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Abstract

Precise digital 3D models of indoor environments are
needed in several applications, e.g., facility management,
architecture, rescue and inspection robotics. This paper
presents a new algorithm that transforms a 3D volumetric
model into a very precise compact 3D map and generates
semantic descriptions. Our system is composed of a robust,
autonomous mobile robot for the automatic data acquisition
and a precise, cost effective, high quality 3D laser scanner
to gage indoor environments. The reconstruction method
consists of reliable scan matching and feature detection al-
gorithms. The 3D scene is matched against a coarse se-
mantic description of general indoor environments and the
generated knowledge is used to refine the 3D model.

1 Introduction

Automatic and precise reconstruction of indoor environ-
ments is an important task in robotics and architecture. Au-
tonomous mobile robots equipped with a 3D laser range
finder are well suited for gaging the 3D data. Due to odom-
etry errors the self localization of the robot is an unprecise
measurement and therefore can only be used as a starting
point for registration of the 3D scans in a common coordi-
nate system. Furthermore the merging of the views as well
as the scanning process itself is noisy and small errors may
occur. We overcome these problems by extending the re-
construction process with a new knowledge based approach
for the automatic model refinement.

Since architectural shapes of environments follow stan-
dard conventions arising from tradition or utility [9] we
can exploit knowledge for reconstruction of indoor environ-
ments. The used knowledge describes general attributes of
the domain, i.e., architectural features as plane walls, ceil-
ings and floors. For various domains different knowledge
is needed, e.g., for reverse engineering of CAD parts [20].
We show that applying general knowledge for recovering
specific knowledge improves reverse engineering.

In mobile robotics one important task is to learn the en-
vironment to fulfill specific jobs. 3D maps are needed for
plan execution and obstacle avoidance [23]. Volumetric
maps, i.e., 3D point clouds are often large and difficult to
use directly in control tasks. Therefore some groups have
attempted to generate compact flat 3D models [12, 15] or
compact bounding box models [24].

This paper presents algorithms for building compact and
precise 3D models and generates a coarse semantic inter-
pretation, thus creates coarse semantic maps. The pro-
posed algorithm consists of three steps: First we extract
features, i.e., planes from registered unmeshed range data.
The planes are found by an algorithm which is a mixture of
the RANSAC (Random Sample Consensus) algorithm and
the ICP (Iterative Closest Point) algorithm [1, 5]. Second
the computed planes are labeled based on their relative ori-
entation. A predefined semantic net implementing general
knowledge about indoor environments is employed to de-
fine these orientations. Finally architectural constraints like
parallelism and orthogonality are enforced with respect to
the gaged 3D data by numerical methods.

The paper is organized as follows. After discussing the
state of the art in the following part we present the 3D laser
range finder and the autonomous mobile robot. The second
section presents the range image registration, followed by
a description of the feature extraction algorithm. The al-
gorithms for semantic interpretation of the data is given in
section four. In section 5 the model refinement is described.
Section 6 summarizes the results and concludes the paper.

1.1 Related Work

Automatic and autonomous reconstruction of environ-
ments has received much attention for several years. Some
groups have attempted to build 3D volumetric representa-
tions of environments with 2D laser range finders. Thrun
et al. [12, 15, 25], Fr̈uh et al. [10] and Zhao et al. [26]
use two 2D laser range finder for acquiring 3D data. One
laser scanner is mounted horizontally and one is mounted
vertically. The latter one grabs a vertical scan line which



Figure 1. The AIS 3D laser range finder.

is transformed into 3D points using the current robot pose.
Since the vertical scanner is not able to scan sides of objects,
Zhao et al. use two additional vertical mounted 2D scan-
ner shifted by45◦ to reduce occlusion [26]. The horizontal
scanner is used to compute the robot pose. The precision of
3D data points depends on that pose and on the precision of
the scanner.

