
Julius-Maximilians-Universität Würzburg

Institut für Informatik
Lehrstuhl für Künstliche Intelligenz

und Wissenssysteme

Bachelorarbeit
im Studiengang Luft- und Raumfahrtinformatik

zur Erlangung des akademischen Grades
Bachelor of Science

Automated Detection of Lung Nodules in CT Scans using
Convolutional Neural Networks

Autor: Ivaylo Angelov
Matrikelnummer 2099396

Abgabe: 28.09.2020

1. Betreuer: Prof. Dr. Frank Puppe
2. Betreuer: M. Sc. Amar Hekalo

2

Abstract

The present thesis examines the usage of neural networks, in particular Convolutional
Neural Networks, for the detection of lung nodules in CT scans. The aim of this work
is the implementation of a nodule detection framework that allows the integration of
different datasets and models. For this purpose it initially provides a detailed overview
of the current state of research, thereby focusing on image preprocessing, data augmen-
tation and promising network architectures.
Employing the LNDb-dataset[1] released in 2019 and an auspicious model architecture,
the training procedure of a lung nodule detection network is demonstrated. The model
is based on the architecture presented in [2] and uses a custom 3D-Single-Shot-Detector
as a detector head.
The model output is evaluated with the common object detection metrics precision and
recall, as well as with the FROC-score, which is a popular metric in medical applica-
tions. We achieve a maximal recall of 0.68 at 42963 false positives per scan according
to the FROC-calculation procedure in the LNDb-Challenge[3]. The calculation of preci-
sion and recall on the COCO IoU-range as well as the FROC-score for the typical set of
{ 1

8 ,
1
4 ,

1
2 , 1, 2, 4, 8 } FPs per scan yield a result of zero due to the low accuracy of box pre-

dictions and the herefrom resulting lack of true positives. Thus the method presented
in this work is still not well enough trained in order to perform lung nodule detec-
tion. However, more training time and the incorporation of additional datasets, image
processing procedures and training steps that are mentioned promise to lead to a sig-
nificantly better performance in the future.

3

Zusammenfassung

Die vorliegende Bachelorarbeit befasst sich mit der Nutzung Neuronaler Netze, speziell
Convolutional Neural Networks, für die Detektion von Lungenknoten in CT Scans.
Ziel der Arbeit ist die Implementierung eines Frameworks, in das verschiedene Daten-
sätze und Modelle eingebaut werden können, um die Detektion von Lungenknoten zu
trainieren. Hierfür wird zunächst ein detaillierter Überblick über den aktuellen Forschungs-
stand mit Schwerpunkten in der Vorverarbeitung von Bildern, Datenaugmentierung
und erfolgsversprechenden Netzwerkarchitekturen gegeben. Unter Nutzung des 2019
erschienenen LNDb-Datensatzes[1] wird mit einem vielversprechenden Modell der Train-
ingsablauf eines, auf die Erkennung von Lungenknoten spezialisierten, Netzes demon-
striert. Das Modell basiert auf der unter [2] vorgestellten Architektur und benutzt einen
eigenen 3D-Single-Shot-Detector als Detector-Head.
Zur Evaluation wurden die herkömmlichen Klassifikationsmetriken Precision und Re-
call, sowie der, für medizinische Anwendungen beliebte, FROC-Score verwendet. Das
präsentierte Modell erzielt einen Recall von 0.68 bei 42963 False Positives pro Scan nach
dem unter [1] beschriebenen FROC-Algorithmus. Aufgrund der geringen Genauigkeit
der Box-Vorhersagen des Modells sind Precision und Recall über dem COCO IoU-Bereich[4]
sowie der FROC-score für die typischen Werte von { 1

8 ,
1
4 ,

1
2 , 1, 2, 4, 8 } FPs pro Scan gleich

null. Das vorgestellte Modell ist daher noch ungeeignet, um Lungenknoten vorherzusagen.
Ein größerer Zeitrahmen und der Einbau weiterer Datensätze sowie in dieser Arbeit er-
wähnter Datenverarbeitungsschritte und Trainingstechniken versprechen jedoch deut-
lich bessere Resultate in Zukunft.

Contents 4

Contents

List of Symbols 6

List of Figures 7

List of Tables 9

1 Introduction 10
1.1 Motivation and goals . 10
1.2 Outline . 11

2 Theoretical Framework 12
2.1 Neurons and Neural Networks . 12

2.1.1 The Neuron . 12
2.1.1.1 Activation Functions . 13

2.1.2 Combining Neurons to a Network 15
2.1.3 Training a Neural Network . 17

2.1.3.1 Cost Functions . 17
2.1.3.2 Error Surface . 17
2.1.3.3 Backpropagation . 18
2.1.3.4 Optimization Approaches 19

2.1.4 Hyperparameters . 21
2.1.5 Overfitting . 22

2.2 Convolutional Neural Networks . 24
2.2.1 The Convolution Operation . 24
2.2.2 The Convolutional Layer . 24
2.2.3 The Pooling Layer . 27
2.2.4 Flattening . 28
2.2.5 Feature Extraction . 28

2.3 Object Detection and Recognition . 28
2.3.1 Loss Functions . 31

2.3.1.1 Classification Loss . 32
2.3.1.2 Localization Loss . 32

2.3.2 Single-Stage Detection Models . 33
2.3.3 Two-Stage Detection Models . 36
2.3.4 Confidence Thresholding and Non-Maximum Suppression 40
2.3.5 U-Net . 41
2.3.6 Feature Pyramid Networks (FPN) 42
2.3.7 Object Detection in Two and Three Dimensions 43

2.4 Evaluation metrics . 44
2.4.1 Confusion Matrix . 44
2.4.2 Precision, Sensitivity/Recall, Specificity 45

Contents 5

2.4.3 Receiver Operating Characteristic 45
2.4.4 Free-response Receiver Operating Characteristics (FROC) 49

3 Related Work and State of the Art 51
3.1 Datasets . 51

3.1.1 NLST . 51
3.1.2 Anode09 . 51
3.1.3 Spie-AAPM-NCI LungX . 52
3.1.4 LIDC-IDRI . 52
3.1.5 LUNA . 52
3.1.6 LNDb . 53

3.2 Recent Challenges . 53
3.3 Related Work . 53

4 Training Methods 59
4.1 Dataset . 59

4.1.1 Annotations . 59
4.1.2 Preprocessing . 60
4.1.3 Data Augmentation . 62

4.2 Network Architecture . 64
4.3 Training . 66
4.4 Inference and Postprocessing . 68
4.5 The Framework . 69

5 Results and Discussion 71

6 Conclusion 75

Literature 76

Eidesstattliche Erklärung 84

List of Symbols 6

List of Symbols

ANN Artificial Neural Network

CAD Computer-aided diagnosis

CNN Convolutional Neural Network

DDCB Densely Dilated Convolutional Block

DenseNet Densely Connected Convolutional Network

Fast-RCNN Fast Region-based Convolutional Neural Networks

Faster-RCNN Faster Region-based Convolutional Neural Networks

FCN Fully Convolutional Network

FPN Feature Pyramid Network

FPR False Positive Reduction

FROC Free-response Receiver Operating Characteristics

GD Gradient Descent

HU Hounsfield Unit

IoU Intersection over Union

ML Machine Learning

NN Neural Network

RCNN Region-based Convolutional Neural Networks

ReLU Rectified Linear Unit

ResNet Residual Neural Network

ROC Receiver Operating Characteristics

ROI Region of Interest

RPN Region Proposal Network

SGD Stochastic Gradient Descent

SSD Single Shot (Multibox) Detector

SVM Support Vector Machine

List of Figures 7

List of Figures

1 Model representation of a neuron. 13
2 Different activation functions for neurons. 14
3 The ReLU, Leaky ReLU, PReLU and Randomized Leaky ReLU activation

functions. 15
4 Example of a simple feedforward neural network. 16
5 Error surface of a linear neuron with two inputs. 18
6 Finding local and global minima with GD and SGD. 21
7 Underfitting and Overfitting. 22
8 Dropout technique for Neural Networks. 23
9 Weight averaging after dropout. 23
10 A single convolution operation in 2D. 25
11 Different types of padding on a 2D image. 26
12 Comparison between Maximum Pooling and Average Pooling. 27
13 Example result of a two-dimensional object detection model. 29
14 General information flow in an object detection network. 30
15 General structure of an object detector. 30
16 Different working principles of one- and two-stage object detectors 31
17 The smooth L1 loss in one dimension. 32
18 SSD network base. 33
19 Ground truth and default box definition in a SSD. 35
20 Working principle of a RCNN. 37
21 Basic example of an ROI pooling procedure. 37
22 Outline of a Fast-RCNN. 38
23 Structure of the Faster-RCNN model. 39
24 Anchor box definition in the Faster-RCNN model. 40
25 Example of Non-Maximum Suppression . 41
26 Example U-Net architecture in 2D. 42
27 Working principle of Feature Pyramid Networks. 43
28 Confusion matrix for a binary classifier. 44
29 The ROC-space and accuracy-isocurves. 46
30 Example of different classifiers in ROC space. 46
31 How to choose the best classifier in ROC-space. 47
32 Examples of ROC-curves for a ML model. 48
33 FROC curve analysis example. 49
34 Detection model of the winning team of the Kaggle DSB. 55
35 Two different approaches of the winning team of the LUNA challenge. . . 56
36 One of the ensembled detection models for the second place contribution

to the Kaggle DSB 2017. 56
37 3D Faster-RCNN model for lesion detection 57
38 Single-stage detector model combining the ResNet and FPN architectures. 57
39 Size distribution of the nodule candidates in the LNDb dataset. 60

List of Figures 8

40 Example of a multimodal distribution. 61
41 Example Augmentations. 63
42 Model and training configuration files. 70
43 FROC analysis result. 72
44 FROC score ranking over the train/validation set of the LNDb challenge A. 72
45 FROC score ranking over the test set of the LNDb Challenge A. 73

List of Tables 9

List of Tables

1 Performance comparison of different detection models. 58
2 Dataset overview. 62
3 Upsampling part of our model. 65
4 Downsampling part of our model. 65
5 Hyperparameters for training runs. 67

1 Introduction 10

1 Introduction

During the last years the development and use of deep learning for Computer-aided di-
agnosis (CAD) - systems has rapidly increased[5, 6]. One popular and promising field
of application is the detection of lung nodules and cancer risk estimation in low-dose
Computer Tomography (CT) scans. The aim of such systems is to improve the precision
of diagnoses by providing models which, on the basis of large training sets, are able to
learn to recognize various features within scans and generalize on new cases [6]. Such
models can ease the work of doctors and thereby speed up the analysis and reduce med-
ical costs. With this in mind, deep Convolutional Neural Networks (CNNs) have proven to
be a propitious type of deep learning model for the early detection of lung cancer[6][5].

1.1 Motivation and goals

Lung cancer is among the most common and deadly types of cancer [7]. The use of deep
neural networks for the detection and risk estimation of lung nodules in CT scans can
be an important step towards earlier identification and prevention of a large number
of potentially fatal cases. The present work deals with the detection of lung nodules,
which is essentially an object detection task in three-dimensional images. A variety
of approaches exist, in which models are trained based on two-dimensional inputs in
the form of slices taken from the original three-dimensional scan. However, the three-
dimensional model applied in this work deals with volumetric input data. A serious
obstacle for the task of lung nodule detection with neural networks is the sparse avail-
ability of datasets as well as the lack of uniformity among them. They appear in various
formats and with vastly different annotation processes. In this context, in November
2019 the LNDb-Grand Challenge[8] introduced a new dataset consisting of 294 CT scans,
annotated in more detail than previous sets by at least one of a group of five radiologists.

This work aims to develop the base of an expandable framework to both train and
evaluate different deep learning models on various datasets. With this goal in view, an
existing and promising model architecture[2] will be trained to detect nodules in the
LNDb-dataset. The resulting network is a three-dimensional feature extractor inspired
by the U-Net architecture. Its detector head is a three-dimensional variant of the 2D-
Single Shot Detector[9] and makes use of depth data.

Having a foundation for preprocessing images and integrating models, the aim is to
add more datasets and network structures in the future.

