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Abstract— We propose a new approach to appearance based
place recognition from metric 3D maps, exploiting the NDT
surface representation. Locations are described with feature
histograms based on surface orientation and smoothness, and
loop closure can be detected by matching feature histograms.

We also present a quantitative performance evaluation using
two real-world data sets, one of which is highly self-similar,
showing that the proposed method works well in different
environments.

I. I NTRODUCTION

Being able to recognise previously visited places is es-
sential for autonomous mobile robot navigation, especially
with respect to the problem of simultaneous localisation and
mapping (SLAM). There are algorithms that can distribute
the accumulated pose error of pairwise registered scans
in order to render a consistent map once the robot has
detected that it has closed a loop. Some examples include
the tree based relaxation methods of Frese et al. [1], [2] and
the 3D relaxation method of Grisetti et al. [3]. However,
detecting loop closure (in other words, place recognition)
when faced with large pose errors remains an open problem.
Place recognition is an instance of the more generaldata
association problem: how to determine which input data
correspond to the same external stimuli. Given a sequence of
3D laser scans made by a mobile robot, place recognition can
be performed by matching the current scan to previous scans.
If the current location has been visited previously, at least
one of the previous scans should be similar to the current
one, regardless of the robot’s orientation.

II. T ECHNICAL APPROACH

Our method is inspired by NDT: the normal distributions
transform. NDT is a method for representing a scan surface
as a piecewise continuous function. It has previously been
used for efficient pairwise 2D and 3D scan registration [11],
[12]. However, the NDT surface representation can also be
used as a compact description of the appearance of a 3D
scan, as will be explained in this section.

A. The normal distributions transform

The input to NDT is a 3D point cloud. The points are
represented by the 3D coordinates of their position in space
(and we use the location of the laser scanner as the origin
of each scan’s local coordinate system). The point cloud
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is transformed into a collection of smooth functions in
the following fashion. The space occupied by the scan is
subdivided into a regular grid of cells (squares in the 2D case,
cubes in the 3D case). Each cell stores the mean vector and
covariance matrix of the scan points within the cell; in other
words, the parameters of a normally distributed probability
density function (PDF) describing the local surface shape.
The covariance matrix can encode either a round, linear
(stretched ellipsoid) or planar (squashed ellipsoid) shape. Our
appearance descriptor is created from histograms of these
local surface shape descriptions.

In order to minimise the issues with spatial discretisation,
the cells are overlapping, so that if the side length of each
cell is q, the distance between each cell’s centre point isq/2.

B. Appearance descriptor

We classify the NDT cells based on the shapes of their
PDFs. For each cell, the eigenvaluesλ1 > λ2 > λ3

and corresponding eigenvectors~e1, ~e2, ~e3 of the covariance
matrix are computed. There are three main cell classes:
spherical, planar, and linear. Distributions are assignedto
a class based on the relations between their eigenvalues with
respect to a thresholdte ∈ (0, 1) that quantises a “much
smaller” relation.

• Distributions are linear ifλ2/λ1 < te.
• Distributions are planar if they are non-linear and

λ3/λ2 < te.
• Distributions are spherical if they are non-linear and

non-planar (in other words, if no eigenvalue is1/te
times larger than any other one).

It would be straightforward to use more classes such as
different levels of “almost planar” distributions by using
more eigenvalue ratio thresholds, but for the data presented
here using more than onete did not improve the result.

Each of the main classes can be divided into sub-classes,
based on orientation for the planar and linear classes, and
surface roughness for the spherical class. Usings spherical
sub-classes,p planar sub-classes, andl linear sub-classes, the
basic element of the proposed appearance descriptor is the
feature vector
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wherefi is the number of cells that belong to classi.
For planar distributions, the eigenvector~e3 (which corre-

sponds to the smallest eigenvalue) coincides with the normal



vector of the plane that is approximated by the PDF. Assume
that there is a set ofp approximately evenly distributed
lines P = {P1, . . . , Pp}. For example, using an equal area
partitioning [13] to distributep points on a half-sphere,P is
the set of lines intersecting the origin and one of the points.
The index for planar sub-classes is

i = s + arg min
j

δ(~e3, Pj), (2)

whereδ(~e, P ) is the distance between a point~e and a line
P . In other words, we choose the index of the linePj that
is closest to~e3.

