
Device Level Simulation of Kurt3D Rescue Robots
Sven Albrecht, Joachim Hertzberg, Kai Lingemann, Andreas Nüchter, Jochen Sprickerhof, Stefan Stiene

University of Osnabrück
Institute for Computer Science

Knowledge-Based Systems Research Group

Albrechtstraße 28
D-49069 Osnabrück, Germany

nuechter@informatik.uni-osnabrueck.de
http://kos.informatik.uni-osnabrueck.de/download/UOSSim/index.html

Abstract— USARSIM is a worldwide used robot simulator
deployed in Urban Search and Rescue (USAR) and in the
context of the RoboCup Rescue Real Robot contest. This paper
describes the USARSIM simulator for KURT2 and Kurt3D robot
platforms, which we are using in both education and research.
As it simulates on the device level, a seamless integration of real
robot control software with the simulations becomes possible. We
evaluate the performance for simulating laser range scans and
the camera system. In addition, we show a simulation of the
rescue robots.

I. INTRODUCTION

Mobile robotics is a complex area of scientific research
and education dealing with advanced technologies. Knowledge
and experiences of developing intelligent systems include the
domains electronics, mechatronics, computer hardware and
software. Furthermore mobile robotics projects are tied with
large investments. Realistic simulations and fast prototyping
for developing mobile systems help to reduce the amount of
time and to minimize the costs for hardware developments. In
addition, simulations offer the possibility to concentrate faster
on the interesting aspects of developing algorithms. Scientific
education and research benefit from realistic, technically ma-
ture, and well-engineered simulators.

State of the art computer games are cost effective, due
to the development for the mass consumer market. As an
available free prerequisite, many students are already familiar
with computer games and are extraordinarily motivated to
go into more detail. Ego shooters simulate agents in a 3D
environments and contain a physics simulation [8].

Application of the simulator USARSIM is the area of rescue
robotics. Software of rescue robots covers artificial intelli-
gence, knowledge representation and fast control algorithm
design. RoboCup is a test and demonstration scenario for
evaluating robots and their software.

The paper is organized as follows: First we introduce
RoboCup Rescue and USARSIM, followed by a description of
how to simulate environments and the Kurt2 robot platform,
including a presentation of our USARSIM system architecture.
Simulation performance and results conclude.

II. ROBOCUP, ROBOCUP RESCUE AND USARSIM
RoboCup is an international joint project to promote AI,

robotics and related fields. It is an attempt to foster AI and

intelligent robotics research by providing standard problems
where a wide range of technologies can be integrated and
examined. Though not as well-known as the RoboCup Soccer
leagues, the Rescue league with its serious real-life back-
ground got more and more attention lately. The idea is to
develop mobile robots that are able to operate in earthquake,
fire, explosive and chemical disaster areas, helping human
rescue workers to do their jobs. A fundamental task for rescue
robots is to find and report injured persons. To this end, they
need to explore and map the disaster site and inspect potential
victims and suspicious objects. Current real deployed rescue
robots have only limited usage and are mainly designed for
searching for victims and paths through rubble that would be
quicker to excavate, for structural inspection and for detection
of hazardous material [3]. These robots are designed to go a bit
deeper than traditional search equipment, i.e, cameras mounted
on poles [3]. The RoboCup Rescue Contest aims at evaluating
new rescue robot technology to speed up the development of
working rescue and exploration systems.

In RoboCup Rescue, robots compete in finding as many
“victims” (manikins) as possible, within a limited time, in a
given, previously unknown arena, and reporting their life signs,

Fig. 1. Rescue arenas at RoboCup 2004, Lisbon. Top row: Orange and red
area. Bottom left: Operator station. Bottom right: Example of a victim in a
yellow area.



situations, and positions in a map of the arena, which has to
be generated during exploration. The idea is that, in a real-
life application, this map would help humans to decide where
to send rescue parties. The arena consists of three subareas
(yellow, orange, red) that differ in the degree of destruction,
and therefore in the difficulty of traversal. In the “earthquake
phase” between competition runs, the areas get completely
rearranged, including the distribution of the victims. Fig. 1
shows some examples.

The robots in RoboCup Rescue are remotely controlled or
surveyed by one or more operators. The operator has no direct
view of the arena, only transmitted robot sensor data may be
used for control. The degree of autonomy or telecontrol in the
robots is at the team’s discretion.