1 Introduction 11

1.2 Outline

The present work is structured as follows: The upcoming chapter explains the needed
theoretical foundations. Chapter 3 is devoted to analyzing related work that deals with
lung nodule detection and introducing available datasets. Subsequently, chapter 4 de-
scribes the training setup applied and evaluated in this work in detail. In the following
section 5 the results of the approach taken here are presented. Furthermore, the results
are compared to the performance of other models and possible improvements are out-
lined. Finally, section 6 summarizes the work and provides an outlook into the future
development of the framework and research.

2 Theoretical Framework 12

2 Theoretical Framework

This chapter introduces the necessary theoretical background for the thesis.

2.1 Neurons and Neural Networks

Neural Networks (NN), often referred to as Artificial Neural Networks (ANN), are a
highly multifaceted type of machine learning (ML) algorithm. Loosely inspired by the
human brain, which contains neurons and interneuron connections and acquires knowl-
edge through a learning process [10, Chapter 1], they are able to solve computational
problems by mapping an input of data to a desired output. In this chapter the basic
parts and operating principles of NNs are introduced based on the detailed explana-
tions in [11], [12] and [10]. The fundamental parts of an NN, the neurons, are explained
in section 2.1.1. Section 2.1.2 discusses how they can be combined to more complex ar-
chitectures of networks. The way NNs are trained and optimized is explained in section
2.1.3. Section 2.1.4 covers hyperparameters and their importance for the training pro-
cess. Finally, in section 2.1.5 the issue of overfitting and a possible way to prevent it, the
Dropout technique, are presented.

2.1.1 The Neuron

A neuron, the basic building block of an NN, is an object that takes a certain amount of
inputs x1...xn and produces an output y, which can be continuous, binary or categorical
(in a sense that it produces one of several possible outputs and therefore categorizes
outputs). Figure 1 shows a useful model representation of a neuron. To each input cor-
responds a positive or negative weight w1,...,m which denotes this input’s importance for
the output calculation. In the introduced model, the neuron k firstly weights and sums
the inputs according to the following rule:

Sk =
n∑

i=1
wkixi + bk (1)

The bias bk can be described as an additional degree of freedom or offset for each neuron,
because it is added to the weighted sum over the inputs before producing the final
output. The last part of a neuron’s task is applying a so-called activation function, which
is the topic of the next paragraph.

2 Theoretical Framework 13

Figure 1: Model representation of a neuron as depicted in [10]. Inputs are weighted and
summed over, introducing a neuron-specific bias. The output is then generated
by applying an activation function to the weighted sum.

2.1.1.1 Activation Functions

A neuron’s activation function φ takes in its weighted sum of inputs Sk and bias bk and
produces the output yk:

yk = φ(Sk) (2)

This illustrates qualitatively how the weights play a role in the neuron’s output and why
the bias is referred to as an offset introduced by a neuron. Quantitatively, of course, we
need to know the exact form of the activation function, bearing in mind that it will have
implications on the types of problems an NN can solve. Figure 2 shows a few typical
activation functions, The activation function is crucial in order to make the model non-
linear in the attempt to solve complex problems with minimal amount of neurons and
therefore maximal efficiency [13].

Linear Function

φ(x) = c ∗ x (3)

2 Theoretical Framework 14

Figure 2: Different activation functions for neurons.

A linear neuron maps the input to an output by simply multiplying it with a factor c. An
exclusive usage of linear neurons throughout a network results in a linear regression,
for which a feedforward NN architecture as described in 2.1 is not necessary. Neural
networks show their real potential when non-linearities are introduced. Some of the
most frequently used ones will be shown now.

Step Function

φ(x) =

 1 x ≥ 0
0 x < 0

(4)

The step function is one of the simplest activation functions. It maps the input onto a
binary output, 0 or 1. It is basically requiring a certain minimal value (here: 0) from the
inputs in order to produce a value of 1. That corresponds to a minimal value activating
the neuron. Nevertheless, it can be problematic for network optimization algorithms
because it is not globally differentiable. This will be discussed in section 2.1.3.4.

Sigmoid Function

φ(x) = 1
1 + e−x

(5)

The sigmoid function is a recurringly used activation function and is especially present
in predicting probability-based output, for binary classification and logistic regression
problems [14]. Being differentiable everywhere, it overcomes the network optimization
issues discussed in the last section.

2 Theoretical Framework 15

Softmax Function

φ(xj) = exj∑
i exi

(6)

The softmax function for the j-th neuron of the output layer is defined in eq.6. The
sum in the denominator goes over all neurons in the layer, normalizing the expression
and therefore the sum over all softmax results in the layer is one. The result can thus
be interpreted as a probability distribution, justifying its usage for classification. The
network in that case learns to assign probabilities to inputs belonging to a certain class.

Rectifier Function

φ(x) = max(0, x) (7)

The linear by part rectifier function, also referred to as a Rectified Linear Unit or ReLU,
is becoming more popular in various networks. This is, among other reasons, because
they are a more suiting model of a biological neuron and automatically introduce cer-
tain sparseness into the network layers due to the mapping of a range of inputs to 0 [15].
Possible modifications to the ReLU function, named Leaky ReLU / PReLU and Random-
ized Leaky ReLU, are shown in Fig.3.

Figure 3: The ReLU, Leaky ReLU, PReLU and Randomized Leaky ReLU activation func-
tions[16]. Unlike ReLU, the other types have a non-zero slope ai for x < 0. This
slope is fixed for Leaky ReLU, learnt and set to a constant value for PReLU and
randomly sampled from an input range for Randomized Leaky ReLU.

2.1.2 Combining Neurons to a Network

In almost any problem in which ML algorithms are used, the goal is to obtain one or
more outputs from a set of inputs. In a broader sense, the objective is to approximate

2 Theoretical Framework 16

a certain multidimensional function. For that, neurons are structured into layers, inside
which neurons operate parallely. It is convenient at this point to introduce the labeling
of a neuron’s output as ak

l, denoting the output of the k-th neuron in layer l. The output
of one whole layer, which is now a vector with a number of entries corresponding to
the number of neurons in that layer, becomes the input of the next layer. The neurons
of two consecutive layers can be connected and those connections carry the weights
that were introduced in 2.1.1. Typically, the flow of information is in one direction only,
going from the input to the output layer, as shown in Fig.4. This feedforward type of
network is the most basic type of NN and one of many approaches to build a network
for solving the problem of finding the desired function.

At this stage it is useful to elucidate the meaning of a forward pass — it describes
the action of taking an input, propagating it through the network layer by layer and
producing an output. The forwarding from a layer l to a layer l + 1 essentially consists
of multiplying a matrix containing all weights of the connections between the l-th and
l + 1-th layer onto the vector containing the outputs of the layer l. The hereby obtained
vector is the input for the new layer (the l + 1-th).

Figure 4: Example of a simple feedforward neural network [11]. The input layer takes
the inputs to be mapped and the outputs of the outermost layer are those gen-
erated by the network and supposed to match the output of the desired func-
tion. The layers in between are called hidden layers. The flow of information is
shown by the arrows and is unidirectional.

2 Theoretical Framework 17

2.1.3 Training a Neural Network

The training of NNs can be supervised or unsupervised, the former describing a case
in which the desired outputs are always known and used during the training process
as a feedback for how well the network is performing. For networks that are supposed
to categorize different inputs, this means that the input data is labeled and after each
computation one can check whether the NN was able to reproduce the right label. Using
labeled training data only, in the frame of this work only supervised learning will be
applied.

2.1.3.1 Cost Functions

Cost functions, also referred to as loss functions or error functions, are used to quantify
how well the network is performing, i.e. how close the output Ŷ (w, b) of the network
is to the ground truth Y . Being a function of the network’s output, it is clear that a
cost function C is also a function of the weights w and biases b of all neurons, which
is essential for understanding the backpropagation algorithm in 2.1.3.3. The goal of a
network’s training process will be the search for a collection of weights and biases that
minimizes the cost function, i.e. such that∇C = 0.

2.1.3.2 Error Surface

After looking at the cost function, it is useful to picture it as a general function consist-
ing of a multidimensional input, its dimensionality D corresponding to the number of
weights and biases existing in the network. In other words, we are looking for minima
on a (D + 1)-dimensional surface. Its form is determined by the applied cost function,
two widely used ones being the quadratic cost:

C(Y, Ŷ) = 1
2(Y − Ŷ)2 (8)

and cross-entropy:

C(Y, Ŷ) = −
Nc∑
i

Y ln Ŷ (9)

where the latter is often encountered in classification problems with Nc being the num-
ber of classes predicted, i.e. the number of output neurons. An example, that is helpful

2 Theoretical Framework 18

for visualization, is the error surface of a linear neuron with two input connections car-
rying the weights w1 and w2 evaluated with the quadratic cost function as shown in
Fig.5. Starting with initialized weights w1,start and w2,start, the training will consist of
trying to bring those as close as possible to the weights in the global minimum of the
error surface, creating the notion of going down the deepest valley.

Figure 5: Error Surface of a linear neuron with two inputs, illustrated in [17].

2.1.3.3 Backpropagation

Finding the valley on the error surface requires an algorithm for calculating the partial
derivatives of the cost function with respect to all weights and biases in the network.
Loosely stated, this computation is necessary to know in which direction of the error
surface one is supposed to walk to find the minimum. As demonstrated in [11], back-
propagation, which can be efficiently implemented via dynamic programming, revolves
around four fundamental equations and, briefly described, consists of the following
steps:

1. A forward pass (see 2.1.2) is performed.

2 Theoretical Framework 19

2. For each neuron in the output layer the error is calculated, containing 1) the deriva-
tive of the cost function with respect to the neuron’s output activation and 2) the
rate of change in the neuron’s activation function for small changes in its input.
The former is easily calculable because the cost function is known.

3. Next is the backpropagation step, in which this error vector is propagated back to
the beginning of the network. Backpropagating refers to the sum of backward passes
performed by each layer, starting at the output and finishing at the input. In the
simple example network in Fig.4, this step is performed by taking the output vec-
tor and multiplying it by the transposed weight matrices layer after layer moving
in the backward direction. One can picture this step as obtaining a measure of the
error appearing at each neuron in the network’s hidden layers. In a broader sense,
this procedure helps analyze how a small change in a single neuron connection,
i.e. a small change of a single weight value, propagates through the network and
influences the resulting error and therefore the result of the global cost function.

4. The last logical step after calculating all mentioned errors is to calculate the gra-
dients at all connections, which tell us the direction of the desired minimum from
our current point on the error surface.

The exact procedure of computing the gradients (and therefore the weight adjustments)
depends on the selected optimization algorithm. Different optimization techniques will
be discussed in the following paragraph.

2.1.3.4 Optimization Approaches

Below, a few important optimization techniques of first order, i.e. ones which take into
account solely the first derivative of the loss function, will be introduced.

Gradient Descent Gradient descent (GD) is arguably the most popular attempt to
optimizing the learning process, serving as a foundation for more complex algorithms.
It is an answer to the question of how weights and biases should be changed after we
have calculated a network output from all training inputs, obtained the loss function
and thereafter executed the backpropagation step discussed above. GD’s simple answer
to that is to rely on the walking down the valley-picture that was already mentioned and

2 Theoretical Framework 20

change weights and biases by a value that is proportional to the loss function’s deriva-
tive. With the proportionality factor η, the learning rate, the adjustment from old (wi, bj)
to new (w′i, b′j) weights and biases looks as follows[11]:

wi → w′i = wi − η
∂C

∂wi

, (10)

bj → b′j = bj − η
∂C

∂bj

. (11)

With the new set of weights and biases the process of forward propagation, cost calcu-
lation, backpropagation and weight/bias adjustment is carried out repeatedly, moving
closer to the multidimensional local minima of the cost function. Usually, the process
is terminated when a certain termination criterion is met, e.g. when the derivative with
respect to the weights falls below a threshold value. The learning rate controls the quick-
ness of change and needs to be adjusted depending on the problem. This can be done
in a global manner, that means before training, or dynamically during the training pro-
cess[11].

Stochastic Gradient Descent Stochastic Gradient Descent (SGD) speeds up the
fairly slow Gradient Descent algorithm by calculating the gradient for a randomly cho-
sen subset of all training inputs, referred to as a mini-batch. One training epoch then con-
sists of taking such a random mini-batch multiple times until the model has been given
each input of the training set at least once. It turns out that such a subset is enough
to estimate the gradient sufficiently well, leading to successfully finding minima with
less computation time. The size of such a mini-batch is, just like the learning rate, an
adjustable parameter that can influence the outcome of the calculation.
It can make a decisive difference in situations where the weights and biases are initial-
ized in such a way that after the first forward pass the model’s position on the error
surface is in a local valley, i.e. a place that is adjacent to a local minimum. Given that for
untrained models weights and biases are mostly initialized randomly, this is a probable
scenario and the algorithm would result in walking down the "local valley" it is in. SGD
allows for bigger jumps within the high-dimensional error surface, because a small sub-
set of inputs introduces higher noise. Uphill steps are now more probable and the chance
of eventually arriving at the global minimum increase. Figure 6 illustrates this scenario.

