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ABSTRACT:

Terrain modelling influences various aspects of mobile robot navigation. The ability to explore in rough terrain and to recognise
ground conditions are essential to perform different activities efficiently, safely and satisfactorily. For this reason, intelligent vehicles
and robotic systems need cognitive capabilities to understand the terrain and derive information from it. The information is mostly
acquired and processed by very high resolution 3D-cameras and LiDAR sensors which provide full 360-degree environmental
view to deliver accurate 3D data. The aim of this paper is to find out whether a low-cost sensor variant can measure sufficient
and significant data from the terrain in order to modify the navigation behaviour and provide the correct control commands. In
this paper we describe a low-cost sensor with Infrared Time-of-Flight (ToF) technology and 64 pixel depth image. Furthermore,
different experiments on the detection of the sensor were conducted and with appropriate filters and signal processing algorithms
the environmental perception could be significantly improved. In summary, our results provide both evidence and guidelines for the
use of the selected sensor in environmental perception to improve local obstacle detection and terrain modelling, which we believe
will lead to a very cost-effective improvement in competence and situational awareness.

1. INTRODUCTION

Optical metrology has become one of the standard measure-
ment technologies for industrial automation and mobile robot-
ics. The areas of application are very diverse and the trend
and ingenuity of researchers shows that new areas of applica-
tion are constantly being found. However, automated driving
and free navigation also require that you not only scan the sur-
roundings, but also explore the terrain and ground conditions.
The research question is whether it is always necessary to use
high resolution cameras and LiDAR sensors to measure reas-
onable terrain information or is it also possible to make predic-
tions with much less information? The paper presents a sensor
evaluation of a low-cost sensor for terrain prediction for mobile
robots. As only the terrain directly in front and behind the ro-
bot is of interest, only a small amount of the high data point
volume of a laser scanner would be used. Furthermore, scan-
ning the previously mentioned area is rather difficult without
tilting the scanner and rotating it or using a second one, which
would either increase the complexity or the costs dramatically.
Due to the low FOV of existing 3D LiDAR sensors (e.g. Velo-
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Figure 1. Measuring hurdles — one TeraRange sensor at a
distance of 90cm to the obstacles

The contributions of this work are summarized as follows:

dyne, Ouster), the near areas around the robot cannot be meas-
ured. Another possibility would be to tilt these scanners and let
them rotate infinitely (Daun et al., 2021). The disadvantage of
multi-layer LiDAR sensors and high-resolution cameras is that
the appropriate computing power must be available on the ro-
bot to process the large amounts of data right away. For this
reason, especially in the selection and integration of sensors,
the search was on for less expensive and smaller sensors with a
UART interface, so that the sensor data can also be processed
on a micro-controller and to communicate directly with the low-
level-controller at the end. In this paper we introduce the low-
cost (€ 124.00) TeraRanger Evo 64px! which is used and eval-
uated as depicted in Figure. 1.

* Corresponding author
! https://www.terabee.com/shop/3d-tof-cameras/teraranger-evo-64px/

e Sensor evaluation, filtering and visualisation of a low-cost
ToF sensor for terrain surveys under different ground con-
ditions.

e Data acquisition and processing on a low-cost and low-
power micro-controller board.

o Experimental results in indoor and outdoor environments.