A few other groups use 3D laser scanners [2, 13, 21]. A
3D laser scanner generates consistent 3D data points within
a single 3D scan. The RESOLV project aimed to model
interiors for virtual reality and tele presence [21]. They
used a RIEGL laser range finder on robots and the ICP al-
gorithm for scan matching [5]. The AVENUE project de-
velops a robot for modeling urban environments [2], using
a CYRAX laser scanner and a feature based scan matching
approach for registration of the 3D scans in a common coor-
dinate system [22]. The research group of M. Hebert recon-
struct environments using the Zoller+Fröhlich laser scanner
and aim to build 3D models without initial position esti-
mates, i.e., without odometry information [13].

1.2 The AIS 3D Laser Range Finder

The AIS 3D laser range finder [23] is built on the ba-
sis of a 2D range finder by extension with a mount and a
servomotor. The 2D laser range finder is attached to the
mount for being rotated. The rotation axis is horizontal. A
standard servo is connected on the left side (figure 1) and is
controlled by the computer running RT-Linux, a real-time
operating system which runs LINUX as a task with lowest
priority [23]. The 3D laser scanner operates up to 5h (Scan-
ner: 17 W, 20 NiMH cells with a capacity of 4500 mAh,
Servo: 0.85 W, 4.5 V with batteries of 4500 mAh).

The area of180◦(h)× 120◦(v) is scanned with different
horizontal (181, 361, 721) and vertical (128, 256) resolu-
tions. A plane with 181 data points is scanned in 13 ms by
the 2D laser range finder (rotating mirror device). Planes
with more data points, e.g., 361, 721, duplicate or quadru-

Figure 2. The Ariadne robot platform.

plicate this time. Thus a scan with 181× 256 data points
needs 3.4 seconds. In addition to the distance measurement
the AIS 3D laser range finder is capable of quantifying the
amount of light returning to the scanner.

1.3 The Autonomous Mobile Robot

The Ariadne Robot (figure 2) is an industrial robot and
is about 80 cm× 60 cm large and 90 cm high. The mo-
bile platform can carry a payload of 200 kg at speeds of up
to 0.8 m/s (about half the speed of a pedestrian). The right
and left driving wheels are mounted on a suspension on the
center line of the mobile platform. Passive castors on each
corner of the chassis ensure stability. The core of the robot
is a Pentium-III-800 MHz with 384 MB RAM and real-time
Linux. One embedded PC-104 system is used to control the
motor, internal display and numerical keyboard and radio
link of the robot. The platform is rigged with two 2D safety
laser scanners as bumper substitutes, one on the front and
the other on the rear of the robot. Each laser scans a hor-
izontal plane of 180◦ of the environment. The robot has a
weight of 250 kg and operates for about 8 hours with one
battery charge [24]1.

2 Range Image Registration

We use the well-known Iterative Closest Points (ICP) al-
gorithm to calculate a rough approximation of the trans-
formation while the robot is acquiring the 3D scans. The
ICP algorithm calculates iteratively the point correspon-
dence. In each iteration step, the algorithm selects the clos-
est points as correspondences and calculates the transfor-

1Videos of the exploration with the autonomous mobile
robot can be found athttp://www.ais.fhg.de/ARC/3D/
scanner/cdvideos.html
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mation (R, t) for minimizing the equation

E(R, t) =
Nm∑

i=1

Nd∑

j=1

wi,j ||mi − (Rdj + t)||2 , (1)

whereNm andNd, are the number of points in the model set
M or data setD, respectively andwji are the weights for a
point match. The weights are assigned as follows:wji = 1,
if mi is the closest point todj within a close limit,wji = 0
otherwise.

It is shown that the iteration terminates in a minimum [5].
The assumption is that in the last iteration step the point cor-
respondences are correct. In each iteration, the transforma-
tion is calculated by the quaternion based method of Horn
[14].