The same method can be used for linear distributions, but
using~e1 (which corresponds to the linear axis) instead of~e3.

Spherical sub-classes can be defined by the ratioλ2/λ1,
although for the data used here, one spherical class sufficed.

The distance from the scanner location to a particular
surface is also important information. For this reason, each
location is described by a matrix

F =
(

~f1
T · · · ~fr

T

)

(3)

and a corresponding set of range intervalsR = {r1, . . . , rr},
where each~fi is the histogram of all NDT cells within the
range defined by intervalri, measured from the origin.

C. Rotation invariance

Because the appearance descriptor (3) explicitly uses the
orientation of surfaces, it is not rotation invariant. In order
for the appearance descriptor to be invariant to rotation, the
orientation of the scan must first be normalised.

Starting from an initial histogram~f ′ with R = {[0,∞)},
we want to find two peaks in plane orientations and orient the
scan so that the most common plane normal is aligned along
thez axis, and the second most common is aligned in theyz
plane. The reason for using plane orientations instead of line
orientations is that planar cells are much more common than
linear ones. For an environment with more linear structures
than planar ones, line orientations could be used instead.

There is not always an unambigous maximum, so we
generate twosets of directions:Z andY. Given the planar
part ~p = (p1, . . . , pp) of ~f ′ and an ambiguity ratio treshold
ta ∈ [0, 1] that determines which histogram peaks are
“similar enough”,Z andY are generated as follows:

i′ = argmax
i

pi (4)

Z = {i ∈ {1, . . . , p}|pi ≥ tapi′} (5)

i′′ = argmax
i

pi|i /∈ Z (6)

Y = {i ∈ {1, . . . , p}|i /∈ Z, pi ≥ tapi′′} (7)

For eachi ∈ Z, we create a rotationRz that encodes a
rotation of − arccos(~Pi · (0, 0, 1)) radians around the axis
~Pi × (0, 0, 1), where ~Pi is a unit vector along the line
Pi. For each i ∈ Y, the corresponding rotationRy is
− arccos((Rz

~Pi) · (0, 1, 0)) radians around the axis(0, 0, 1).
The descriptorF is created for the rotated scanRyRzS.

This aligment is always possible to do, unless all planes
have the same orientation. If it is not possible to find two
main directions it is sufficient to use onlyRz, because in
this case no subsequent rotation around thez axis change
which histogram bins are updated for any planar PDF.

It is possible to choose one of two rotations (in opposite
directions) when aligning the scan. However, since the ap-
pearance histograms are based on lines (as opposed to rays),
it does not matter which of the two rotations is used.

In the case of ambiguous peaks (that is, whenZ or Y has
more than one member), we generate multiple histograms.
For each combination{i, j|i ∈ Z, j ∈ Z ∪ Y, i 6= j} we
apply the rotationRyRz to the original scan and generate
a histogram. The outcome is a set of histogramsF =
{F1, . . . ,F|Z||Z∪Y|−|Z|}. For highly symmetrical scans, this
could lead to a large number of histograms. For a scan
generated at the centre of a sphere, where the histogram
bins for all directions have the same value,p2−p histograms
would be created. In practice, this has not been a problem.

D. Difference metric

To quantify the difference between two appearance de-
scriptors F and G we normaliseF and G with their
entrywise 1-norms, compute the sum of Euclidean distances
between each of their columns (that is, each range interval),
and weight the sum by the ratio of the number of NDT cells
in the scans:

σ(F,G) =
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to differentiate between large scans (with many NDT cells)
and scans of more confined spaces (with few cells).