Scoring is based on an evaluation function that is modi-
fied between the competitions. This function incorporates the
number of operators (the fewer the better), the map quality,
the quality of the victim localization, the acquired information
about the victim state, situation and tag, the degree of difficulty
of the area, but also penalizes area bumping and victim
bumping.

USARSIM is a simulation of robots and scenarios for
disaster and rescue robotics. It was developed by M. Lewis
and J. Wang [8] to match the physical test scenarios of the
American National Institute of Standards (NIST) [1], [2]. The
focus of the development was the evaluation of man–robot
interaction as well as research of cooperative robots [6], [7].

Sophisticated robot simulation in USARSIM is based on
a game engine that stems from the computer game Unreal
Tournament 2003 or 2004. Due to using a game engine, the
simulator shows the excellent graphics and physic simulation
of a commercial software product. Since games are produced
for a mass market, the costs are low: About $15 for a license.

Unreal Tournament is a multiplayer ego shooter for Win-
dows, Linux and MacOS. The graphics is outstanding, as
expected from a commercial product. The Unreal-environment
includes a script language that offers developers the possibility
to create objects and to control their behavior. The Unreal-
editor that comes with the game and the open source program
Blender were used to develop environments and models of
robot platforms.

Multiplayer ego shooters realize a client server architecture
where every player is a client, connecting to the game server.
The fast rendering of the scene graphic is done by the client.
The server coordinates the players and is responsible for
their interaction. The communication protocol is proprietary.
However, the software Gamebots modifies Unreal Tournament
such that agents can be controlled using an open TCP/IP
interface. This interface provides sensor information to the
agent control program.

Physical simulation in Unreal Tournament is done by the
Karma Physics Engine. Karma processes ridged body move-
ments and allows to simulate motors, wheels, springs, hinges
and joints. From these base modules, complicated objects are
built through compounding. The compound object comply to
the physics in simulation.

III. SIMULATION OF RESCUE ROBOTS

A. Environment Simulation

USARSIM provides Unreal maps for all three RoboCup
arenas. Fig. 2 shows a photo and an Unreal rendering of the
orange and yellow arena. Using the Unreal editor, arbitrary
scenes can be created. Fig. 3 shows a photo of our office
corridor and the corresponding Unreal scene.

B. KURT2

KURT2 (Fig. 3, right) is a mobile robot platform with a
size of 45 cm (length) × 33 cm (width) × 26 cm (height)
and a weight of 15.6 kg. The core of the robot is a Centrino-
1400 MHz with 256 MB RAM running Linux. An embedded
16-Bit CMOS microcontroller is used to control the motor.

The robot is equipped with a 2D laser range finder, a
Logitech web cam, including a pan and tilt unit, as well as a

Fig. 2. Real and simulated rescue arenas. Top: Orange arena real and
simulated. Bottom: Red arena real and simulated. Taken from [8].

Fig. 3. Top: AVZ building Osnabrück and KURT2 real. Bottom: Build-
ing and KURT2 in simulation. More material available at http://kos.
informatik.uos.de/download/UOSSim/index.html.



one-axis (horizontal) gyro and seven infrared sensors.
Simulation of KURT2 robots: For the simulation of the

robot, a model of the hardware as well as a control software
are needed. For the model, a mesh of the robot has to be
generated, which is done using the Unreal editor and Blender.
Fig. 3 (right) shows the real and the simulated robot. As for the
control software, we extended the exiting software for the real
robots with interfaces to access either the actual hardware or
the corresponding components of the simulation software. This
way, only small changes to the software were necessary, and
any future improvements are beneficial for both applications,
real world and simulated. The following code fragment shows
an example of retrieving laser range data, either from a real
SICK scanner or its simulated counterpart.

#ifdef USARSIM
res = sim_client.SICK_read(fd_RS422,

buf, 255);
#else

res = read(fd_RS422, buf, 1);
#endif

Currently the following components are simulated:
• A motor that drives the robot. Pulse width modulated

signals are simulated.
• Odometry determining wheel revolutions in ticks.
• A laser scanner yielding 181 distance values of one slice

of the environment in front of the robot.
• A gyro that estimates the current heading of the robot.
• A camera that provides images of the environment.
The camera device drivers are fed from a camera server,

that in turn is fed by a snapshot of an Unreal spectator client.
Fig. 5 (left) sketches the software structure and the data flow.
For fast simulation four computers form a cluster:

1) One computer is needed as Unreal server. The server
simulates all robot sensors, except cameras.