2.1 Matching Multiple 3D Scans

To digitalize environments without occlusions, multiple
3D scans have to be registered. After registration, the scene
has to be globally consistent. A straightforward method for
aligning several 3D scans ispairwise matching, i.e., the new
scan is registered against the scan with the largest overlap-
ping areas. The latter one is determined in a preprocessing
step. Alternatively, Chen and Medioni [7] introduced anin-
cremental matchingmethod, i.e., the new scan is registered
against a so-calledmetascan, which is the union of the pre-
vious acquired and registered scans. Each scan matching
has a limited precision. Both methods accumulate the reg-
istration errors such that the registration of many scans leads
to inconsistent scenes and problems with the robot localiza-
tion.

Pulli presents a registration method that minimizes the
global error and avoids inconsistent scenes [18]. This
method distributes the global error while the registration
of one scan is followed by registration of all neighboring
scans. Other matching approaches with global error min-
imization have been published, e.g., by Benjemaa et al.
[3, 4] and Eggert et al. [8].

Based on the idea of Pulli we designed a method called
simultaneous matching. Thereby, the first scan is the mas-
terscan and determines the coordinate system. This scan is
fixed. The following steps register all scans and minimize
the global error:

1. Based on the robot odometry, pairwise matching is
used to find a start registration for a new scan. This
step speeds up computation.

2. A queue is initialized with the new scan.

3. Three steps are repeated until the queue is empty:

(a) The current scan is the first scan of the queue.
This scan is removed from the queue.

(b) If the current scan is not the master scan, then
a set of neighbors (set of all scans that overlap
with the current scan) is calculated. This set of
neighbors form one point setM . The current
scan forms the data point setD and is aligned
with the ICP algorithms.

(c) If the current scan changes its location by apply-
ing the transformation, then each single scan of
the set of neighbors that is not in the queue, is
added to the end of the queue.

Note: One scan overlaps with another, iff more than 250
corresponding point pairs exist. To speed up the matching,
kD trees andreduced pointsare used [23, 24].

In contrast to Pulli’s approach, the proposed method is
totally automatic and no interactive pairwise alignment has
to be done. Furthermore the point pairs are not fixed [18].
The computed transformations are applied to the robot pose
and thus a relocalization of the robot is done after every 3D
scan. Thesimultaneous localization and mapping problem
(SLAM)is solved.

3 Feature Detection

A common technique for plane extraction is the region
growing based approach, e.g., used by Hähnel et al. [12].
Starting from an initial mesh, neighbored planar triangles
are merged iteratively. The drawback of this approach is
the high computational demand. Alternatively the approach
of online surfaces detection based on line detection in scan
slices of a 3D scans [23] reduces the computational re-
quirements [23], but extending this approach to multiple 3D
scans leads to difficulties.

Another well known algorithm for feature extraction
from data sets is the RANSAC algorithm [1], used by Cant-
zler et al. [6]. RANSAC (Random Sample Consensus) is a
simple algorithm for robust fitting of models in the presence
of many data outliers. RANSAC first selectsN data items
randomly and uses them to estimate the parameters of the
plane. The next step computes the number of data points
fitting the model based on a user given tolerance. RANSAC
accepts the fit, if the computed number exceeds a certain
limit. Otherwise the algorithm iterates with other points [1].

Liu et al. proposes another technique for plane extrac-
tion from range data. They use expectation maximization
(EM) for generating a surface model [15]. Their algorithm
adjusts the number of planes and estimates the location and
orientation, by maximizing the expectation of a logarithmic
likelihood function. Plane parameters are efficiently calcu-
lated by reducing the problem to a computation of eigenval-
ues by introducing Lagrange multipliers. This approach is
not inherently able to determine the number of planes in the
data set [12].
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Our algorithm is a mixture of the RANSAC and the ICP
algorithm, and provides fast plane extraction for a point
cloud. No prior meshing algorithms needs to be applied.
A planep is defined by three 3D points (p1,p2,p3 ∈ R3)
or by one 3D point and the surface normal (p1, n with
||n|| = 1, p1,n ∈ R3). To detect a surface the algorithm
randomly selects a point and estimates a plane through two
neighbored data points. Now the data pointsx ∈ R3 are
calculated that fulfill:

|(x− p1) · n| < ε. (2)