Given a scan pair(S1,S2) with appearance descriptor sets
(F ,G), all members are compared to each other using (8),
and the minimumσ is used as the difference measure for
the scan pair.

σ′(F ,G) = min
i,j

σ(Fi,Gj) Fi ∈ F ,Gj ∈ G (9)

E. Parameters

The parameters of the proposed appearance descriptor are

• class counts:s, p, andl,
• eigenvalue ratio thresholdte,
• range limitsR,
• ambiguity ratio thresholdta,
• NDT cell sizeq.

We have chosen the values of these parameters empirically.
Some parameters depend on the scale of the environment, but
we found that a single parameter set worked well for all our
data. If using a scanner with different resolution or different
max range,R andq should probably be adjusted.

We found that using one spherical class, nine planar
classes, and one linear class worked well for all of the
presented data sets. The reason for using only one spherical
and linear class is that these classes tend to be less stable



than planar ones. Linear distributions with unpredictable
directions tend to occur at the far ends of a scan, where the
point density is too small. Spherical distributions often occur
at corners and edges, depending on where the boundaries of
the NDT cells end up, and may shift from scan to scan.
However, using only the planar features (s = l = 0)
decreased the obtainable recall rate without false positives
or mismatches with around one third for our data.

The eigenvalue ratio thresholdte and ambiguity ratio
thresholdta were also chosen empirically. In our experi-
ments, usingte = 0.10 andta = 0.60 produced good results.

The best cell sizeq depends mostly on the scanner
configuration. If the cell size is too small, planes at the
further parts of scans (where the scan points are sparse)
may show up in the histogram as lines with unpredictable
orientation. Previous work [12] has shown that cell sizes
between 0.5 m and 2 m work well for registering scans of the
scale encountered by mobile robots. We have usedq = 0.5 m
andR = {[0, 3), [3, 6), [6, 9), [9, 15), [15,∞)}.

Two more parameters determine the outcome when exam-
ining the similarity matrix for detection of loop closure:

• minimum loop sizeS,
• difference thresholdtd.
The minimum loop sizeS should be set to the minimum

number of scans that can be expected to be recorded between
two visits to any location. Each scanSi is compared to all
other scans, except for the closest ones{Si−S , . . . ,Si+S}.
We setS to 30 when testing the algorithm in order to make
sure that it doesn’t only detect consecutive scans, but true
revisits to a location. If set too small, a number of correct
but uninteresting “loops” will be detected.

It is important to find a good value for the difference
treshold td, which determines which pairs are considered
overlapping (positives). Setting it too small decreases the
number of true positives. Setting it too large increases the
number of false positives. Fig. 1 shows how the numbers of
true positives, false positives, and mismatches change with
various difference thresholds. Mismatches are overlapping
scans that are matched to the wrong scan.

A method for determiningtd that has been useful for our
experiments is to perform expectation maximisation (EM)
to fit a mixture of three Gaussian curves to the smallest
difference values of all scans of a data set and choosing the
point where the first and second curves intersect (see Fig. 2).
The reasoning for using three kernels is that we assume that
difference value comes from one of three distributions: one
with overlapping scans, one with non-overlapping ones, and
one with random values where the proposed method fails to
give a meaningful difference measure.

III. E XPERIMENTS

In order to evaluate the performance of the proposed
algorithm, we used two data sets: one outdoor set from a
campus area, and one from an underground mine.

To quantify the performance of the place recognition
algorithm, we counted the number of correctly detected
overlapping scans (true positives), scans incorrectly regarded
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Fig. 1. Relationship between difference threshold and success rate for the
Hannover2 data set. The threshold giving the maximum number of true
positives with no errors is marked with a bar.
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Fig. 2. Determiningtd for the Hannover2 data set using EM with three
Gaussian kernels. A histogram showing the difference values of all scans’
most similar neighbour is printed in the background. Three kernels fitted to
the histogram are overlayed. In this case,td = 0.0657 would be used.

as overlapping (false positives) and mismatched scans (those
that were correctly regarded as overlapping, but whose
corresponding most similar scan was incorrect). Please refer
to Table I to see how scans were labelled.