2) The cameras are simulated on a second computer, run-
ning a small program that captures pictures from an
Unreal spectator window.

3) The control loop of the KURT2 robot runs on a third
computer, instead of the robot’s notebook. Usually, the
loop retrieves motor signals with 100 Hz and laser range
scans with 75 Hz.

4) The user interface for driving the robot runs again on
a separate computer. This computer is connected to the
previous one, i.e., to the computer running the robot
control loop. There are no direct connections to Unreal.

The right part of Fig. 5 shows the 4-PC simulation of
KURT2. Fig. 6 shows the user interface of KURT2. The shown
data is transmitted from the control loop of the robot.

C. Kurt3D

Kurt3D (Fig. 4, left) extends the KURT2 robot by a 3D laser
range finder, i.e., the SICK 2D scanner is mounted on a tiltable
unit, rotating the scanner by its horizontal axis. Furthermore,
Kurt3D is equipped with two cameras, mounted on selfmade

Fig. 4. Left: Real Kurt3D robot. Right: Simulated Kurt3D.

pan and tiltable units on both sides of the scanner. The robot’s
height increases to 47 cm, its weight to 22.6 kg.

In addition, the control software is extended by a 3D
environment mapping system, i.e., 6D SLAM (simultaneous
localization and mapping) [4]. This system always yields a
precise pose estimate in all six degrees of freedom (x, y,
z position; pitch, roll and yaw angle), enabling the robot to
create accurate three dimensional maps.

Simulation of Kurt3D robots: The simulation of the Kurt3D
robot is done according to section III-B. In the simulation, the
scanner is attached to a tilting unit, yielding 3D scans. Thus,
the simulation is done in the same way as in reality.

The USARSIM 3D scanner model is not used, due to its
unavailability in mobile robotics.

IV. RESULTS

A. Simulation Performance

Our simulation has been tested on a PC cluster, consisting of
four 3.0 GHz Pentium-IV computer, running Linux OS. Tab. I
shows the performance of the system. To achieve a seamless
integration of simulation and real robot control software we
rewrote Kurt’s control software to handle all devices in a non-
blocking fashion. The control loop runs as fast as possible and
whenever new device data is present, the data gets processed.
Standard Linux device drivers are used to buffer and hold back
data.

The simulated 3D scanner needs 61 sec for acquiring a
3D scan of 181 × 120 3D data points. This result is due
to the fact that setting the servo motor values in Unreal is not
instantaneous.

B. Simulated 3D mapping

We have tested our 3D environment mapping system [4]
in the simulated AVZ building and in the USARSIM yellow
arena as provided by NIST. Fig 7 shows images of the arena
vs. simulated depth data. Fig. 9. presents the result of an octree
representation (top right) and a marching cubes algorithm
(bottom right) that extracts 3D meshes reliably from the data
points and vectorizes the data.

V. CONCLUSIONS

The presented work introduces a simulation of KURT2
robots using USARSIM. The simulation is based on the com-
puter game Unreal Tournament 2004. Excellent 3D graphic



Fig. 5. Left: The software architecture for simulating KURT2 robots. The arrows show the data flow, lines represent TCP/IP connections, double lines are
created, when programs are linked and dashed lines are generated, when data files are read. Right: Four computers are necessary for a fast KURT2 simulation.
The lines represent TCP/IP connections and the arrows the data flow.

TABLE I
COMPUTING TIME OF THE DEVICES (PENTIUM-IV-3000) USING DIFFERENT SIMULATED ROBOCUP RESCUE ARENAS. FOR COMPARISON: THE REAL

KURT2 YIELDS ENCODER TICKS WITH A FREQUENCY OF 100 HZ, LASER SCANS WITH 75 HZ AND CAMERA IMAGES WITH ABOUT 10 FPS.

Kurt3D device computing time (4 PC cluster) computing time (single computer)
scanner (181 values) 50ms 200ms
gyro (INU sensor) 50ms 200ms
encoder sensor 50ms 100ms
camera 400ms 400ms

Fig. 7. Left: Rendered images from the AVZ building. Right: Simulated 3D
scan.

and physical simulation make a seamless integration in al-
ready existing robot control architectures possible. We have
strictly followed the principle for simulating device drivers,
resulting in the need for four standard PCs for simulation,
where two computers are used for the robot and interface
software, respectively. We provide a truly realistic simulation

environment for beta-testing our real robots, and experiment
with new control software or simulations of sensors that you
don’t have yet physically. This is the goal towards which we
have worked, given that we keep participating in the Real
Robot league (Kurt3D in 2004 [4]; Deutschland1 in 2005 [5]).