If this set of points exceeds a limit, e.g., 50 points, an ICP
based optimization is started. All data points satisfying eq.
(2) form the model setM and are projected to the plane to
form the data setD for each iteration of the ICP algorithm.
Minimizing the ICP error function (1) by transforming the
plane with this point-to-plane metric takes only a few itera-
tions. The time consuming search is replaced by direct cal-
culation of the closest point and the transformation (R, t)
is efficiently calculated [14]. Given the best fit, all plane
points are marked and subtracted from the original data set.
The algorithm terminates after all points have been tested
according to eq. (2).

The extracted 3D planes are unbounded in size. Surfaces
are finally extracted from the points by mapping them onto
the planes. A quadtree based method generates the surfaces.
Figure 4 shows an example with 12 extracted planes of a
single 3D scan containing 184576 range data points.

4 Semantic Scene Interpretation

The scene interpretation uses the features, i.e., planes
found by the algorithm described in the previous section.
The background for interpretation comprises generic archi-
tectural knowledge. A model of an indoor scene is imple-
mented as a semantic net based on the idea of Grau et al.
[11] and also used by Cantzler et al. [6].

Nodes of a semantic net represent entities of the world
/ model. The relationship between the entities are encoded
using different connections. Possible labels of the nodes are
L = {Wall , Floor , Ceiling , Door , No Feature }.
The relationships between the features areR =
{parallel , orthogonal , above , under ,
equal height }. The labels above and under
are relative to their plane and hence not commutative. Fig-
ure 3 shows the entities and the relation. The reader should
notice that in our semantic net adoor is anopendoor. The
semantic net can easily be extended to more entities which
have be accompanied by a more sophisticated feature
detection. This paper concentrates on plane detection so
that the semantic net is a subset of all indoor environments.

A depth first search (backtracking) is implemented to as-
sign the labels to the set of planesP according to the con-
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Figure 3. Semantic net for scene interpreta-
tion.

straints in the semantic net. The search starts by assigning
the first label fromL to the first plane. The second plane
is labeled and tested with the constraints given by the net.
If all constraints are satisfied the search continues with the
next plane. Otherwise backtracking starts with further la-
bels. This process terminates after the whole search tree is
tested and all consistent combinations are generated. A con-
sistent labeling exists if each plane is assigned with a label
and the model graph is arc consistent. From all consistent
labelings our algorithm chooses the labeling that maximizes

∑

p∈P

f(p), (3)

where f(p) = 0 if plane p is assigned to NoFeature,
f(p) = 1 if the plane is assigned to Wall, Door, Floor or
Ceiling. The maximization of (3) ensures correct labelings
containing Floor, Ceiling and Walls with the minimal num-
ber of NoFeatures and requires a complete tree search.

The computational expense is reduced by backtracking
pruning and reusing (caching) of constraint tests, e.g., the
verification that two planes are orthogonal. Especially the
constraints ”under” and ”above” require a distance compu-
tation with all points of the plane. Figure 4 shows the inter-
pretation of extracted planes from a point cloud acquired in
the GMD Robobench, a standard office environment for the
evaluation of autonomous mobile robots. The plane labeled
with door is an slightly opened office door.

5 Model Refinement

Due to unprecise measurements or registration errors,
the 3D data might be erroneous. These errors lead to in-
accurate 3D models. The semantic interpretation enables us
to refine the model. The planes are adjusted such that the
planes explain the 3D data and the semantic constraints like
parallelism or orthogonality are enforced.