A. Data

The Hannover2 (Fig. 3(a)) data set was recorded at the
university campus of Hannover, Germany. It contains 922 3D
omni-scans (with 360◦ field of view), covering a trajectory of
about 1.24 km. Each 3D scan contains approximately 15 000
data points. (The original data set contains 923 scans, but
scan number 601 was corrupt and therefore not used here.)

The Kvarntorp data set (Fig. 4(a)) was recorded in the
Kvarntorp mine outsideÖrebro, Sweden. The data set is
divided into four “missions”. For the experiments presented
in this paper, we used “mission 4” followed by “mission
1”. This combined mission sequnce has 131 3D scans, each
covering a 180◦ field of view and containing around 70 000
data points. The total trajectory is about 370 m.



TABLE I

TAXONOMY FOR EVALUATING RESULTS. GIVEN A SCAN S , Ŝ IS THE

SCAN NEAREST TOS (EXCEPT THOSE WITHIN THE MINIMUM LOOP SIZE

S), AND S̄ IS THE MOST SIMILAR SCAN TOS .

S is if σ′(S,S′) and distance tôS and distance tōS

true positive < td < 10 m < 10 m
false positive < td ≥ 10 m any
true negative ≥ td ≥ 10 m any
false negative ≥ td < 10 m any
mismatch < td < 10 m ≥ 10 m

The Kvarntorp data set is rather challenging for a number
of reasons. Firstly, the mine environment is highly self-
similar. Without knowledge of the robot’s trajectory, it is
very difficult to tell different tunnels apart. The fact that
the scans of this data set are not omnidirectional also
makes it more difficult, because the same location looks
quite different depending on which direction the scanner
is pointing towards. The median distance travelled between
consecutive scans was also longer for this data set: around
2.5 m, compared to 1.5 m forHannover2.

All of the scan data are available for download [14]. The
ground truth poses are available from the authors on request.

B. Results

The results are summarised in Table II.
1) Outdoor data: For theHannover2 data set, ground truth

pose measurements were acquired by registering every 3D
scan against a point cloud made from a given 2D map and
an aerial lidar scan made while flying over the campus area.
Fig. 3(c) shows the similarity matrix for our algorithm and
Fig. 3(b) shows the ground truth distance matrix.

For the parameter values stated in Section II-E, the dif-
ference thresholdtd = 0.0737 gives the maximum number
of true positives without any false positives: a recall rateof
35.3%. These results are comparable to visual place recog-
nition methods using SIFT features from camera images [6].
At this point it should be noted that a recall rate of 30% is
often sufficient to close all loops as long as the number of
false positives and mismatches is low, because several scans
are usually taken from each location.

Using td = 0.0657 instead, as determined by expectation
maximisation (Fig. 2), the result is 29.2% true positives (and
no errors). The parameters of the Gaussian mixture model
were initalized by running a maximum of 50 EM iterations
from randomly initialized start parameters and selecting the
parameters providing the best likelihood among those trials.

Using minimum loop sizeS = 0 (which entails that 100%
of the scans are overlapping) andtd = 0.0737, the result is
45.9% true positives and 0.5% mismatches.

The most difficult part of theHannover2 data set is when
the stretch H–I is revisited (scans 480–513 and 815–847).
Only a few of those scans were detected. However, there
is a distance of around 5 m between the first and second
run through that area (as can be seen by close inspection of
Fig. 3(b)), so those scans are only barely overlapping.

TABLE II

SUMMARY OF CLASSIFICATION RESULTS FOR MANUALLY SELECTEDtd .

Set pos. neg. td true pos. false pos.

Hannover2 575 372 0.0737 35.3% 0%
Kvarntorp 35 95 0.0894 31.4% 1.1%

The stretch E–F (scans 251–350) is revisited while travel-
ling in the opposite direction (scans 612–715). These are the
longest sequences of scans that are taken in different direc-
tions, and should give a good indication of the algorithm’s
robustness under viewpoint changes. The recall rate when
examining only E–F and F–E is 45.1% usingtd = 0.0737,
and the maximum recall rate with no errors is attained using
td = 0.0821 which gives a recall rate of 53.4%.