Unfortunately, these results cannot be used in the RoboCup
Rescue Virtual Robots league. We started to join USARSIM
community with our original Kurt3D software, into which the
simulator is integrated. Kurt3D’s software development has
lasted for 6 years, and is jointly developed with the Fraunhofer
Institute AIS and with RTS, University of Hannover. The
software underlies regulations and cannot be made available
to the public, as it is demanded in the current rules. However,
parts of it, namely the complete Unreal parts as well as the
interface to our robot are available on our website.

Moreover, we believe that the Rescue Virtual Robots league
should focus on the seamless integration of real robot control



Fig. 6. The user interface for driving Kurt3D robots. The laser range data and the camera data originates from simulation.

software with the simulator. It does not make sense to develop
programs just for driving a robot in an Unreal environment,
without have the link to real robots.

Needless to say, a lot of work remains to be done. In future
work, we plan

• to integrate simulations of the RTS Scandrive [5] and the
FLIR infrared camera into our system,

• to enhance realism of the laser scanner. So called salt and
pepper noise will be added to the simulation to generate
jump edge outliers as in real scans, and

• to improve the simulation of the gyro in order to yield a
drift similar to the real sensor.

In addition, we plan to use USARSIM in projects dealing with
service robotics.

ACKNOWLEDGMENT

We would like to thank Jijun Wang and Mike Lewis for
discussing simulator details. Many thanks to Christian Taubitz
and Marvin Drogies for helping modeling the Osnabrück office
environment. The marching cubes algorithm was implemented
by Thomas Wiemann. Furthermore, we thank Kai Pervölz and
Hartmut Surmann for preceeding joint research and Oliver
Wulf and Bernardo Wagner for the work in the Deutschland1
team.

REFERENCES

[1] A. Jacoff, E. Messina, and J. Evans. Experiences in deploying test arenas
for autonomous mobile robots. In Proceedings of the 2001 Performance
Metrics for Intelligent Systems (PerMIS) Workshop, in association with
IEEE CCA and ISIC, Mexico City, Mexico, 2001.

[2] A. Jacoff, E. Messina, B. A. Weiss, S. Tadokoro, and Y. Nagakawa.
Test arenas and performance metrics for urban search and rescue robots.
In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS ’03), Las Vegas, NV, U.S.A., October 2003.

[3] R. R. Murphy. Activities of the Rescue Robots at the World Trade Center
from 11-21 September 2001. IEEE Robotics & Automation Magazine,
11(3):851 – 864, September 2004.

[4] A. Nüchter, K. Lingemann, J. Hertzberg, H. Surmann, K. Pervölz,
M. Hennig, K. R. Tiruchinapalli, R. Worst, and T. Christaller. Mapping
of Rescue Environments with Kurt3D. In Proceedings of the IEEE
International Workshop on Rescue Robotics (SSRR ’05), pages 158 –
163, Kobe, Japan, June 2005.

[5] A. Nüchter, O. Wulf, K. Lingemann, J. Hertzberg, B. Wagner, , and
H. Surmann. 3D Mapping with Semantic Knowledge. In Proceedings of
the RoboCup International Symposium, Osaka, Japan, June 2005.

[6] J. Wang, M. Lewis, and J. Gennari. A game engine based simulation
of the nist urban search and rescue arenas. In Proceedings of the 2003
Winter Simulation Conference, pages 1039 – 1045, 2003.

[7] J. Wang, M. Lewis, and J. Gennari. Usar: A game based simulation for
teleoperation. In Proceedings of the 47th Annual Meeting of the Human
Factors and Ergonomics Society, Denver, CO, October 2003.

[8] Jijun Wang. USARSim - A Game-based Simulation of the
NIST Reference Arenas http://usl.sis.pitt.edu/ulab/
usarsim download page.htm and http://sourceforge.
net/projects/usarsim, 2005 – 2006.



Fig. 8. Left: Unreal map of the AVZ building (top) and of the yellow arena (bottom). Right: Corresponding marching cube representation (top) and point
cloud in a bird eyes view (bottom).

Fig. 9. Marching cube mesh of the yellow arena