To enforce the semantic constraints the model is first
simplified. A preprocessing step merges neighboring planes
with equal labels, e.g., two ceiling planes. This simplifi-
cation process increases the point to plane distance, which
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Figure 4. Left: Point cloud. Middle and right: Extracted planes and semantic interpretation.

has to be reduced in the following main optimization pro-
cess. This optimization uses an error function to enforce the
parallelism or orthogonality constraints. The error function
consists of two parts. The first part accumulates the point to
plane distances and the second part accumulates the angle
differences given through the constraints. The error func-
tion has the following form:

E(P )=
∑

pi∈P

∑
x∈p1

||(x− pi1) · ni||+ γ
∑

pi∈P

∑

pj∈P

ci,j , (4)

whereci,j expresses the parallelism (5) or orthogonality (6)
constraints according to

ci,j = min{| arccos(ni · nj)|, |π − arccos(ni · nj)|} (5)

and

ci,j = |π
2
− arccos(ni · nj)|. (6)

Minimization of eq. (4) is a nonlinear optimization process.
The time consumed for optimizing eq. (4) increases with

the number of plane parameters. To speed up the process,
the normal vectorsn of the planes are specified by spherical
coordinates, i.e., two anglesα, β. The pointp1 of a plane
is reduced to a fixed vector pointing from the origin of the
coordinate system in the direction ofp1 and its distance
d. The minimal description of all planesP consists of the
concatenation ofpi, with pi = (αi, βi, di), i.e., a planepi is
defined by two angles and a distance.

A suitable optimization algorithm for eq. (4) is Powell’s
method [16], because the optimal solution is close to the
starting point. Powell’s method finds search directions with
a small number of error function evaluations of eq. (4). Gra-
dient descent algorithms have difficulties, since no deriva-
tives are available. Cantzler et al. use a time consuming
genetic algorithm for the optimization [6].

Powell’s method computes directions for function mini-
mization in one direction [16]. From the starting pointP0

in then-dimensional search space (the concatenation of the

3-vector descriptions of all planes) the error function (4) is
optimized along a directioni using a one dimensional min-
imization method, e.g., Brent’s method [17].

Conjugate directions are good search directions, while
unit basis directions are inefficient in error functions with
valleys. At the line minimum of a function along the direc-
tion i the gradient is perpendicular toi. In addition, the n-
dimensional function is approximated at pointP by a Taylor
series using pointP0 as origin of the coordinate system. It
is

E(P )= E(P0) +
∑

k

∂E

∂Pk
Pk +

∑

k,l

∂2E

∂Pk∂Pl
PkPl + · · ·(7)

≈ c− b · P +
1
2
P ·A · P (8)

with c = E(P0), b = ∇E|P0 andA the Hessian matrix
of E at pointP0. Given a directioni, the method of con-
jugate gradients is to select a new directionj so thati and
j are perpendicular. This selection prevents interference of
minimization directions. For the approximation (8) the gra-
dient of E is ∇E = A · P − b. From the differentiation
(δ(∇E) = A(δP )) it follows for directionsi andj that

0 = i · δ(∇E) = i ·A · j. (9)

With the above equation conjugate directions are defined
and Powell’s method produces such directions, without
computing derivatives.

The following heuristic scheme is implemented for find-
ing new directions. Starting point is the description of the
planes and the initial directionsil, l = 1, . . . , n are the unit
basis directions. The algorithm repeats the following steps
until the error function (4) reaches a minimum [17]:

1. Save the starting position asP0.

2. Forl = 1, . . . , n, minimize the error function (4) start-
ing fromPl−1 along the directionil and store the min-
imum as the next positionPl. After the loop, allPl are
computed.
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3. Let il be the direction of the largest decrease. Now
this directionil is replaced with the direction given by
(Pn − P0). The assumption of the heuristic is that the
substituted direction includes the replaced direction so
that the resulting set of directions remains linear inde-
pendent.