2. RELATED WORK

Terrain surveying in mobile robotics is a broad research area
and includes recognition, learning and corresponding control.
Here we give a brief overview of related work and refer in-
terested readers to articles (Borges et al., 2022),(Sevastopoulos
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and Konstantopoulos, 2022) and (Wettergreen et al., 2008) for
more comprehensive information. A new field of research
emerges when terrain analysis is supported with artificial intel-
ligence (Lee and Chung, 2021), (Guastella and Muscato, 2020),
(Arena et al., 2021). The most commonly used technologies
for distance detection and high-resolution distance measure-
ment in autonomous navigation systems are 3D cameras and
LiDAR sensors. In recent work (Roriz et al., 2021), Roriz et
al. present a comprehensive overview of current market-ready
LiDAR sensors for the automotive sector. There is a broad
number of commercial LIDAR solutions available in the mar-
ket. The applications for 3D sensors are very diverse and are
used for terrain analysis and prediction in addition to environ-
ment modelling. A comprehensive review of terrain traversab-
ility can be found in (Sock et al., 2016), (Shaukat et al., 2016)
and (Papadakis, 2013). The robot-centric elevation mapping
method in (Fankhauser et al., 2014) and (Fankhauser et al.,
2018) estimates the terrain profile including confidence bound.

But all the works mentioned so far use a high-resolution and
expensive LiDAR or camera sensor. Therefore, we were look-
ing for an appropriate sensor technology that is on the one hand
cheap, small in size, low weight and on the other hand easy to
integrate. The low-cost sensors available on the market, such as
Microsoft Kinect 1, V2 or Azure, Asus Xtion 2 or Intel Real-
sense, have a much higher resolution, but always have USB 2.0
or 3.0 as their data interface. This has the disadvantage that you
have no possibility of operating the sensors with a low-power
micro-controller.

3. DATA ACQUISITION AND METHOD

The low-cost TeraRanger Evo is developed for indoor use and
delivers a 64px outputs (matrix of 8x8) high-speed distance
readings over a 15 degree FOV, with a maximum range of up to
5 meters. The technical specifications of the sensor are shown
in the following Table 1:

Principle Infrared ToF
Resolution 8x8 matrix (64 pixel)
Mode closed-range fast
Range [m] 0.1-5 05-5
Update rate [fps] 80 130
+/- 5cm 0.1m to Im
Accuracy +/- 10cm 1m to 3m Z: %(5)22 §§$
+/- 15cm >3m+
Resolution [cm] 0.5
FOV 15°
Supply voltage 5VDC
Supply current 80mA - 250mA
Interfaces USB 2.0 Micro-B, UART (3.3V level)
Weight 15¢g
Dimensions 29x29x22mm

Table 1. TeraRanger Evo 64px specifications.

3.1 Data acquisition

The data acquisition of the TOF-Camera on the OpenCR board?
is realized via UART interface. Furthermore, the camera is set
to close-range-mode as only near obstacles are of interest and
distance-ambient-print is used as tests proved this mode to be
more accurate. Even though this is the default setup of the cam-
era it is still specified within the setup just to be safe. Because
of this setup the camera sends the sensor output as 64 distance

2 https://emanual.robotis.com/docs/en/parts/controller/opencr10/
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Figure 2. Structure of the data acquisition on OpenCR-Board.

values and 64 ambient values. First, a header of Ox11 is sent
which indicates the start the frame. Afterwards, there are 128
data-bytes representing the distance values. The data of one
pixel is sent as high byte and low byte with each having a 1 at
the most significant bit (MSB). Then, the sensor sends 0x13,
which is the header of the ambient dataset, followed by another
128 data-bytes for the ambient values. Next, there are padding
bytes in the form of 0x80 followed by 8 CRC-bytes. Finally, the
sensor sends 0xOA which indicates the end of the frame. This
protocol results in a data transmission of 269 bytes. As the last
character of the transmission is the end-of-line-character, every
byte is read separately and stored into a buffer. Following the
setup in Figure 2 of the OpenCR-Board, the program waits until
it receives the header Ox11. Then, all received bytes are saved
in a buffer. After receiving 0x0OA, the length of the buffer is
checked as it should be 269 bytes long. If this is not the case
the data within the buffer is discarded and the program waits
for the next data set. If the buffer is 269 bytes long, the CRC is
calculated to check if the transmission was not faulty. Accord-
ing to the user manual of the TOF-sensor the CRC-32-mpeg has
to be calculated out of the sent data excluding the last 9 bytes
which include the end of frame byte and the 8 CRC-bytes sent
by the sensor. The result has to be compared to the value sent
by the sensor. This value is constructed by only using the lower
nibble of the 8 CRC-bytes. Last, the distances can be extracted
from the sent data.