2 Theoretical Framework 21

Figure 6: Finding local and global minima with GD and SGD[18]. The x-axis contains
all weights and biases shrunk to one dimension, the y-axis corresponds to the
cost value. The red circles schematically show the path GD would take, if the
model’s starting position on the error surface is the leftmost red circle. Using
just a mini-batch of training inputs increases the data noise. Consequently, big-
ger jumps within the high-dimensional error surface are possible depending
on the specific, randomly sampled subset. This increases the chance of mak-
ing uphill steps and jumping over maxima in the process and eventually, in
a figurative way, landing closer to the global minimum (green arrow). Once
the algorithm is in this global valley, GD will walk downwards again, this time
finding the global minimum.

Other Optimizers There are many more types of optimizers with varying complex-
ity. A first popular change compared to GD and SGD is the introduction of a variable
learning rate. The Adaptive Gradient (AdaGrad) [19] and AdaDelta [20] optimizers, which
employ a decreasing learning rate, are two examples of optimizers using that technique.
The Adam optimizer, which contains adaptive estimates of lower-order moments of the
gradients [21], is a further improvement and proven to be a good choice in many cases
[22],[23]. Adam is therefore the optimizer we will pick during model training. A broader
overview of different optimizers and their performance can be obtained in [22] and [24].

2.1.4 Hyperparameters

The learning rate and the size of a mini-batch for GD / SGD are parameters that are
not altered by the optimization algorithm but have direct consequence for the training

2 Theoretical Framework 22

process. Such quantities, the number and type of layers and the connections between
them belong to this group as well, are called hyperparameters. Testing their influence on
a model’s behaviour is valuable and can be done in different ways. One option is to
define different values for them beforehand and to train the network for all emerging
hyperparameter combinations, the grid search. Another strategy is to assign them ran-
domly from an underlying probability distribution. This is called random search.

2.1.5 Overfitting

Overfitting is a major issue that arises from training a deep learning model on a limited
set of training data. It describes a situation in which the model learns to recognize cer-
tain connections between input and output that are just result of sampling noise and
depend on the particular training set that is chosen (see Fig.7). Consequently, the model
will perform worse on test data, even if it comes from the same distribution [25].

Figure 7: Underfitting and Overfitting in an estimation of a two-dimensional func-
tion[26]. If a model is underfit it is unable to reproduce the relations between
input and output sufficiently well. In the case of an overfit model, the relations
between input and output obtained during the training process are overly
complicated and the model usually performs significantly worse on a dataset
different from the one used for training.

One option to address this issue is the dropout-technique introduced in [25]. It consists
of omitting neurons in the network with a certain probability during different training
stages. Each time, a certain (and random) amount of neurons and all their incoming
and outgoing connections are removed (i.e. set to zero and not updated during the
backpropagation step), effectively training a different network which is smaller than
the original one. What this can look like for a feedforward NN is illustrated in Fig.8.

2 Theoretical Framework 23

Figure 8: Example for applying dropout to a feedforward network[25]. Left: Standard
feedforward neural network. Right: One possible thinned out network after
dropout, each neuron is kept with a probability p

.

Effectively, this corresponds to training many distinct subnetworks during the train-
ing time and combining them to one whole network afterwards. The combination re-
quires a certain weight averaging of the small, thinned out, networks. A computationally
fast way to do this is by multiplying each weight by the probability p of the neuron it
exits still being present after a dropout-procedure. This can be seen in Fig.9

Figure 9: Weight averaging after dropout[25]. (a) At training time, dropout is applied.
Every neuron and its outgoing paths are kept in the resulting subnetwork
with a probability p. (b) The resulting model, used for testing and predictions,
contains all neurons. Averaging is done by multiplying each weight with the
dropout probability p of the neuron its path is exiting.

2 Theoretical Framework 24

2.2 Convolutional Neural Networks

A special type of network which is very popular for image data processing and object
recognition are CNNs (Convolutional Neural Networks). As emphasized in [12, Chapter 9],
CNNs are a great example of biologically inspired artificial intelligence that mimick the
way the primary visual cortex of a brain functions. In this section the crucial features of
a typical CNN are revised.

2.2.1 The Convolution Operation

Generally speaking, convolution is a mathematical operator applied to two functions
which produces a third function. It is commonly denoted with an asterisk and the con-
tinuous (scont(t)) and discrete (sdisc(t)) way of convolving two functions x and w into a
resulting function s(t) are defined in the following manner [12]:

s(t) = (x ∗ w)(t) (12)

scont(t) =
∫ ∞

a=−∞
x(a)w(t− a)da (13)

sdisc(t) =
∞∑

a=−∞
x(a)w(t− a) (14)

A possible way of picturing this operation is that the function x(a) is being weighted
with the help of the weighting function w(a) over their input space. Using NN terminol-
ogy, w(a) is called the kernel and the result of this operation, s(t), is referred to as the
feature map. The representations of those within a CNN are shown in the next section.

2.2.2 The Convolutional Layer

Within the convolutional layer which is responsible for the convolution operation each
neuron has a receptive field of given size and can be pictured as holding a weight ma-
trix that corresponds to the kernel w with the same size. Given that CNNs are intro-
duced with image processing in mind, it is helpful to picture the input as at least two-
dimensional and the convolution can be illustrated as in Fig.10.

2 Theoretical Framework 25

Figure 10: A single convolution operation in 2D [27]. The current receptive field of the
kernel K is shown in red over the input image I. Each kernel entry is multi-
plied with the image value it is lying on, producing the green output 4 in this
particular case. The kernel is then moved by a specified stride length. With an
input image of size 7x7, a kernel of size 3x3 and a stride length of 1 the re-
sulting feature map is of size 5x5. Usually, various kernels are applied using
different stride lengths resulting in a stack of distinct feature maps.

The usual way of proceeding with the convolution is to slide the shown kernel over
the input image, each time moving it in a certain direction with a particular stride length,
i.e. a certain amount of pixels. Each time an activation function is applied to the cur-
rent receptive field producing a single valued output. The total output size therefore
depends on the input data size, the kernel size and the stride length. Additionally, the
chosen padding also influences the output of a convolution. This term refers to how the
kernel is selected to behave when reaching the ends of an input image. There are three
main approaches to this problem:

• Valid Padding, where the kernel has to stay completely within the image

• Same Padding, where the kernel can exceed the image dimensions in such a way
that the size of the output corresponds to the size of the input

• Full Padding, where the kernel is allowed to exceed the input image dimensions as
long as there is at least one image pixel inside it, resulting in an output which is
bigger than the input.

The latter two strategies require the kernel to perform calculations on pixels, that are
not part of the image and do not exist beforehand. In those cases these new pixels are set
to zero and the kernel performs its usual operations on the receptive field which now

2 Theoretical Framework 26

contains image pixels with certain values as well as the new pixels with the value 0.
Figure 11 illustrates the mentioned types of padding.

Figure 11: Different types of padding on a 2D input image of size 5×5 and a filter /
kernel of size 3×3[28]. Valid Padding produces an output which is smaller than
the input, because the kernel’s receptive field shown in violet remains fully
within the image. Same Padding ensures that input and output size are equal
by enabling the kernel to have a receptive field which is partially outside of
the input image. Those new pixels are depicted in light gray and their value
is set to zero. Full Padding results in an output which is bigger than the input
image by moving the kernel along in a way which ensures that at least one
pixel of the input is within its receptive field. The newly introduced pixel
values outside of the original scope are again set to zero.

Because of the fact that the kernel is substantially smaller than the image, a much
smaller amount of parameters for a neuron layer have to be saved compared to a fully-
connected layer. This is referred to as sparse interaction. It is a way of decreasing compu-
tation time but still assuring that a neuron layer affects the following layers.
Kernels are, justifiably, called feature detectors, since a certain type of kernel may for ex-
ample help to detect edges throughout the image, while another could detect contrasts.
What a CNN learns during training is to adjust its kernel’s parameters to be able to ex-
tract features from the image in a way that minimizes its loss function.

2 Theoretical Framework 27

The output after going over the whole input image once with a single kernel is called
its feature map. Commonly, multiple kernels are applied on every single input creating a
series of feature maps for each input. It is usual that an activation function is applied on
the resulting feature maps, a very popular choice being the already introduced ReLU
function (see 2.1.1.1).

2.2.3 The Pooling Layer

Pooling is a downsampling operation on the feature maps that replaces a feature map
value at a single location with a value obtained from applying a function to its neighbor-
hood. Similarly to the convolution step, you walk over the feature maps with a receptive
field and apply a function to the values you are looking at at this moment. An example is
maximum pooling, where the output of the function is the maximum of the values within
the current receptive field. This is shown in Fig.12, where you can also see a comparison
to another type of pooling operation, average pooling.

Figure 12: Comparison between Maximum Pooling and Average Pooling as depicted in
[29]. Within the not necessarily uniformly shaped subregions, the algorithm
picks the maximum (maximum pooling) or the average (average pooling) to
take into the resulting region.

As described in [12] this makes the output approximately invariant to small transla-
tions, because you base the output of the pooling layer on a neighborhood of feature
map values. This is a satisfying approach if the main goal is to detect whether a certain

2 Theoretical Framework 28

feature is within an image, whereas an increasing number of pooling layers gradually
diminish the possibility of exactly localizing objects. In any case, the size or resolution
of the output is smaller than the input size. The number of channels stays the same.

2.2.4 Flattening

Most of the times the desired overall output of a CNN will be a single value or a vector,
classifying the input in a certain manner. Therefore, one or more flat, fully connected
layers are added to the model after a pooling layer, connecting every neuron in the
pooling layer with the next layer. One can describe this as appending a feedforward
NN like the one in Fig.4 to the pooling layer, using at least one of its flat layers. This is
often the last part of a CNN.

2.2.5 Feature Extraction

At this stage, having understood how a CNN works, it is important to point out the ver-
satility of this architecture. It arises from the fact that a CNN produces a big number of
feature maps, hence the term feature extraction, which afterwards can be used for many
different tasks. Subsequent network structures can be added to learn, amongst other
applications, classification of objects, image segmentation, and detection of objects. Due
to its vital role within this work, the latter will be explained in the next chapter.

2.3 Object Detection and Recognition

The goal when constructing a model for object detection and recognition is 1) to be able
to localize objects by surrounding them with a bounding box and 2) to assign each of
them to a class, similar to the way shown in Fig.13.

2 Theoretical Framework 29

Figure 13: Example result of a two-dimensional object detection model [30]. The goal
of an object detection model is to recognize the type and location of objects
within an input image. The network learns to assign a bounding box and a
class prediction to each object.

Classes can be characterized by integers ranging from 1 to N, with N being the to-
tal number of classes. For example: if we want to construct a network which learns to
detect and differentiate between cats and dogs, we have N = 2 classes. Therefore, our
classification output is a two-dimensional vector ~c (generally N-dimensional), assigning
each class a probability to be the right one for the object in the current bounding box.
On the other hand, bounding boxes (in three dimensions) are characterized by their cen-
ter coordinates xc,i, yc,i, zc,i, where i is the bounding box index, and their height, width,
length and orientation hi = dxi, wi = dyi, li = dzi,Θ. We will refer to this set of network
outputs as {~c, xc,i, yc,i, zc,i, dxi = hi, dyi = wi, dzi = li,Θi} = Mi.

For proper training, one also needs to define a loss function L over the classification
and bounding box estimations. Those will be described in section 2.3.1. This general
description of the most significant detection network operations is illustrated in Fig.14.

2 Theoretical Framework 30

Figure 14: General information flow in an object detection network. A set of class pre-
dictions and coordinates as shown is created for a big number of bounding
boxes.