2) Underground mine data: Ground truth poses for the
Kvarntorp data set were provided using the algorithm pre-
sented in [15]. It is a network based global relaxation method
for 3D laser scans. To generate a genuine truth, the network
was manually given to the algorithm and the result was
visually inspected for correctness.

The place recognition algorithm described in this paper
cannot be rotation invariant if the input scans are not om-
nidirectional. When looking in opposite directions from the
same place, the view is generally very different. Because an
omnidirectional scanner was not used to recordKvarntorp,
only scans taken in similar directions were counted as over-
lapping when evaluating the algorithm for this data set. The
distance matrix shown in Fig. 4(b) only shows scan pairs that
were taken with a maxiumum orientation difference of 20◦.
We also chose a distance threshold of 5 m instead of 10 m
for determining which scans are overlapping. The reason for
selecting a smaller distance threshold is firstly because of
the scanner’s limited field of view and secondly because of
the more confined spaces of the mine environment. These
two factors make the appearance of scenes change more
drastically than in the open-air scans ofHannover2.

We used the same parameters for this data set as for
Hannover2, except fortd = 0.0894. The recall rate with this
td was 31.4% and there was one false positive. The ground
truth distance matrix is shown in Fig. 4(b), and the similarity
matrix of our algorithm is shown in Fig. 4(c).

C. Execution time

The experiments were run using a C++ implementation on
a laptop computer with a 1600 MHz Intel Celeron CPU and
2 GiB of RAM. For theHannover2 data set, average times for
computing the surface shape histograms were 0.18 s per call
to the histogram computation function, and in total 0.94 s
per scan to generate histograms (this includes transforming
the scan, generating~f ′ and the histograms that make upF ).
The average size ofF is 3.2 histograms with the parameter
set used in this paper. In total, 61.2 s were spent to compute
similarity measures for scan pairs. There are 922 scans in the
data set, 2 947 histograms were created,2 9472 = 8 684 809
similarity measures were computed, so the average time per



(a) Overview of theHannover2 data set, seen
from above with parallel projection. The robot
traveled along the sequence A-B-C-D-A-B-E-F-
A-D-G-H-I-J-H-K-F-E-L-I-K-A.
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(b) Ground truth distance matrix, showing all scan
pairs taken less than 10 m apart.
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(c) Similarity matrix, showing all scan pairs
whose difference valueσ′ < 0.0737. Because
of the large matrix and the small print size, this
image has been morphologically dilated by a3×3
element in order to better show the values.

Fig. 3. TheHannover2 data set.

(a) Overview of theKvarntorp data set. The
robot travelled along the sequence A-B-C-D-E-A-
F-G-A-B-C-H-F-H.
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(b) Ground truth distance matrix, showing all scan
pairs taken less than 5 m apart and with an
orientation difference of less than 20◦.
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Fig. 4. TheKvarntorp data set.

similarity comparison was around 7µs. In other words,
if each scan requires the generation of 3.2 histograms on
average, a new scan can be compared to roughly 13 800 other
scans in one second to test for loop closure, disregarding the
time needed to compute the histograms.

The requirements for both data sets are summarised in
Table III. The time for creating the histograms and the
number of histograms required for rotation invariance depend
on the sizes of the point clouds, but the time required
for similarity comparisons depend only on the number of
histogram bins.

IV. RELATED WORK

Previous work on place recognition has focused mostly on
data from camera images and 2D range data.

Cummins and Newman [5] have presented a bag-of-words
based approach using “visual words”. Scenes are represented

TABLE III

SUMMARY OF RESOURCE REQUIREMENTS.

