground truth poses for the
makes it more difficult, because the same location looksvarntorp data set were provided using the algorithm pre-
quite different depending on which direction the scannesented in [15]. It is a network based global relaxation métho
is pointing towards. The median distance travelled betweebr 3D laser scans. To generate a genuine truth, the network
consecutive scans was also longer for this data set: arouwds manually given to the algorithm and the result was
2.5 m, compared to 1.5 m fafannover2. visually inspected for correctness.

All of the scan data are available for download [14]. The The place recognition algorithm described in this paper
ground truth poses are available from the authors on requesannot be rotation invariant if the input scans are not om-
nidirectional. When looking in opposite directions fronmeth
same place, the view is generally very different. Because an

The results are summarised in Table II. omnidirectional scanner was not used to recgwerntorp,

1) Outdoor data: For theHannover2 data set, ground truth only scans taken in similar directions were counted as over-
pose measurements were acquired by registering every $hping when evaluating the algorithm for this data set. The
scan against a point cloud made from a given 2D map anfistance matrix shown in Fig. 4(b) only shows scan pairs that
an aerial lidar scan made while flying over the campus aregere taken with a maxiumum orientation difference of 20
Fig. 3(c) shows the similarity matrix for our algorithm andve also chose a distance threshold of 5 m instead of 10 m
Fig. 3(b) shows the ground truth distance matrix. for determining which scans are overlapping. The reason for

For the parameter values stated in Section II-E, the dikelecting a smaller distance threshold is firstly because of
ference threshold, = 0.0737 gives the maximum number the scanner's limited field of view and secondly because of
of true positives without any false positives: a recall rate the more confined spaces of the mine environment. These
35.3%. These results are comparable to visual place recago factors make the appearance of scenes change more
nition methods using SIFT features from camera images [6drastically than in the open-air scansHfnnover2.

At this point it should be noted that a recall rate of 30% is we used the same parameters for this data set as for
often sufficient to close all loops as long as the number Qfannover2, except fort, = 0.0894. The recall rate with this
false positives and mismatches is low, because severas scan was 31.4% and there was one false positive. The ground
are usually taken from each location. truth distance matrix is shown in Fig. 4(b), and the similari

Using ¢4 = 0.0657 instead, as determined by expectationmatrix of our algorithm is shown in Fig. 4(c).
maximisation (Fig. 2), the result is 29.2% true positivasda

no errors). The parameters of the Gaussian mixture modei Execution time

were initalized by running a maximum of 50 EM iterations The experiments were run using a C++ implementation on

from randomly initialized start parameters and selecthmgy t a laptop computer with a 1600 MHz Intel Celeron CPU and

parameters providing the best likelihood among thosestrial2 GiB of RAM. For theHannover2 data set, average times for
Using minimum loop siz&' = 0 (which entails that 100% computing the surface shape histograms were 0.18 s per call

of the scans are overlapping) ang= 0.0737, the result is to the histogram computation function, and in total 0.94 s

45.9% true positives and 0.5% mismatches. per scan to generate histograms (this includes transfgrmin
The most difficult part of thedannover2 data set is when the scan, generatinﬁ and the histograms that make 7).

the stretch H-I is revisited (scans 480-513 and 815-847he average size af is 3.2 histograms with the parameter

Only a few of those scans were detected. However, theset used in this paper. In total, 61.2 s were spent to compute

is a distance of around 5 m between the first and secominilarity measures for scan pairs. There are 922 scanin th

run through that area (as can be seen by close inspectiondzfta set, 2947 histograms were creae@)7? = 8 684 809

Fig. 3(b)), so those scans are only barely overlapping.  similarity measures were computed, so the average time per

B. Results
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(a) Overview of theHannover2 data set, seen (b) Ground truth distance matrix, showing all scarfc) Similarity matrix, showing all scan pairs
from above with parallel projection. The robotpairs taken less than 10 m apart. whose difference valuer’ < 0.0737. Because
traveled along the sequence A-B-C-D-A-B-E-F- of the large matrix and the small print size, this
A-D-G-H-1-J-H-K-F-E-L-I-K-A. image has been morphologically dilated b$ a3
element in order to better show the values.

Fig. 3. TheHannover2 data set.
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(a) Overview of theKvarntorp data set. The (b) Ground truth distance matrix, showing all scarfc) Similarity matrix, showing all scan pairs with
robot travelled along the sequence A-B-C-D-E-Apairs taken less than 5 m apart and with am difference valuer’ < 0.0894.
F-G-A-B-C-H-F-H. orientation difference of less than 20

Fig. 4. TheKvarntorp data set.

TABLE Il

similarity comparison was around gs. In other words,
SUMMARY OF RESOURCE REQUIREMENTS

if each scan requires the generation of 3.2 histograms on
average, a new scan can be compared to roughly 13 800 other

. . . Data set Scans AvdS| Avg. creation time  Avgl|F
scans in one second to test for loop closure, disregarding th il 9 9/7]
time needed to compute the histograms. Hannoverz 922 15k 0.18s 3.2

130 70k 0.27 s 2.8

The requirements for both data sets are summarised inKvarmtorp
Table lll. The time for creating the histograms and the
number of histograms required for rotation invariance depe
on the sizes of the point clouds, but the time requireds a collection of such words (local visual features) drawn
for similarity comparisons depend only on the number ofrom a “dictionary” of available features. The appearanee d
histogram bins. scriptor is a binary vector indicating the presence or atxsen
of all words in the dictionary. The appearance descriptor
is used within a probabilistic framework together with a
Previous work on place recognition has focused mostly ogenerative model that describes how informative each Visua
data from camera images and 2D range data. word is and common co-occurrences of words. Cummins and
Cummins and Newman [5] have presented a bag-of-worddewman have reported recall rates of 35% to 46% on camera
based approach using “visual words”. Scenes are representmages from urban outdoor data sets.