Object detection networks have a typical structure that is displayed in Fig.15. Follow-

Figure 15: General structure of an object detector[31].

ing the input image, the first component of a detection network is its backbone, which
is responsible for extracting feature maps from an input image[32]. Example backbone-
structures are VGG[33] and the U-Net structure presented in 2.3.5. The neck refers to lay-
ers between the backbone and head which commonly collect and work on feature maps
from different stages of the backbone[31]. A prominent example are Feature Pyramid
Networks (see 2.3.6). Lastly, the head produces the network’s final predictions.

Heads of object detection models can be grouped into one-stage and two-stage mod-
els[34]. In a one-stage model, as depicted in Fig.16, classification and localization hap-
pen in a single stage, resulting in a faster but usually less accurate prediction. Two-stage
models consist of a region proposal part which outputs, as the name suggests, propo-
sitions of regions which contain objects. Those propositions are then classified. This
procedure is usually more precise but comes with longer computation duration. In the
following paragraphs, after shedding light on recurrently used loss functions for object
detection, one-stage and two-stage models are discussed in more detail.

2 Theoretical Framework 31

Figure 16: Different working principles of a) one-stage object detectors and b) two-stage
object detectors [34].

2.3.1 Loss Functions

Given the two tasks set in this work, localization and classification, we have to make
sure that after each forward propagation the network weights are adjusted in a way
that improves both types of prediction. As introduced in 2.1.3.1, this is carried out via
a proper loss function based on the model’s N+7 outputs {~c, xc,i, yc,i, zc,i, hi, wi, li,Θi} =
Mi. It is clear that we need to differentiate between cost functions for localization and
classification and that both should be considered in the overall loss L. In general, L
looks like the following:

L = 1
Nb

(Lcls + α · Lloc) (15)

where Lcls measures the classification precision, Lloc the localization precision,Nb a nor-
malization factor depending on the exact problem and α is a hyperparameter ensuring
that both loss types contribute in a certain proportion to the overall loss. This section is
devoted to showing popular examples of both loss types.

2 Theoretical Framework 32

2.3.1.1 Classification Loss

The most popular classification loss is the cross-entropy, already presented in 9. Here,
we will stress its form for a problem with two classes, the so-called binary cross-entropy.
Its definition is:

Lbc = − 1
N

N∑
i=1

yi ln (p(yi)) + (1− yi) · ln (1− p(yi)) (16)

Here, the index i corresponds to an input, y is the binary class label (in the context of
nodule detection: 1 =̂ nodule and 0 =̂ not a nodule) and p is the predicted probability,
i.e. the number our model outputs.

2.3.1.2 Localization Loss

To maintain clarity, the seven bounding box parameters for three dimensions explained
in 2.3 and 2.3.1 are from now on denoted by a vector. What is needed now is a cost
on such a bounding box vector ~b, output of the neural network, in order to compare it
against the "right" box the model is supposed to predict, the ground truth box ~g. A pop-
ular option is the smooth L1 loss illustrated in Fig.17. It has slightly varying definitions

Figure 17: The smooth L1 loss in one dimension[35].

and here we will work with the version by Huber defined in [36] as:

2 Theoretical Framework 33

L1,smooth(~b,~g) =


1
2(~b− ~g)2 if

∥∥∥~b− ~g∥∥∥ ≤ δ

δ
∥∥∥~b− ~g∥∥∥− 1

2δ
2 otherwise

(17)

In order to keep inputs and outputs for the loss dimensionless and parametrized, the
vectors are not just fed into the loss like in eq.17 but are normalized. This can be seen
later when specific model architectures are discussed.

After mentioning the difference between a ground truth box ~g and a predicted box
~b, it is convenient to present a measure of how much two boxes overlap, which is vital
during training and evaluation, the Intersection over Union (IoU). For two boxes A and B
it is defined by

IoU = A ∩B
A ∪B

(18)

and takes a value in [0, 1].

2.3.2 Single-Stage Detection Models

The first notable type of single-stage (one-stage) detection model is the Single Shot Multi-
box Detector. The SSD is a feedforward CNN that produces bounding boxes, supposed to
enclose objects of the different classes the network is designed to differentiate from[9].It
assigns probability values to each of them, indicating how likely it is that a certain box
encloses object instances of the different classes. The base SSD network is shown, for
simplicity in two dimensions, in Fig.18.

Figure 18: SSD network base for a 300x300 input [9]. The multiple feature layers of dif-
ferent size allow for an analysis of the input image on multiple scales.

It starts with the already shown convolution operation followed by the creation of
multiple feature maps of various size. The variety in size corresponds to the possibility

2 Theoretical Framework 34

of extracting features on different scales. This is simply another way of saying that the
resolution of a feature map is proportional to its dimensionality. Having feature maps
of various size therefore means that the input is analyzed on multiple scales. The ad-
vantages of this system become clear after introducing the concept of default / anchor
boxes.

Default Boxes To be able to detect multiple objects of different shapes, in the SSD
approach one defines a number of m different default boxes for each pixel. This is a "hu-
man" step done before training. The form of the default boxes ought to be suitable to
the problem.In a classification problem with one class typically fitting in a rectangular
bounding box and another class typically described by a square box, both of those forms
should be considered in the set of default boxes. We can now see how the components
mentioned by now work together: With the definition of a single default box size, the
model can extract features with vastly different resolutions by applying the box to all
feature maps of varying sizes. It is due to this fact that SSDs usually require a smaller
number of predefined anchor boxes compared to a Faster-RCNN (see 2.3.3).

Ground Truth Boxes In order to be able to train a network one naturally needs the
"solutions" to the bounding box search, i.e. the ground truth boxes mentioned in 2.3.1.2,
which in 3D are seven-dimensional vectors with center-coordinates, sizes and orien-
tation of a bounding box correctly surrounding an object of a given class and which
are our prediction goals for the model. In the case of SSD, ground truth and prediction
boxes are given with relative coordinates to the default boxes (see eq.21). Each of these
boxes can belong to N + 1 classes. N is, as it has been by now, the number of classes our
initial problem has. The additional class arises from the pixel-wise processing in which
we also need to introduce the additional class of the background if none of the default
boxes centered at a pixel contains an object of any class.

Matching Of course it does not make sense to consider all default boxes during
training. Therefore, the first step is a matching between ground truth boxes and default
boxes, which means that during training we leave only the default boxes that have a
minimal IoU with the ground truth boxes. An example of a 2D case with ground truth
boxes of two different classes (here: cat and dog), three different default boxes per pixel
and an already performed ground truth - default matching is illustrated in Fig.19.

2 Theoretical Framework 35

Figure 19: Ground truth and default box definition in a SSD[9]. Each pixel gets a set ofm
default boxes that are matched with the ground truth boxes through an IoU
calculation. Having default boxes on different feature map scales allows the
detection of objects of different size.

With the help of the same picture, one can quantitatively see how a single default
box operates on multiple scales. As depicted, the default boxes roughly fit into a 3x3
square. Applying a 8x8 feature map on the image makes them quite small compared to
the objects in the image. While this is enough to have a sufficiently big IoU with the cat’s
ground truth box, the overlap with the dog’s box is too small. This changes on applying
the 4x4 feature map which now allows a matching of the dog’s ground truth box to at
least one of the default boxes.
A second matching also needs to be done, in which the predicted boxes (network out-
put) are matched with the ground truth boxes, requiring a minimal IoU for a network
prediction to be considered consistent with the ground truth.

Loss computation The training objective of this model is to minimize its loss as
given in eq.15 withNb being the number of matched default boxes in this particular case.
It is common to pick the already described smooth L1 loss (see 17) for localization and
the cross-entropy loss (see 2.3.1.1) for classification. With xp

ij = 0, 1 indicating whether
the i-th default box matches the j-th ground truth box of a class p, localization and
classification losses become:

Lloc(x, l, g) =
Nb∑

i∈P os

∑
m∈Mi

xp
ijL1,smooth(lmi − ĝm

j) (19)

Lcls = −
Nb∑

i∈P os

xp
ijlog(ĉp

i)−
∑

i∈Neg

log(ĉp=0
i) (20)

2 Theoretical Framework 36

A positive example here (first sum) is a predicted box with a minimal IoU with a ground
truth box that has been matched to at least one default box. l corresponds to a predicted
box, Θ is an angle describing the bounding box orientation for a 3D problem, g to a
ground truth box and ĝ corresponds to a parametrized, unitless ground truth box re-
gressed to offsets from the coordinates of a matching default box
~di = {dxc

i , d
yc
i , d

zc
i , d

h
i , d

w
i , d

l
i, d

Θ
i } as follows [37]:

ĝxc
j =

ĝxc
j − dxc

i

dh
i

ĝyc
j =

ĝyc
j − d

yc
i

dw
i

ĝzc
j =

ĝzc
j − dzc

i

dl
i

ĝΘ
j = gΘ

j

ĝh
j = ln

(
gh

j

dh
i

)

ĝw
j = ln

(
gw

j

dw
i

)

ĝl
j = ln

(
gl

j

dl
i

)

(21)

In the classification loss ĉp
i is just the softmax output activation result, seen by replac-

ing x→ cp
i in eq.6. The second sum, counting over examples without any match (p = 0),

ensures that the network learns to identify the background.

You Only Look Once (YOLO) The YOLO architecture is another noteworthy type
of one-stage detector. After the initial 2D versions[38],[39], in recent years YOLO models
for 3D object detection like Complex YOLO and YOLOv4 have been proposed[40],[31].
However, YOLO networks are point cloud based detectors. In contrast, this work aims
to make use of models which work with volumetric data.

2.3.3 Two-Stage Detection Models

Among two-stage methods the RCNN-series is arguably the most widely used ap-
proach. In the subsequent paragraphs we will delve deeper into how these models
work.

Region-based Convolutional Neural Networks - RCNN The RCNN-model is di-
vided into three parts: a region-proposal algorithm (stage 1), a CNN extracting features
from the region candidates and a Support Vector Machine (SVM) for classification. The
last two steps comprise the network’s second stage and are applied to every region pro-
posal. From the features obtained by the CNN, the SVM learns to classify what is within

2 Theoretical Framework 37

a given input region. Extracting region candidates is done with a selective search algo-
rithm [41] which is not able to learn. Here lies the biggest weakness of this approach,
because it consumes time but is necessary on every new input image. An outline of the
way a RCNN works is given in Fig.20.

Figure 20: Working principle of a RCNN as shown in [42].

Fast-RCNN The Fast-RCNN introduces ROI Pooling into the original network. It
starts again with selective search to obtain ROIs. Unlike in the previous setup, the fol-
lowing CNN takes as inputs the whole original image and the coordinates of the regions
proposed by the selective search. The ROI-Pooling is now responsible for creating fea-
ture maps of fixed size, usually via maximum pooling (see 2.2.3). An example of this
step is reproduced in 21. All feature maps produced in this step are fed into fully con-
nected layers, dedicated to classification and localization. Softmax and bounding box
regression (already seen for the SSD model) are then used to acquire a final prediction.
Figure 22 outlines this course of action.

(a) (b) (c) (d) (e)

Figure 21: Basic example of an ROI pooling procedure as delineated in [43]. Each ROI(b)
within an input feature map(a) is divided into pooling sections(c). Within
each of those, maximum pooling is applied(d) to produce a fixed-size feature
map(e), in this case 2x2. This is done for all feature maps and all ROIs.

2 Theoretical Framework 38

Figure 22: Outline of a Fast-RCNN from [44]. The ROIs still come from a selective search
algorithm but are now a second input to the following CNN. Unlike for a
RCNN model, the CNN works on the whole input image. Calculated feature
maps, together with the region candidates, undergo ROI pooling, before the
resulting maps enter fully connected layers. The results of those are the basis
for the final softmax application / bounding box regression.