3.2 Method

With the angle ¢ in Figure. 3 it is simple to calculate the normal
distance / by using the tangent function. Using the similarity of
triangles, the angle ¢ can be calculated for every single pixel.
For this we assume that the centre of each pixel at the plane is
50mm from its neighbour in X- and Y-direction. Knowing, that
the FOV of the sensor is 15° we can now calculate / for this
configuration with

175
1= 2" 135952 mm 4))
tan(7.5°)

By calculating w using the X- and Y-coordinates of a pixel
measured from the centre of the plane, the angle ¢ for every
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Figure 3. FOV-Correction: geometric references and correction
matrix ¢.

pixel is calculated with

@ = arctan (?) 2

This results in the following 8x8-matrix ¢ containing the angles
¢ to calculate the normal distances 1 of each pixel out of the
measured distances d. With the matrix ¢ in Figure 3 an 8x8-
matrix with the corrected distance values can be easily calcu-
lated by multiplying the pixel’s value with the cosine of its cor-
responding angle ¢. The relevant data to plan an optimal path

X

1 (10547 9.19° | 8.18°| 7.57°| 7.57°| 8.18° | 9.19° 10.54°

9.19°| 7.57° | 6.25° | 5.47°| 5.47°| 8.25° | 7.57° | 9.19°

8.18°| 8.25° | 4.56°| 3.40° | 3.40°| 456° | 6.25° B.18°

7.57°| 5.47° | 3.40°| 1.52° | 1.52° | 3.40° | 78.89° 7.57°
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Figure 4. Correction matrix A

to cross the obstacle are the height & of the obstacle and the
distance / from the robot to the obstacle, see Figure 5. Further-
more, it is useful to calculate § in case of a slope. Comparable
to calculating the normal distances of the pixels, the height #*
can be calculated by using the angle A which can be determined

beforehand by using similar triangles.

A = arctan ({> 3)
y

For the calculation we only need the X- and Y-coordinates of
the pixels measured from the centre of the plane, see Figure.
3. Using this matrix A in Figure. 4 the height of an object
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Figure 5. FOV for camera (left) and detailed view of slope
calculation (right).

at pixel (x,y) can be determined by calculating A and adding
or subtracting it to the height A, at which the camera is placed
depending on if the pixel is under or above the middle line. The
height function we used here is

h*=w-cos(A)=d-sin(@)-cos(1) 4)
h_hcih*{+fory<4 )
—fory>4

Terrain prediction: To calculate the slope 8 of the obstacle
we need the data of the pixel A which is the highest point of
the nearest object and the data of pixel B which is the lowest
pixel in the same column of pixel A. As shown in Figure. 5
hg and hy, correspond to A" of the pixel A and B respectively
and c is the difference between the distances 1 of pixel A and
B. Furthermore, we need to divide the 8x8-matrix into a top
half (row 0-3) and a bottom half (row 4-7) to calculate the side
adjacent to f3 properly:

x = hg + hp if AN B not in same half
c
ﬁ:arctan(;) X = hy—hy if ANB in top half ®)
x = hy, + h, if ANB in bottom half

The flipper angle o can be calculated by using the following

equation
h
o = arctan <7> 7

The 8x8-matrix can be interpreted as images where the pixel
values range from O to the maximum distance measured, in-
stead of the usual 0 to 255. The structure of the evaluation of
the sensor data, obstacle detection and data pre-processing is as
follows. This type of sensor is usually less accurate, provides
less data and is limited in its FOV in comparison to laser scan-
ners (Figure. 6).