4. The iteration process continues with the new starting
positionP0 = Pn, until the minimum is reached.

Experimental evaluations for the environment test set-
tings show that the minimization algorithm finds a local
minimum of the error function (4) and the set of directions
remains linear independent. The computed description of
the planes fits the data and the semantic model.

The semantic description, i.e., the ceiling and walls, en-
able to transform the orientation of the model along the co-
ordinate axis. Therefore it is not necessary to transform the
model interactively into a global coordinate system or to
stay in the coordinates given by the first 3D scan.

6 Results and Conclusion

6.1 Experimental Results

The proposed methods have been tested in several ex-
periments with our autonomous mobile robot in the GMD
Robobench. Figure 4 shows an example 3D point cloud
(single 3D scan with 184576 points) and the semantic in-
terpretation. The corresponding original and refined model
is given in figure 5 (top: Original model,E(P ) = 14.57 +
γ 173.09, bottom: Refined model,E(P ) = 26.68 +γ 2.35,
γ was set to 100.0). The figure shows the reduction of the
jitters at the floor and ceiling (circled). The orientation of
the model in the bottom image is transformed along the axis
of the coordinate system and the meshing algorithm pro-
duces flat walls. The total computation time for the opti-
mization is about one minute (Pentium-IV-2400).

An octree-based algorithm [19] generates the mesh (cube
width: 5cm) to visualize the differences between the im-
ages. Starting from a cuboid surrounding the whole scene
the mesh generation recursively divides the scene into 8
smaller cubes. Empty nodes of the resulting octree are
pruned.

The second example in figure example 6 consists of eight
merged scans acquired by the autonomous mobile robot
driving in the GMD Robobench. The scene consists of a
32 meter corridor connecting 15 offices. Two persons are
standing inside at the beginning. Figure 6 top, left shows the
3D data and reflectance values. The next two pictures (top
middle and right) show the extracted and labeled planes.
The two persons and other non-flat objects, e.g., dynamic
objects, are not explained by the semantic net and therefore
filtered from the plane model. The door behind the right

Figure 5. Top: Unconstrained mesh. Bottom:
Constrained mesh.

person becomes visible. Figure 6 bottom shows the original
(left) and refined (right) octree model with marked differ-
ences. The images contains the silhouette of two persons,
because all points not assigned to planes are unchanged and
included.

6.2 Future work

Needless to say, much work remains to be done. Future
work will concentrate on three aspects:

• Integrate a camera and enhance the semantic interpre-
tation by fusing color images with range data. The
aperture angle of the camera will be enlarged using a
pan and tilt unit to acquire color information for all
measured range points.

• Build an explicit knowledge base, i.e., specifying the
semantic net and labels in a file, such that easy adop-
tion to different domains with templates is possible.
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Figure 6. Example of a compact flat surface model reconstructed by an autonomous mobile robot
(eight merged 3D scans). The persons in the scene are filtered out through the plane detection.
Top left: Photo of the corridor scene. Top middle and right: Extracted surfaces with their semantic
interpretation. Bottom left: Rendered scene with reflectance values. Bottom middle: Unconstrained
mesh. Bottom right: Constrained mesh.

• Generate high level descriptions and semantic maps in-
cluding the 3D information, e.g., in XML format. The
semantic maps contain spatial 3D data with descrip-
tions and labels.

6.3 Conclusion

This paper has presented a new approach to sensor and
knowledge based reconstruction of 3D indoor environments
with autonomous mobile robots. The proposed method con-
sists of three steps and can be applied after the 3D data is
acquired:

• The first step is a fast feature extraction, i.e., plane de-
tection.

• Second the computed planes are labeled with a pre-
defined semantic net. The semantic net contains and
implements general knowledge of indoor scenes.

• Third the model is refined with the constraints arising
from the semantic labeling. An numerical algorithm

based on Powell’s method is used for the 3D model
improvement.

The proposed method is included in the robot control archi-
tecture for the automatic gaging of indoor environments.
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