Faster-RCNN In the Faster-RCNN network the selective search is being replaced
by a Region Proposal Network (RPN) in form of an additional CNN. The input image is
directly fed into a CNN to produce feature maps. Once again those feature maps are
passed to a ROI-pooling layer but at the same time they serve as an input for a RPN
whose final region candidates are passed to the ROI-pooling module. It is worth to
point out, as sketched in Fig.23, that the RPN and the rest of the network share the same
CNN. The RPN’s take on being able to detect different objects at different scales differs
from the methods used by now. Within the very last feature map, a small set of k anchor
boxes are defined. They are moved along the map in a sliding-window fashion, creating
multiple region proposals for each sliding-window location. An illustrative example of
this for a 2D model is given in Fig.24. Now the pivotal anchor boxes have to be filtered
out. This is where the ground truth boxes come into play. The IoU of the anchor boxes
with the ground truth boxes decides upon the category an anchor belongs to: If it is
bigger than an upper threshold, the anchor is considered positive, otherwise negative.
The RPN has a resulting loss function of the already known form:

LRP N({pi}, {ti}) = 1
Ncls

∑
i

Lcls(pi, p
∗
i) + 1

Nloc

λ
∑

i

p∗iLreg(ti, t∗i) (22)

Here, i is the anchor index, pi the probability of it being an object and p∗i the ground truth
label, 1 for a positive and 0 for a negative anchor. ti and t∗i are the predicted and ground

2 Theoretical Framework 39

Figure 23: Structure of the Faster-RCNN model as shown in [45]. It has two improve-
ments compared to its predecessor: instead of the selective search there is an
RPN, which is responsible for creating region candidates and, unlike the se-
lective search, able to learn. Moreover, this RPN shares the same CNN as the
rest of the network. The feature maps produced by the CNN, which takes a
whole image as input, are passed on to the rest of the network together with
the region proposals)as it is in the case of Fast-RCNN).

truth boxes’ parametrized coordinates vectors. The parametrization is performed with
regards to the corresponding anchor box coordinates and works exactly like in the SSD
model in 21 by replacing ~di → ~ai where ~ai is the 7D-definition of a matching anchor box.
Ncls and Nloc are optional normalization factors and λ a hyperparameter used for bal-
ancing both losses. The classification loss is just a logarithmic loss over the two classes
of 1) anchor contains object and 2) anchor does not contain object. The regression loss,
once again, is given by smooth L1. Although it looks similar, we have to differentiate
that from the loss of the overall Faster-RCNN applied on the network’s classification

2 Theoretical Framework 40

Figure 24: Anchor box definition in the Faster-RCNN model, as seen in [45]. A small
number of them are defined on the last feature map and moved along it in
a sliding-window manner. For each sliding-window position multiple region
proposals are created with this procedure. The important ones are selected
via IoU calculation with the ground truth boxes.

and localization results after the softmax / bounding box regression layers. It looks like
this[34]:

LF aster({p}, {t}) = Lcls(p, p∗) + λ · (pi, p
∗
i + 1

Nloc

λ[p∗ ≥ 1]Lreg(t, t∗) (23)

While the regression loss is again the smooth L1 loss, there are substantial differences
to the RPN’s loss function:

• p and t denote the class probability vector / box coordinates of the network’s pre-
diction

The normalization factors and the balancing parameter λ, as usually, depend on the
specific implementation.

2.3.4 Confidence Thresholding and Non-Maximum Suppression

The final output of an object detection model is typically acquired after applying con-
fidence thresholding and non-maximum suppression to the output vectors of the detector
head. Confidence thresholding discards all model predictions with a classification con-
fidence which is smaller than the threshold value tconf. After that, there still may be

2 Theoretical Framework 41

multiple predictions for the same object. This is addressed by the non-maximum sup-
pression, which ensures that to each detected object only the prediction with the highest
classification confidence is assigned[46, 47, 34]. The algorithm sorts all prediction boxes
with respect to their confidence values in decreasing order and, starting at the top, re-
moves all boxes that have an IoU of tiou, nms or higher with the currently viewed predic-
tion. An example is illustrated in Fig.25. A last possible strategy is top-k filtering, where
only the k predictions with the highest confidence constitute the final output.

Figure 25: Non-Maximum Suppression in a model for facial recognition[47]. After con-
fidence thresholding there are still multiple boxes detecting the same object
(shown on the left in red). Non-maximum suppression sorts the remaining
boxes by their confidence value. Starting at the highest one, the IoU with all
remaining boxes is computed. All boxes with an IoU of tiou, nms or higher are
then removed, because they are interpreted as boxes that have detected the
same object but with a lower confidence. Ultimately, for each detected object
in the image the one box with highest confidence is left (green box on the
right).

2.3.5 U-Net

The U-Net architecture, depicted in Fig.26, is primarily used for image segmentation
[48] but also in detection frameworks, whether as a base for the detector part [49] or as a
backbone for the FP reduction part of the model [50]. Its outstanding feature [48] is the
series of up-convolutions applied to the created feature maps after multiple convolutions.

2 Theoretical Framework 42

With the help of those, the output is not necessarily a vector, like it usually is after
creating feature maps and a subsequent pooling operation, but can be an image. A two-
dimensional example architecture is shown in Fig.26.

Figure 26: Example U-Net architecture in 2D for input images of size 572x572 and a
lowest resolution of 32x32 pixels [48]. Instead of pooling and creating an out-
put vector after obtaining feature maps, so-called up-convolutions are applied.
Blue boxes are multi-channel feature maps, white boxes represent copied fea-
ture maps.

2.3.6 Feature Pyramid Networks (FPN)

Feature Pyramid Networks [51] improve the detection of objects on different scales.
Their first part, the bottom-up pathway [52], is the typical application of convolutions
resulting in feature maps on different scales. Instead of predicting directly from those,
in the top-down pathway the highest resolution feature map is gradually upsampled and
merged with a feature map of corresponding size from the bottom-up pathway. The
resulting maps are the base for the model’s predictions. This procedure is depicted in
Fig.27.

2 Theoretical Framework 43

Figure 27: Working principle of Feature Pyramid Networks (from [52], originally il-
lustrated in [51]). Multi-scale feature maps from the bottom-up pathway are
merged with upsampled feature maps from the top-down pathway. The result-
ing maps are used for prediction.

2.3.7 Object Detection in Two and Three Dimensions

After analyzing the structure of object detection models, we have to consider the role
of the dimensionality of the data that the network is supposed to work with. The archi-
tectures shown so far are widely used in 2D form for object detection, i.e. on 2D images
(or single slices of 3D images) and producing 2D feature maps and proposals, which is
why there exist many high-scoring approaches of this type for the task of lung nodule
detection[6, 5]. Their success arises partially from the fact that they can rely on pre-
trained models originally used for other detection tasks. The available knowledge base
regarding 3D models is more sparse, especially if we want to use models which work
on volumetric data rather than ones based on point clouds, as is the case for Complex
YOLO[40, 31].
Consequently, 3D volumetric object detectors for lung nodule detection, apart from be-
ing based on the models introduced above, often require the assembly of model struc-
tures for which no pretrained weights exist. In 3 there is a variety of such examples.

2 Theoretical Framework 44

2.4 Evaluation metrics

In the upcoming sections, popular performance metrics for classification are introduced
[53]. They will be shown under the premise of a binary classifier but are extendable to
multiclass classification.

2.4.1 Confusion Matrix

The confusion matrix is a well-arranged presentation of possible classification results
from which metrics can be derived. The binary case, which is important in this work, is
shown in Fig.28. In the case of nodule classification, True Positives are suspects that are

Figure 28: Confusion matrix for a binary classifier as depicted in [54].

correctly predicted to be of class nodule or non-nodule, True Negatives are suspects which
are correctly classified as not belonging to any of the two classes, False Positives are
candidates the network wrongly classifies as nodules or non-nodules and False Negatives
are candidates which do belong to the nodule or non-nodule class but are dismissed by
the network. While the concept of TP, FP, TN, FN is crucial for all upcoming metrics,
the confusion matrix itself is not particularly useful in object detection tasks due to the
fact that all samples that do not contain an object of a known class are technically a TN.
Therefore only TP, FP and FN are important for our metrics.

2 Theoretical Framework 45

2.4.2 Precision, Sensitivity/Recall, Specificity

Precision = TP
TP + FP (24)

Sensitivity = Recall = TP
TP + FN (25)

Specificity = TN
TN + FP (26)

A first thing to notice is that precision and recall give a better view over how the
classifier handles positive examples while specificity describes better how well negative
examples are managed. Moreover, it is clear why in medical applications the recall is of
primary concern: in those situations, it is desired to have the best possible performance
over the Real Positive values, which is exactly TP + FN . Missing true positives and
having false negatives are the main aspects to avoid and correspond with lowering the
recall. Consequently, the recall is also used in the next metric [53].

2.4.3 Receiver Operating Characteristic

Before looking at the so-called ROC-curve, it is helpful to define the True Positive Rate
(tpr, the fraction of positives correctly predicted), the False Positive Rate (fpr, the fraction
of negatives incorrectly predicted) and the Accuracy a as follows:

tpr = Sensitivity (27)

fpr = FP
TP + FN = 1− Specificity (28)

a = pos · tpr + neg · (1− fpr) (29)

where pos = TP + FN are all positive cases and neg = FP + TN all negative cases. It is
now suitable to introduce the 2D ROC-space, which is a plot of the fpr as a function of
the tpr and shown in Fig.29a. It is obvious that the upper left region is desirably where
we want a classifier to be, whereas the lower right part describes particularly bad perfor-
mance. A second important insight, which is that accuracy isocurves, i.e. curves along
which the accuracy stays constant, are straight lines in the 2D ROC-space, is shown in
Fig.29b. A third thing to realize is that the accuracy equals the true positive rate along

2 Theoretical Framework 46

the decreasing diagonal. There are two ways which help to look at the ROC-space and
how it can be useful:

(a) (b)

Figure 29: In (a) the ROC-space [55] is shown in pure form. The increasing diagonal cor-
responds to random model performance and the decreasing diagonal depicts
the line along which model accuracy equals the TP rate, which is shown on
the y-axis. In (b), accuracy-isocurves, which correspond to straight lines in
ROC-space, are shown for negative-to-positive ratios of 1 (continuous line)
and 1

2 (dashed line).

Figure 30: Different classifiers in ROC space as shown in [56]. This indicates their perfor-
mance for a certain (unknown) threshold value of their corresponding output
activation. Drawing the convex hull (green line) helps to later on compare the
quality of the models’ results.

2 Theoretical Framework 47

ROC-space for classifier comparison Object classification is done by carefully se-
lecting a threshold of our output activation (which is commonly softmax or sigmoid)
for which examples above are considered positive (here: it is a nodule) and below are
considered negative (here: it is not a nodule). With that, we can produce a confusion
matrix for different classifiers at a threshold and plot this in ROC-space. An example is
given in Fig.30. In such a plot the best classifiers lie along the convex hull (green line in
the plot). The single best classifier now depends on the given class distribution. This is
because, as it is already shown in Fig.29b, the accuracy isocurves have a different slope
in ROC-space depending on the proportion of positive to negative examples np = neg

pos .
The slope of the accuracy-isocurve in this representation corresponds to the given frac-
tion, i.e. it becomes more flat with more positive examples compared to negative ones
in the dataset. In Fig.29b we have already seen that the accuracy-isocurves correspond
to a higher accuracy value the farther we move up and left in ROC-space. Therefore,
from looking at the classifiers in ROC-space (30) we can draw conclusions about the
best classifiers for different pn-values as shown in Fig.31.

(a) (b) (c)

Figure 31: How to choose the best classifier in ROC-space[56] depending on the ratio of
positive to negative examples np = neg

pos
. This ratio corresponds to the slope

of each blue accuracy-isocurve. The best performing model is always the one
whose y-value (TP rate or recall) at the intersection of the blue line with the
decreasing diagonal is maximal. The precise value then corresponds to the
prediction’s accuracy (see 29) as already stated in 2.4.3. In (a) the ratio is np =
1, therefore the blue accuracy curve has a slope of 1 and the best model is C4.5
with an accuracy of around 82%. In (b), np = 1

4 and the best performance is
given by the SVM with around 84% accuracy. In (c), np = 4 and the CN2-
model with around 86% accuracy is the best choice.

2 Theoretical Framework 48

ROC-curves for a single classifier As already established, the chosen threshold
of the output activation influences the accuracy-isocurves in 2D ROC-space. This is be-
cause it has direct influence on a classifier’s confusion matrix. For example: choosing
a very low threshold, in the limit thr → 0, all candidates are considered positive. That
makes the recall equal to one, because there are no false negatives, but also maximizes
the false positives to one, because all candidates that are not truly nodules are consid-
ered to be ones. This is the upper right point in ROC-space along the increasing diagonal
and does not hold any valuable information. What could now be done (there are better
ways but this is good as an example) is to vary the threshold for a single classifier and
compute for each threshold value its position in the plot. This defines the ROC-curve.
Figure 32 shows different variations of ROC-curves using different parameters.