4. EXPERIMENTAL RESULTS

For the evaluation and measurements, a 3D-printed part of the
housing was mounted on a tripod to ensure that the sensor was
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at the correct height. In the spirit of rapid prototyping, the
concept was first tested using MatLab to evaluate the sensor
data, as programming on an ARM micro-controller — or as in
this concept on the OpenCR-Board — does not have sufficient
visualization capabilities to test the prototype properly.

Furthermore, saving data that was evaluated on a computer to
be able to present it elsewhere is also complicated. Therefore,
the python program that is provided by the manufacturer of
the ToF-sensor was used to get the sensor data and modified
so that the data is saved in a CSV-file. First, only the data of
the ToF-sensor that is facing forward is evaluated in MatLab.
Hence, distance values within an 8x8-matrix are used to de-
tect obstacles. The 8x8-matrix can be interpreted as pictures
where the pixel values range from O to the maximum distance
measured instead of the usual 0 to 255. Thus, image processing
tools can be used to alter the matrix, but it is advised to only
use simple tools as complicated functions might prove difficult
to implement on an ARM-micro-controller. The structure of the
evaluation of the sensor data and obstacle detection is shown in
Figure 6
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Figure 6. The structure of the evaluation of the sensor data and
obstacle detection from a TeraRanger Evo 64px.

The simplest obstacle to encounter is a wall, see Figure. 7. In
theory this system should detect one object across the entire
8x8-matrix. The sensor was evaluated against various condi-
tions and objects and analysed in detail using the developed
software.

Figure 7. Experimental result wall — one sensor at 30 cm
distance.

4.1 Bars

Another measurement was a bar, a 10x10 cm obstacle on the
ground that can obstruct the robot’s path. The following data
was measured with a bar at 30,60,75 and 90 cm with a wall
behind it at 175 cm distance. As was to be expected due to
the limited FOV, a 10 cm long bar can only be seen from a
minimum distance of:

_ he—h
" sin7.5°
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found objects

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

found objects

2000 3

28
1900

26
1800

24
1700

22
1600 2
1500 18
1400 &s

14
1200

12
mwo 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

10 datasets - before FOV-Correction

_PL

m—

Figure 8. Experimental results: bar — one sensor at 30 cm, 60 cm
and 90 cm.

4.2 Hurdles

The hurdles are obstacles that are specified within the MOB1
of the Rescue League rulebook?. This is a 20 cm high rolling
pipe obstacle to climb up and down, as shown in the following
figure. However, due to the diameter of the pipes used, the
actual height of the hurdles is 24 cm. As these pipes do not
have hard edges like stairs, they might be difficult to detect.

At the distance of 60 cm the data was not really use-able as the
sensor sent a lot of errors for the pixels. This is probably caused
by the scattering of the light beams caused by the round pipes.

Curiously, measurements at close range and when farther away
(30 cm and 90 cm) where reasonably accurate. At 30cm the
height of 24cm was nearly at the end of the FOV and the pipes
were simply detected as one object. At 90 cm you can clearly
see the curvature of the pipe demonstrated by the 4 different ob-
jects from row 1-4. Measurements in between seem to be rather
difficult and it is more luck-based if the beams are refracted a
lot or if you obtain useable data. If this creates problems while
actually controlling the flippers or if the measurements at close
range and greater distances are enough, needs to be investigated
further.

3 https://rrl.robocup.org/2022-rules/
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Figure 9. Experimental results: hurdles — one sensor at 30 cm,
60 cm and 90 cm.

4.3 Stairs

Stairs are obviously a very common obstacle. Ideally the 8x8-
matrix should contain 2-3 objects that are horizontally aligned
depending on the distance from the robot to the stairs. One step
has a height of 20 cm and a depth of 24 cm. Here the expected
result is that the algorithm groups the pixels into two objects.
One at the bottom half for the first step and one at the top half
for the second step. As one can see above, even though the res-
ult includes three objects, they are grouped in a logical manner.
The measurements at row 4 are probably slightly off due to the
re-fractions at the edge of the step. Yet, the algorithm determ-
ines the closest object to be the step at the bottom. Furthermore,
the accuracy of the height and distance measurements have sat-
isfying accuracy.