Data set Scans Avg.|S| Avg. creation time Avg.|F|

Hannover2 922 15k 0.18 s 3.2
Kvarntorp 130 70k 0.27 s 2.8

as a collection of such words (local visual features) drawn
from a “dictionary” of available features. The appearance de-
scriptor is a binary vector indicating the presence or absence
of all words in the dictionary. The appearance descriptor
is used within a probabilistic framework together with a
generative model that describes how informative each visual
word is and common co-occurrences of words. Cummins and
Newman have reported recall rates of 35% to 46% on camera
images from urban outdoor data sets.



A method that is more similar to the approach presented
here is the 2D histogram matching of Bosse et al. [7], [8].
While our method may also be referred to as histogram
matching, there are several differences. For example, Bosse
et al. create 2D histograms with one dimension for the spatial
distance to the scan points and one for scan orientations.
The angular histogram bins cover all possible rotations of
a scan in order to achieve rotation invariance. With the
parameters used in their papers, 240 000 histogram bins are
required for the 2D case. For unconstrained 3D motion with
angular bins for thex, y, andz axes, a similar discretisation
would lead to many millions of bins. In contrast, the 3D
histograms presented here require only a few dozens of bins.
The histogram matching of Bosse et al. is reported to work
well for the kidnapped robot problem, but they have not
provided a quantitative performance evaluation yet.

Daniel Huber has described a method based on spin-
images [9] for matching multiple 3D scans without initial
pose estimates [10]. Such global registration is closely related
to the place recognition problem. An important difference
between spin-images and the surface shape histograms pro-
posed in this paper is that spin-images are local feature
descriptors, describing the surface shape around one point. In
contrast, our surface shape histograms are global appearance
descriptors, describing the appearance of a whole 3D point
cloud. Comparing spin-images to the local PDF features used
in this work, spin-images are more descriptive and invariant
to rotation. Normal distributions are unimodal functions,
while spin-images can capture arbitrary surface shapes if the
resolution is high enough. The initial step of Huber’s multi-
view surface matching method is to compute a model graph
by using pairwise global registration with spin-images for
all scan pairs. The model graph contains potential matches
between pairs of scans, some of which may be incorrect.
Surface consistency constraints on sequences of matches are
used to distinguish correct matches from incorrect ones be-
cause it is not possible to distinguish the correct and incorrect
matches at the pairwise level. The algorithm proposed in this
paper can be seen as another way of generating the initial
model graph and evaluating a local quality measure. Huber’s
matching results are quite impressive, with recall rates ofup
to 80% on data sets scanned from small objects. However,
the execution time is much longer. Using data sets containing
32 scans with 1000 mesh faces each, as done by Huber,
the time to compute the initial model graph using spin-
image matching can be estimated to1.5 · 322 = 1 536 s (the
complete time is not explicitly stated in [10], but pairwise
spin-image matching is reported to require 1.5 s on average).
a With a data set of that size, a rough estimate of the

aMuch
esti-
ma-
tion
here!

execution time of the algorithm proposed in this paper is
32 · 0.8 + (32 · 3)2 · 7 · 10−6 = 26 s on similar hardware,
based on the execution times in Table III.

V. CONCLUSIONS AND FUTURE WORK

We have described a novel approach to appearance-based
place recognition using 3D range data. We have demon-
strated its performance on two real-world data sets. We can

conclude that the results are encouraging, and the perfor-
mance is comparable to that of place recognition methods
using visual data, with a recall rate of over 30% even for
quite challenging underground mine data.

The purpose of this paper is to demonstrate the perfor-
mance of the NDT-based appearance descriptor. To further
improve performance, future work should include learning a
generative model in order to learn how to disregard common,
nondiscriminative, features, based on the general appearance
of the current surroundings (see [5]).

It would also be interesting to do a more elaborate analysis
of the similarity matrix than a simple threshold in order to
better discriminate between overlapping and non-overlapping
scans. A more detailed study of useful models for finding the
difference tresholdtd would also be interesting.

Further future work should include investigating how this
approach performs when faced with dynamic changes, such
as moving furniture or people.
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