(a) (b) (c)

Figure 32: Examples of ROC-curves for a ML model as shown in [56].(a) shows a very
well performing model with nearly perfect class separation. (b) depicts a
poorly performing model with concavities in the ROC-curve. (c) shows a
model that is not better than a random choice of classification.

Optimally, the ROC-curve has the biggest possible area underneath and therefore this
area is another quality measure called the AUC (Area Under Curve). This implies that
global convexity is a desirable feature of a model’s curve. Additionally, a curve corre-
sponding to the ascending diagonal (tpr = fpr) means that the model performs as well
as a random classification. This is why locally linear ROC-curves like the one in 32 are
usually considered suboptimal.

2 Theoretical Framework 49

2.4.4 Free-response Receiver Operating Characteristics (FROC)

There is another meaningful performance measure for machine learning tasks with
medical application[53], and logically also for lung nodule detection frameworks[6]:
the FROC-curve[57]. It is obtained by replacing the false positive rate on the x-axis of the
ROC-curve by the average number of false positives per image. As pointed out in [58],
this is even more relevant to clinical practice, given that it intrinsically puts a higher
value on localizing the objects we are classifying. The pivotal measure is how high the
sensitivity over each FP-average is and for that reason the area under the curve states
how well a model performs for a given output activation threshold over a range of av-
erage FP-numbers per image. An example is shown in Fig.33.

Figure 33: Example for a FROC-curve analysis of various methods on the test set of
DeepLesion as shown in [59], each for a specific threshold of the output acti-
vation, deciding when a candidate belongs to a certain class. For each point,
the goal is to achieve the highest possible value (normalized to [0,1]). In this
particular example, we can state that the 3DCE model with 27 slices performs
significantly better than any of the Improved R-FCN models.

A last metric to mention is the so-called Competition Performance Metric (CPM), used
frequently for competitions[6] and defined as the average FROC-score over the follow-
ing average number of FPs per scan: 1

8 ,
1
4 ,

1
2 , 1, 2, 4, 8. This results in a mean sensitivity

2 Theoretical Framework 50

over the different FP-per-scan values smean (31). In the LNDb challenge, the agreement
level a, i.e. the number of radiologists confirming a positive case, is also accounted for[3].
This is done in order to respect observer variability. The FROC-score and the resulting
metric for nodule detection for the LNDb-challenge then become:

smean = 1
7
∑

i∈F P

s(i), FP ∈ {1
8 ,

1
4 ,

1
2 , 1, 2, 4, 8} (30)

scoreLNDb = 1
2

2∑
a

smean(a) (31)

3 Related Work and State of the Art 51

3 Related Work and State of the Art

The application of object detection methods for the detection of lung nodules is a task
taken upon by an increasing number of research groups over the last years. Conse-
quently, a variety of approaches with diverse successfulness exist[6]. This can be seen
on the number of new publications as well as the number of new code challenges [8, 60,
61, 62, 63] within the last 12 years, where participants are given a (usually new or newly
annotated) dataset and limited time to implement the best possible model for the de-
tection (but also segmentation and malignancy estimation) of lung nodules in CT scans.
This chapter is devoted to introducing the most important currently existing datasets,
the challenges that have been held over the last years and finally to showing some of
the most relevant research for the topic of this thesis, coming from submissions to the
challenges as well as from outside of those.

3.1 Datasets

The next sections describe the most influential datasets used for developing lung nodule
detection models throughout the recent years.

3.1.1 NLST

The National Lung Screening Trial NLST [64] was a randomized controlled clinical trial
in which over 54 000 people participated. They were randomly assigned to two groups:
one that received low-dose CT scans, the other a single-view chest radiography. A ra-
diologist examined the scans whereby non-calcified nodules with a diameter of more
than 4mm and other abnormalities noted by the expert were annotated as officially sus-
picious for lung cancer. The set is not publicly available, one has to ask for permission.

3.1.2 Anode09

This dataset[65] consists of 55 CT scans, five of which have annotations, and was used
for the seemingly earliest challenge on automatic nodule detection[60]. Annotations in-
clude spatial information and a binary label that states whether the nodule is malignant
or not. Further information is available in the NELSON study[66], which is the dataset’s
origin.

3 Related Work and State of the Art 52

3.1.3 Spie-AAPM-NCI LungX

This is a dataset with 2D - DICOM images only (single slices) put together for the
LUNGx Challenge 2015[67]. It consists of a calibration set of 10 thoracic CT scans and
a test set of 60 thoracic CT scans with 73 nodules. The available annotations are cen-
ter coordinates of each nodule and a corresponding diagnosis in xls-format. All data is
available online[63].

3.1.4 LIDC-IDRI

The Lung Image Database Consortium image collection[68] contains 1018 helical tho-
racic CT scans showing 1010 different patients and taken from various scanner types.
The annotations, available online in an XML file, were done by four radiologists in a
two-step process. In the initial phase, the radiologists independently searched for suspi-
cious lesions and grouped them into one of the following three classes: nodule ≥ 3mm,
nodule < 3mm, non-nodule. For all nodules in the first category diameter measurements
were provided. In a second phase the radiologists reviewed the scans again, this time
knowing how the other radiologists annotated each scan but without forcing consen-
sus. The data collection process and criteria can be read under [69]. The data is available
online in DICOM format.

3.1.5 LUNA

The LUNA dataset [62], used for the 2016 LUNA Grand Challenge introduced in 3.2,
is a subset of the LIDC/IDRI dataset (see 3.1.4). All scans with slice thickness greater
than 3mm and scans with inconsistent slice spacing were excluded, resulting in a set
of 888 scans. Four radiologists were responsible for the examination. The 1186 nodules
marked by at least three of them as suspicious comprise the set of positive examples.
All findings with a lower consensus as well as all nodules considered having a diameter
of less than 3mm were classified as irrelevant and not counted as neither false positives
nor true positives. Annotations are provided within csv files and consist of the xyz-
coordinates of each nodule’s center as well as a diameter value given in mm. The data
is available in DICOM format.

3 Related Work and State of the Art 53

3.1.6 LNDb

This set[1] contains 294 CT scans with annotations from at least one radiologist released
as csv files. A total of five radiologists participated in the annotation process which was
performed in a single blinded fashion, i.e. in one review without knowing the others’
findings. The annotation process differs slightly depending on whether a nodule’s di-
ameter is smaller or bigger than 3mm. For the latter, the procedure was similar to the
one for the LIDC-IDRI dataset (see 3.1.4). Each finding is assigned a binary label nodule
or non-nodule), an agreement level which corresponds to the number of radiologists who
marked it as a nodule and a texture rating given as an integer between 0 (non-nodule)
and 5. The latter is determined by averaging the texture classification provided by each
radiologist. This year’s LNDb Challenge (see 3.2) was based upon this dataset.

3.2 Recent Challenges

Code challenges play a significant role within the topic of nodule detection, the first
one dating back to 2009[60]. Subsequently, the frequency of challenges increased. The
two most influential ones for this work, which are also finalized and evaluated, are the
LUNA 2016 Grand Challenge [62] and the Kaggle Data Science Bowl 2017 [61]. The
former employs the LUNA dataset (see 3.1.5), the latter a part of the NLST set (see
3.1.1), which will be referred to as the DSB dataset in table 1. The latest addition to this
list is the, yet to be evaluated, LNDb-Challenge mentioned in 3.1.6. Work from both of
them will be mentioned in the following chapters as those challenges and the insights
obtained from them are a valuable contribution to the subject.

3.3 Related Work

Typically, a detection framework is divided into two parts: the first one detecting nod-
ule candidates and the second one responsible for reducing the number of false positive
proposals coming from the first part, often referred to as the False Positive Reduction
(FPR) network. Some works, on the other hand, use models for a combined detection
and classification. Another crucial difference is whether the model’s structure is set for
two - or three - dimensional inputs and calculations. In the former case, an image is
being fed into the model slice by slice. The latter leads to a significantly higher number
of parameters and, following from that, higher computational cost and training time[6].
For all those categories a majority of the recent research relies on different forms of

3 Related Work and State of the Art 54

CNNs or models that partially incorporate the typical layers of a CNN(2.2).
In [70] a purely two-dimensional, two-step approach is taken, in which 2D CNNs are
used for detection and thereafter false positive reduction.
Mixed dimensionality methods are presented by Ding et al.[71] with the usage of a 2D
Faster-RCNN for candidate proposal and a 3D CNN for the FPR-step (the former being
a quite popular and successful choice in the literature[6]) and by Cheng et al.[72] with
a combination of a 2D and 3D CNN for ROI proposals and a 3D CNN binary classifier
taking those proposals and input and reducing the false positive rate. It is worth men-
tioning that this secured them the second place in the LUNA challenge.
In [73] a 2D U-Net is responsible for candidate generation and a 3D ResNet for false
positive reduction.
U-Net based structures for detection and ResNet-like ones for FPR are two other fa-
vored techniques for this topic and also appear in fully three-dimensional models.
Gruetzemacher et al. [74] present such a two-step network with a ResNet-like FPR part.
The U-Net used in the first part performs a volume-to-volume prediction, its output being
a 32x32x32 cube and therefore quasi a segmentation. This is not surprising, given that
U-Net structures, as discussed in 2.3.5, are broadly used for that[5].
In [75] we can see another two-step trial with a typical 3D CNN detecting nodules,
in which a ResNet is used for false positive reduction, achieving better results than a
DenseNet[76] but being outperformed by an FCN.
An interesting submission to the Kaggle DSB(3.2), winning the first place in this com-
petition, is described in [77]. There, a volumetric one-stage CNN based on a U-Net
backbone is used for nodule detection and a similar structure is successfully used as
a classifier which predicts a cancer probability based on the detection results. Here we
are interested in the detection model, especially because it is a standalone one without
a dedicated FPR part. It is shown in Fig.34. This already existing model had previously
influenced two very successful contributions to the LUNA challenge.
The 3rd ranked team’s [49] detector was inspired by the model of the DSB-winning team
and was paired with a false positive reduction step for which they used an ensemble of
a standard 3D CNN, a cascaded 3D CNN and a 3D - Wide Residual Network.
The winning team [50] fused a one-step and a two-step approach: The detector of the
second one, as well as their one-step model, are motivated by the one in Fig.34 and
shown in Fig.35. The ensemble of those two models secured them the win in this chal-

3 Related Work and State of the Art 55

Figure 34: Detection model of the winning team [77] of the Kaggle DSB.
(a) Network structure with U-Net backbone. Each cube is a 4D-tensor. The
number inside the cube stands for the spatial dimension (height = width =
length), the number outside corresponds to the number of channels.(b) Struc-
ture of a Residual Block. (c) Left combining unit in the depicted model. The
right combining unit is the same but does not have the location crop.

lenge.
Ensembling models is a common strategy for any type of ML task.
An example for this is given by Huang et al. [78]. Here, three 3D CNNs with different
input scales are trained subsequently on the same training set, thereby adjusting the
weight of the training samples before training the next CNN.
A second example is the team placed second in the Kaggle DSB 2017. In this, the weighted
average of ResNet-based CNNs [79] and an adjusted form [80] of a C3D - model [81] was
taken as a resulting detection. The latter is shown in Fig.36. It is important to state that in
this proposal they chose a sliding-window approach. Unlike the models shown by now
and the one we will use, in this one no bounding boxes are created from the image or
subcrops of it (this is referred to as bounding box regression) but rather a window of size
a3 (in this particular case a = 32 as depicted in Fig.36) is moved over the input image.
The network then learns to assign probabilities for a nodule being inside the currently
placed window.

3 Related Work and State of the Art 56

Figure 35: Two different approaches of the winning team of the LUNA challenge in-
spired by [77]. Left: Their detection model as part of a two-step approach in
which the shown network is followed up by a false positive reduction net-
work in the form of a 3D CNN. Right: Their one-step approach to nodule
detection using a U-Net backbone. Results were obtained by fusing the two
models.

Figure 36: One of the ensembled detection models for the second place contribution to
the Kaggle DSB 2017. It is based on the C3D architecture [81] and utilized in
a sliding-window manner.

A very recent proposal for an end-to-end, three-dimensional approach to general le-
sion detection with a 3D Faster-RCNN was made by Zhang et al.[82]. Here, region pro-
posal and false positive reduction are done by different model parts but in a single
phase, sharing a U-Net backbone with DenseNet blocks as shown in Fig.37. The group
would have achieved 4th and 6th position in the LUNA challenge for detection and
false positive reduction, taking the final scoreboard as a reference.