4.4 Extended FOV with two ToF sensors

The measurement at 70 cm detects the bar properly but the dis-
tance measurement with one ToF sensor is very inaccurate, see
Figure 11. The accuracy seems to increase with the distance
between the camera and the bar. Nevertheless this is problem-
atic. For this obstacle, this system does not work and needs to
be adjusted. As the measurement of smaller obstacles does not
seem to be possible with one sensor at the height of 19 cm due
to its limited FOV, the system was expanded by a second cam-
era at a height of 10 cm. This second sensor should in theory
detect the smaller objects while the first one is responsible for
larger obstacles. Now it needs to be determined if the algorithm
still works or if the errors of one camera hinder the result of the
other one. Furthermore, it needs to be evaluated whether the
data is now simply an 8x16-matrix or if the pixels where the
FOV of the two sensors overlap need to be tallied up.

4.5 Different objects

Different materials were also tested to evaluate the sensors be-
haviour. Some of the different objects measured can be seen
below.
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Figure 10. Experimental results: stairs — one sensor at 30 cm, 60
cm and 90 cm.
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Figure 11. Camera setups and comparison of different
measurement configurations - single ToF LiDAR FOV and two
sensors with overlapping FOV.

After measuring different materials and objects the following
conclusions could be drawn:

e Reflective surfaces, unless they are highly polished, such
as the aluminium lid, the TV-screen or other metal sur-
faces, can be easily detected.

e Mirrors that are perpendicular to the line of sight can still
be measured properly.

e Slightly tilted mirrors can be detected within distances of
< 80cm but then disappear, due to the reflection of the
light.

o Glass or windows can be detected using this sensor.

4.6 Outdoor

Trying to measure similar objects as in section 4.5 outside de-
livered the following results:
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e Surfaces such as wood or cardboard boxes can be detected
within distances < 1m;

e Reflective surfaces such as metals are hardly detectable
and mostly result in errors;

e The accuracy is worse with about £10cm instead of
+5cm.

5. CONCLUSION

The experiments have shown that with the TeraRanger Evo it is
possible to analyse objects and terrain with only 64 pixels. This
restriction also makes it possible to operate two sensors simul-
taneously and to further analyse the data on a micro controller.
The low-level integration then also has the advantage, that the
overall system is quickly ready to go once powered up and easy
to use. The experiments also showed that the data from several
measurements had to be averaged to reduce the noise and then
the distortions are corrected by the FOV. After calibration, the
pixels are grouped into objects using connectivity-8 if their dis-
tances are within a certain range. Finally, the closest object is
searched for and its dimensions to the obstacle are calculated.

Initial tests have shown that such a minimalist system with a
sensor that provides only 64 data points per measurement is
probably sufficient to reliably detect objects and perform rough
measurements. If a mobile robot approaches an obstacle from
a certain angle, the object would probably be split horizontally
into several different objects. This would not be a problem for
the flipper control because the angle of the two flippers on one
side cannot be adjusted separately. However, to achieve correct
and logical results, the algorithm should be adjusted to recog-
nise such an obstacle as one. Furthermore, this problem also
applies when hitting slopes. These will most likely be recog-
nised as horizontally aligned objects and not as an object with a
slope. Therefore, the algorithm should definitely be adapted to
deal with this problem.

With the experiments, all the manufacturer’s specifications
could be confirmed. The accuracy of the camera is most likely
sufficient and most surfaces can be detected without any prob-
lems. Since the sensor emits its own infrared light signal, it is
not dependent on the lighting of the room. However, since sun-
light contains infrared light in its spectrum, outdoor perform-
ance is limited. Although this is somewhat problematic, the
sensor is still considered suitable for this application because
many mobile robot applications are indoors.
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