IV. RELATED WORK



A method that is more similar to the approach presentetbnclude that the results are encouraging, and the perfor-
here is the 2D histogram matching of Bosse et al. [7], [8Jmance is comparable to that of place recognition methods
While our method may also be referred to as histogramsing visual data, with a recall rate of over 30% even for
matching, there are several differences. For example,éBosguite challenging underground mine data.
et al. create 2D histograms with one dimension for the spatia The purpose of this paper is to demonstrate the perfor-
distance to the scan points and one for scan orientatiomsance of the NDT-based appearance descriptor. To further
The angular histogram bins cover all possible rotations dfmprove performance, future work should include learning a
a scan in order to achieve rotation invariance. With thgenerative model in order to learn how to disregard common,
parameters used in their papers, 240000 histogram bins amendiscriminative, features, based on the general appeara
required for the 2D case. For unconstrained 3D motion witbf the current surroundings (see [5]).
angular bins for ther, y, andz axes, a similar discretisation It would also be interesting to do a more elaborate analysis
would lead to many millions of bins. In contrast, the 3Dof the similarity matrix than a simple threshold in order to
histograms presented here require only a few dozens of bietter discriminate between overlapping and non-oveihapp
The histogram matching of Bosse et al. is reported to workcans. A more detailed study of useful models for finding the
well for the kidnapped robot problem, but they have notlifference treshold,; would also be interesting.
provided a quantitative performance evaluation yet. Further future work should include investigating how this

Daniel Huber has described a method based on spiapproach performs when faced with dynamic changes, such
images [9] for matching multiple 3D scans without initialas moving furniture or people.
pose estimates [10]. Such global registration is closéfted
to the place recognition problem. An important difference
between spin-images and the surface shape histograms pri} L_Jt-thise: P. Llf"SSO”: ?”d IT ?UCketta A ml{'t'é‘éeé ;da@nct?'go'

. . . P rthm f1or simultaneous localisation and mappin ransactions
posec_l in this paper is that spin-images are local fez_iture on Robotics, vol. 21, no. 2, pp. 196-207, Apr. 2005.
descriptors, describing the surface shape around one fint [2] U. Frese and L. Schroder, “Closing a million-landmarislop,” in
contrast, our surface shape histograms are global apmearan Ef%cied'ngs of the :ECE)E 'gtoe(f) gatlonaISOgg”f%%nge on Intelligent
descriptors, describing the appearance of a whole 3D poing, & g?i;;ti,a,ssfagz(onkgyc. Staohniss, P. Pfaft, and Wrglim,
cloud. Comparing spin-images to the local PDF features used “Efficient estimation of accurate maximum likelihood maps3D,”
in this Work, Sp|n_|mages are more descr|pt|ve and invarian in Proceedings of the IEEE International Conference on Intelllgent
to rotation. Normal distributions are unimodal functions Robots and Systems (IROS), 2007,

. o ¢ .2'[4] F. T. Ramos, J. Nieto, and H. F. Durrant-Whyte, “Recogmsand
while spin-images can capture arbitrary surface shapé®if t modelling landmarks to close loops in outdoor SLAM, Rroceedings
resolution is high enough. The initial step of Huber’s multi 8fctpr;§)lEz%E7mter ”"52“(')03%31 zgggfef ence on Robotics and Automation

. : : : . Pp. —2041.
view sprface_ mgtchmg metho_d is to compute a model 9rapls; v cummins and P. Newman, “Probabilistic appearancestiasav-
by using pairwise global registration with spin-images for  igation and loop closing,” ifProceedings of the IEEE International
all scan pairs. The model graph contains potential matches] CO”fefajce on RtOZOt'CS and AUTO”‘at'IO”SE'LiR,\f}; ,Eom:éd Apr. 2]9?;-
. . . _— Ccelerated appearance-only , IArocC INgS O e
between palr_s of scans, sqme of which may be mcorreCl[' |EEE International Conference on Robotics and Automation (ICRA),
Surface consistency constraints on sequences of matoles ar 2008s.
used to distinguish correct matches from incorrect ones bdZ] M. Bosse and J. Roberts, “Histogram matching and globilal-
cause it is not possible to distinguish the correct and irabr ization for laser-only SLAM in large unstructured enviroemts,” in
P o 9 ) : ) Proceedings of the IEEE International Conference on Robotics and
matches at the pairwise level. The algorithm proposed & thi  Automation (ICRA), Apr. 2007.
paper can be seen as another way of generating the initi&fl :V' ?Osﬁe a_ndzg-l_glot, “Keyppgtbdtgesngnsc and eve:]lluatuon gjgbal
model graph and evaluating a local quality measure. Huber's suag 20" " 2P lidar maps,iobotics: Science and Systens, Jun.
matching results are quite impressive, with recall rategpf [9] A. E. Johnson, “Spin images: A representation for 3-Dfaue
to 80% on data sets scanned from small objects. However, Mmatching,’ Ph;‘D- dissertation, Carnegie Mellon Univetsit997. )
the execution time is much lonaer. Using data sets con@ini 10] D. F. Huber, “Automatic three-dimensional modelingrr reality,
] ger. g @ Ph.D. dissertation, Carnegie Mellon University, 2002.
32 scans with 1000 mesh faces each, as done by Hubgly) P. Biber and W. StraRer, “The normal distributions &fanm: A
the time to compute the initial model graph using spin-  new approach to laser scan matching,”Rroceedings of the IEEE

image matching can be estimatedits - 322 = 1536 s (the Ugﬁr gat'z%%aé i%’?fgfzgfzo;‘lgtd“gem Robots and Systems (IROS),
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