3 Related Work and State of the Art 57

Figure 37: 3D Faster-RCNN model for lesion detection proposed in [82]. The region pro-
posal and FPR branches are trained in a single step and share a U-Net back-
bone architecture.

The model that should serve as the underlying example in this work is given in [2]
and shown in 38. It combines the ResNet architecture with an FPN, the meaningful fea-
ture of the latter being the lateral connections between feature maps and output heads
on each scale. With their training process which will be looked into later on they achieve
very high FROC scores on the LUNA - dataset.

Figure 38: Single-stage detector model based on a modified ResNet and a FPN architec-
ture. Features are being extraced on all feature map levels and directly from
3D space. The most important ResNet-property are the skip-connections.

A last example of a framework for lung nodule detection and identification is pro-
posed by Zhang et al.[83]. The NODULe model introduced here makes use of densely
dilated convolutional blocks (DDCB) [84]. More architectures, quantitative results as well
as information on datasets can be found in [6]. The studies and the respective results
presented here are outlined in table 1.

3 Related Work and State of the Art 58

Ta
bl

e
1:

Pe
rf

or
m

an
ce

co
m

pa
ri

so
n

of
di

ff
er

en
td

et
ec

ti
on

m
od

el
s.

R
ef

.
A

ut
ho

r
Ye

ar
D

at
ab

as
e

SE
%

PR
a

A
cc

%
A

U
C

C
PM

a
lo

gl
os

sb
A

rc
hi

te
ct

ur
e

D
im

.
N

ot
e

[7
0]

Se
ti

o
20

16
LU

N
A

16
85

.4
90

.1
c

76
.5

d

0.
99

6e
0.

82
8/

0.
63

7f
C

us
to

m
(b

as
ed

on
M

ul
ti

-V
ie

w
C

N
N

s)
2D

[7
1]

D
in

g
20

17
LU

N
A

16
94

.6
g

2D
Fa

st
er

-R
C

N
N

an
d

3D
C

N
N

fo
r

FP
R

2D
,

3D
[7

2]
C

he
ng

20
16

LU
N

A
16

0.
94

99
U

-N
et

ba
ck

bo
ne

,2
D

an
d

3D
C

N
N

fo
r

R
O

I-
pr

op
os

al
,3

D
C

N
N

fo
r

FP
R

2D
,

3D
2n

d
pl

ac
e

LU
N

A
16

[7
3]

N
in

g
20

19
LI

D
C

-
ID

R
I

86
.5

92
.3

h
0.

78
0

2D
U

-N
et

w
it

h
3D

R
es

N
et

fo
r

FP
R

2D
,

3D
[7

4]
G

ru
et

ze
-

m
ac

he
r

20
18

LU
N

A
16

89
.2

9i
93

.2
4i

U
-N

et
ba

ck
bo

ne
an

d
R

es
N

et
-

lik
e

C
N

N
fo

r
FP

R
3D

U
-N

et
pe

rf
or

m
s

se
g-

m
en

ta
ti

on
[7

5]
D

ou
20

17
LU

N
A

16
90

.6
j

0.
83

9
FC

N
w

it
h

a
R

es
N

et
fo

r
FP

R
3D

[7
7]

Li
ao

20
17

D
SB

,
LU

N
A

16
k

81
.4

2l
0.

87
l

0.
85

62
m

0.
39

97
5b

U
-N

et
ba

ck
bo

ne
an

d
R

PN
3D

1s
tp

la
ce

D
SB

[4
9]

Fo
no

va
20

16
LU

N
A

16
99

.1
0.

05
88

0.
92

6
En

se
m

bl
e

(C
N

N
,W

R
N

-1
8-

2,
ca

sc
ad

ed
C

N
N

)
3D

3r
d

pl
ac

e
LU

N
A

16

[5
0]

Bo
20

16
LU

N
A

16
0.

95
1n

FP
N

de
te

ct
or

w
it

h
U

-N
et

ba
ck

bo
ne

3D
1s

tp
la

ce
LU

N
A

16

[7
8]

H
ua

ng
20

19
LU

N
A

16
,

A
LT

a
0.

87
6

En
se

m
bl

e
of

3
C

N
N

s
3D

[7
9]

,
[8

0]
de

W
it

,
H

am
-

m
ac

k

20
17

D
SB

,
LU

N
A

16
0.

40
11

7b
En

se
m

bl
e

(R
es

N
et

-l
ik

e
C

N
N

s
an

d
C

3D
s)

o
3D

2n
d

pl
ac

e
D

SB

[8
2]

Z
ha

ng
20

20
LU

N
A

16
0.

93
9

U
-N

et
ba

ck
bo

ne
w

it
h

A
gg

re
-

ga
te

d
Fa

st
er

-R
C

N
N

he
ad

3D
D

en
se

N
et

bl
oc

ks
in

U
-N

et
[2

]
X

ie
20

18
LU

N
A

16
0.

93
51

;0
.9

41
1/

0.
97

67
;0

.9
81

7p
U

-N
et

w
it

h
Fa

st
er

-R
C

N
N

he
ad

3D

[8
3]

Z
ha

ng
20

18
LU

N
A

16
0.

94
7

Lo
G

fil
te

r
+

C
N

N
w

it
h

D
D

C
Bs

3D

a P
R

=
Pr

ec
is

io
n,

C
PM

=
C

om
pe

ti
ti

on
Pe

rf
or

m
an

ce
M

et
ri

c,
A

LT
=

A
li

Ti
an

ch
i(

da
ta

se
tc

an
be

se
en

un
de

r
[8

5]
)

b T
he

lo
ga

ri
th

m
ic

lo
ss

(s
ee

2.
3.

1)
us

ed
in

th
e

K
ag

gl
e

D
SB

ra
nk

in
g.

c F
or

1.
0/

4.
0

FP
s

pe
r

sc
an

re
sp

ec
ti

ve
ly

.
d O

n
th

e
2D

-D
LC

ST
da

ta
se

tw
it

h
6

FP
s

pe
r

sc
an

.
e F

or
cl

as
si

fic
at

io
n

ta
sk

.
f A

ch
ie

ve
d

on
th

e
LU

N
A

16
an

d
A

N
O

D
E0

9
da

ta
se

ts
re

sp
ec

ti
ve

ly
.

g O
n

15
FP

s
pe

r
sc

an
.

h R
es

ul
to

ft
he

de
te

ct
or

-p
ar

to
ft

he
m

od
el

at
1.

0/
4.

0
FP

s
pe

r
sc

an
re

sp
ec

ti
ve

ly
.

i R
es

ul
ts

of
th

e
co

m
pl

et
e

m
od

el
(s

eg
m

en
ta

ti
on

an
d

FP
R

)o
n

th
e

LU
N

A
16

te
st

se
tw

it
h

an
av

er
ag

e
of

1.
78

9
FP

s
pe

r
sc

an
.

j A
ch

ie
ve

d
at

2
FP

s
pe

r
sc

an
.

k F
ro

m
th

e
LU

N
A

-d
at

as
et

,j
us

tt
he

no
du

le
s

w
it

h
a

di
am

et
er

of
≥

6m
m

w
er

e
ta

ke
n

in
to

ac
co

un
t.

l V
al

ue
ob

ta
in

ed
fr

om
th

e
te

st
se

t.
m

Ev
al

ua
te

d
on

th
e

D
SB

va
lid

at
io

n
se

t.
n
A

ch
iv

ed
0.

96
8

w
he

n
en

se
m

bl
in

g
w

it
h

a
tw

o-
st

ag
e

FP
-r

ed
uc

ti
on

m
od

el
.

o T
he

ne
tw

or
ks

ar
e

sm
al

la
nd

ap
pl

ie
d

in
a

sl
id

in
g-

w
in

do
w

m
an

ne
r

ov
er

th
e

in
pu

ti
m

ag
e.

p T
he

fir
st

pa
ir

co
rr

es
po

nd
s

to
th

e
re

su
lt

w
it

h
a

si
ng

le
m

od
el

(l
ef

t)
an

d
en

se
m

bl
e

(r
ig

ht
).

Th
e

se
co

nd
pa

ir
co

rr
es

po
nd

s
to

FR
O

C
-s

co
re

s
ov

er
{1

,2
,4

}F
Ps

pe
r

sc
an

.

4 Training Methods 59

4 Training Methods

This chapter outlines the crucial attributes for training the neural networks. It starts with
a brief description of the data used during training. Subsequently, the used architectures
are introduced and the respective training process is presented.

4.1 Dataset

For training our model we made use of the LNDb dataset introduced in section 3.1.6.
The whole set consists of 294 CT scans, 58 of which are withheld for the test set, i.e.
their ground truth labels are not available. During preprocessing (see section 4.1.2), the
remaining 236 scans were randomly assigned by us to the training and validation set
with a probability of 90% to be used for training and 10% to be used for validation.
This resulted in a training set containing 217 scans and a validation set containing 19
scans. Further image processing steps before the training procedure are described in the
following paragraphs.
Table 2 gives an overview of significant dataset characteristics.

4.1.1 Annotations

From the 1220 available annotations already mentioned in 3.1.6, the key values for our
model are the center coordinates of the nodule candidates and their volume in mm3.
Based on the latter, the diameter of a sphere with equivalent volume was calculated and
this was taken as the side length of a cube containing the nodule candidate. At this point
all ground truths are cubes, but how this changes during training will be discussed in
section 4.1.3. The distribution of these side lengths over the dataset is shown in Fig.39

4 Training Methods 60

Figure 39: Size distribution of the nodule candidates in the 236 CT scans comprising the
LNDb training-dataset. From the volume annotations, diameters of spheres
with equivalent volume were calculated. Those diameters are interpreted as
side lengths of a cube containing the nodule candidate and are the variable
whose distribution is illustrated here.

4.1.2 Preprocessing

During image preprocessing the available data is homogenized as much as possible in
order to enhance the model performance [86, 80, 79]. In a first standard step, the input
images were resampled to a spacing of [1mm, 1mm, 1mm]. This results in every voxel
representing a cube of size 1mm × 1mm × 1mm.
Pixel intensities in CT scans can be expressed in Hounsfield Units (HU). This unit quan-
tifies the radiodensity of different tissue, with water arbitrarily defined at zero HU and
air at -1000 HU [87]. It is common to clip the input image to a given HU range, thereby
also setting boundaries for the pixel intensity depending on which kind of tissue is of
importance [77, 80, 49]. Due to the fact that bone structure has HU values of over 400,
we set the HU range to [-1000, 400], as done for example in [80, 79]. For further unifor-
mity, the pixels within this range were clipped to [0, 255] which is another frequently
taken step [50].
Naturally, the model inputs need to be of the same size, which in our case is 128× 128× 128.
To achieve that, 10 cubes of this size were randomly extracted from each of the 236

4 Training Methods 61

scans. In order to avoid too many cubes without annotations, their center coordinates
were randomly sampled from a multimodal distribution with peaks around the nod-
ule candidate coordinates in each spatial direction. It is essentially a normalized sum of
multiple normal distributions with the same standard deviation. An example is shown
in Fig.40.

Figure 40: Example of a multimodal distribution centered around x1 = 100 and x2 = 240
for an input range of [0, 400]. The green and yellow curve show two normal
distributions centered around x1 and x2, each of them with a standard devia-
tion of 32. Those two are added and normalized to obtain the multimodal dis-
tribution depicted in red. Such distributions were used for sampling model
input cubes from the preprocessed data.

We picked a standard deviation of 32 for each of the normal distributions based on
the already introduced size distribution of the nodule candidates (see Fig.39).
The standard deviation was selected to ensure a sufficiently high number of model in-
put cubes containing at least one nodule candidate without all of the possible nodules
being just around the cubes’ center. As a result, 2170 training cubes and 190 validation
cubes were created. Out of these 2360 model inputs, 1732 contain at least one annotated
nodule candidate.
The last step before supplying an image to the model consists of subtracting the train-
ing set’s mean pixel value (mean = 93.451) from every pixel of every input cube and
dividing each by the pixel values’ standard deviation (standard deviation = 85.941).
This standardizes the pixel distribution to one with zero mean and unit variance which
is favourable for regression tasks [86, 72].

4 Training Methods 62

Table 2: Dataset overview.
nr. training scans 217

nr. validation scans 19
nr. test scans 58

nr. training cubes 2170
nr. validation cubes 190

mean pixel value (training cubes) 93.451
standard deviation of pixel values (training cubes) 85.941

mean nodule diameter (all original scans) 4.533 mm
minimal nodule diameter (all original scans) 3.0 mm
maximal nodule diameter (all original scans) 30.85 mm

4.1.3 Data Augmentation

Augmentations are image transformations used to increase the diversity of the training
data [88]. Popular choices are rotations, translations, zooming or flipping of axes [88,
2, 75, 80, 72]. Applying those transformations leads to an effectively larger dataset and
reduces the probability of overfitting (see section 2.1.5). In order to save storage space,
augmentations were done during the training phase after loading an input cube. Figure
41 shows four examples. The following strategies were employed:

• translations in each direction by 2.5% of the input cube’s side length

• random rotations by one of the following values: [0◦, 90◦, 180◦, 270◦]

• random zooming within a range of [0.75, 1.25]

• random flipping around an arbitrary axis

In the frame of this work, translations play an additional role:
As pointed out in section 4.1, the ground truth boxes are initially cubes. Because of
translations, those boxes can be partially cut off, resulting in cuboids. This is important
for the network’s output size which is part of the next section.

4 Training Methods 63

Figure 41: Example augmentations demonstrated with slices from four cubes. The left-
most image in each row is from an original input cube, the other two are
slices from a randomly augmented version of the same cube. Red boxes de-
note ground truths belonging to the nodule class, white boxes are non-nodules.
The number of boxes inside a cube (indicated by the label above each image)
may decrease depending on the performed transformation.

4 Training Methods 64

4.2 Network Architecture

The architecture chosen in this work is based on the one used by Xie [2] and shown in
Fig.38. The first important variation we propose is replacing the Faster-RCNN-like head
of Xie’s model by an SSD-like detector head. This manifests itself as follows: instead
of directly creating the whole prediction tensor indicated by the light blue boxes in
Fig.38, we use separate convolutions to obtain confidence and localization predictions
and apply a softmax activation (see section 2.1.1.1) to the former.
The number of predictions in this case is determined by the amount of different anchor
sizes (see section 2.3.2) we choose to use on the feature maps and by the chosen stride. In
this case, the anchors were centered at every feature map voxel and had the following
sizes, similar to the ones used in [2]: 〈3, 5, 7, 10, 13, 17, 22, 30, 40〉. This selection fits
our data because it captures the whole range of nodule candidate sizes illustrated in
Fig.39. This approach also allows for predicting different classes, which is crucial in
our case, given that we have to differentiate between nodules and non-nodules (and the
automatically induced background class arising from the SSD architecture (see section
2.3.2)). The second difference to the model presented by Xie is the fact that, as mentioned
in section 4.1.3, some ground truth boxes are cuboids. This has to be taken account for
in the output vector representing each prediction. Consequently, our output vectors are
of the form 

confbackground

confnodule

confnon-nodule

xctr

yctr

zctr

width(∆x)
height(∆y)
length(∆z)


(where confA denotes the confidence value for the box containing an object of class A)
and allow for three distinct side lengths. In addition to that, we adopted Leaky ReLU
activations (see section 2.1.1.1) after each convolution layer. The upsampling and down-
sampling parts of the model are delineated in tables 3 and 4. There are three residual
blocks with c1 = c2 = 64 (see Fig.38) between them.

4 Training Methods 65

Table 3: Upsampling part of our model. The 3D-convolution parameters are kernel-
sizes, max-pooling parameters correspond to pooling-sizes, the batch normal-
ization parameters are momentum values used in the tensorflow library and c1
and c2 are the parameters of the residual blocks in Fig.38.

Layer Parameters Output
Input 128 × 128 × 128, 1

3D Convolution (5, 5, 5) 128 × 128 × 128, 16
Batch Norm 0.9 128 × 128 × 128, 16
Leaky ReLU 128 × 128 × 128, 16

3D Convolution (5, 5, 5) 128 × 128 × 128, 16
Batch Norm 0.9 128 × 128 × 128, 16
Leaky ReLU 128 × 128 × 128, 16
Max Pooling (2, 2, 2) 64 × 64 × 64, 16

Residual Block c1 = c2 = 16 64 × 64 × 64, 16
Residual Block c1 = 16, c2 = 32 64 × 64 × 64, 32
Max Pooling (2, 2, 2) 32 × 32 × 32, 32

Residual Block c1 = c2 = 32 32 × 32 × 32, 32
Residual Block c1 = 32, c2 = 64 32 × 32 × 32, 64
Max Pooling (2, 2, 2) 16 × 16 × 16, 64

Residual Block c1 = c2 = 64 16 × 16 × 16, 64
Residual Block c1 = c2 = 64 16 × 16 × 16, 64
Residual Block c1 = c2 = 64 16 × 16 × 16, 64
Max Pooling (2, 2, 2) 8 × 8 × 8, 64

Table 4: Downsampling part of our model. T. Conv denotes transposed 3D convolutions.
Layer Parameters Output
Input 8 × 8 × 8, 64

T. Conv + Concatenation (5, 5, 5) 16 × 16 × 16, 128
Residual Block c1 = 128, c2 = 64 16 × 16 × 16, 64
Residual Block c1 = c2 = 64 16 × 16 × 16, 64
Residual Block c1 = c2 = 64 16 × 16 × 16, 64

T. Conv + Concatenation (5, 5, 5) 32 × 32 × 32, 128
Residual Block c1 = 128, c2 = 64 32 × 32 × 32, 64
Residual Block c1 = c2 = 64 32 × 32 × 32, 64
Residual Block c1 = c2 = 64 32 × 32 × 32, 64

T. Conv + Concatenation (5, 5, 5) 64 × 64 × 64, 96
Residual Block c1 = 96, c2 = 64 64 × 64 × 64, 64
Residual Block c1 = c2 = 64 64 × 64 × 64, 64
Residual Block c1 = c2 = 64 64 × 64 × 64, 64

4 Training Methods 66

4.3 Training

There is a variety of hyperparameters (see section 2.1.4) that need to be set for training
such a model. Given that the available time frame did not allow for detailed hyper-
parameter tuning, reasonable settings had to be picked with respect to the available
literature.
The network was set to train for up to 500 epochs as was done by Xie [2], thereby keep-
ing track of the weight combination currently producing the lowest validation loss. The
batch size was set to 1 (due to memory restrictions) with 2170 steps per epoch and 190
validation steps. This assures that the model sees exactly one variation of each training
and validation cube per epoch. In the upcoming paragraphs we describe other impor-
tant training parameters. Finally, the three setups with the lowest validation loss are
summarized in table 5.

Matching Strategy For the anchor based approach it is pivotal to define the IoU
thresholds for the default anchors with the ground truth boxes used in the matching
process (see section 2.3.2). We need an upper threshold t+, indicating a successful match
of an anchor with a ground truth and a lower threshold t−. All anchors which do not ex-
ceed the latter with any ground truth are considered to be negatives (background boxes,
see section 2.3.2) during the loss computation and the ones in between those thresholds
are neutral boxes, i.e. they are not part of the loss computation. Following the parameters
selected in [2], t+ = 0.3 and t− = 0.001 were picked.
A last value to mention for all anchor boxes of sizes 〈3, 5, 7, 10, 13, 17, 22, 30, 40〉 is the
standard deviation of their center coordinates and side lengths, denoted by the vec-
tor ~σanchor = (σx, σy, σz, σw, σh, σl). It is incorporated during the encoding (see eq.21)
by dividing each regression parameter by a preset standard deviation value[89]. The
values we chose were σx = σy = σz ∈ {

√
0.1, 0.1, 1} for the center coordinates and

σw = σh = σl ∈ {
√

0.2, 0.2, 1} for the side lengths. The absolute values and their applica-
tion follow the discussions in [89, 90, 91].

Optimizer The Adam optimizer presented in section 2.1.3.4 was used in all training
runs. It is a popular choice [72, 2] and promises faster convergence.
We employed an initial learning rate of 0.001 with up to two reductions by a factor of 10
(minimal learning rate = 0.00001) on plateaus of the validation loss with a patience of

4 Training Methods 67

10 epochs [92]. Learning rates within this range have been used repeatedly for similar
tasks [50, 2, 72, 78].

Loss computation The loss was computed as is typical for SSD networks and dis-
cussed in section 2.3.2. An issue that can emerge during training is the imbalance be-
tween positive and negative examples arising from the fact that there are at most a few
nodule candidates per input image and the majority of default boxes will be negatives.
This would result in the learning process being much more focused on the negative
class. Measures taken to prevent this imbalance are referred to as hard negative mining
and can be found in most of the related models [2, 50, 77, 72].
A first hard negative mining technique consists of setting a maximal negative to positive
ratio rn:p for each batch[9]. In this way, not more than rn:p × numpos negative examples
(numneg) are used for computing the loss. The negative examples entering the loss are
the ones with the highest confidence loss[9].
In batches without any positive box, this would lead to learning only background in-
formation. This can be prevented by setting a minimal number of negatives minneg to
be considered in the loss. Based on recommendations in [2, 91], reasonable { rn:p,minneg}
pairs utilized during training were {3,3} and {5,5}. As suggested in [9], the α-value in
eq.15 was set to α = 1.

Table 5: Hyperparameters for training runs.
Hyperparameter Value

batch size 1
maximal epoch number 500
training steps per epoch 2170

validation steps per epoch 190
initial learning rate 0.001

minimal learning rate 0.00001
rn:p 3 5 5

minneg 3 5 5
t+ 0.3
t− 0.001

σx, σy, σz
√

0.1 0.1 0.1
σw, σh, σl

√
0.2 0.2 0.2

augmentations all all None

4 Training Methods 68

4.4 Inference and Postprocessing

After the model has been trained, it naturally needs to be tested and evaluated on origi-
nal scans. Their size is sometimes more than 500 voxels in each dimension and therefore
incompatible with the network’s input size of 128 × 128 × 128. For this reason, during
inference a window of size 128 × 128 × 128 is slided over the scan. The model creates
proposals for each such cube and they are transformed into world coordinates in accor-
dance to the original ground truth annotations they will be compared against. The stride
of the sliding window was set to 96, so that the overlap with the previous window is
always at least 32 voxels. This resulted in approximately 100 cubes per input scan and a
time of around one hour for each scan. Given that the spacing of the scans in the dataset
is often around 0.5mm in x- and y-direction and 1.0mm in z-direction, 32 voxels seems
to be a reasonable compromise to ensure that every nodule candidate is properly inside
the window at least once (the size distribution is depicted in Fig.39) and at the same
time the inference time remains sensible.
In each prediction process, the model’s raw output is decoded, reversing the box encod-
ing in eq.21. Afterwards, boxes with unreasonable parameters, e.g. side lengths which
are negative or much larger than the image, center coordinates outside of the image
frame etc., are discarded if they exist. They do not necessarily appear but can justifiably
be removed, given that they are obviously not useful and potentially harm the further
postprocessing procedure. The latter happens if some of those boxes belong to either
the nodule or the non-nodule class. Their existence implies that the anchor sizes need to
be adjusted.
As a last postprocessing step for every single prediction we used confidence thresh-
olding with tconf = 0.3 and non-maximum suppression with tiou, nms = 0.45 (see sec-
tion 2.3.4). The confidence threshold was chosen from observations of the approximate
amount of proposals left after applying it. At tconf = 0.3, between 20 and 3000 predic-
tions are left for every cube. Having 100 cubes per scan, this is a sufficient number of
candidates.
Finally, we employed two top-k filtering strategies (see section 2.3.4) for each scan: We
separately evaluated the k = 200 highest confidence candidates as well as all predictions
yielded from the procedure described in this paragraph.

4 Training Methods 69

4.5 The Framework

The framework, inside of which everything described in this chapter happens, is imple-
mented in Keras[93] with Tensorflow backend[94]. It is modular and makes it possible
to execute each step of the pipeline individually, with the option of adjusting many pa-
rameters conveniently.
The image preprocessing and input cube creation can be performed at once or sepa-
rately and can both be customized via distinct configuration dictionaries. These contain
all necessary parameters, including file paths, data sets to load, Hounsfield units to clip
the images to, the number of cubes to create per scan, parameters for the distribution
from which the center coordinates of cropped cubes are sampled, the training-validation
ratio and many more. Having started the training process, a custom image data gener-
ator loads and augments the created cubes during run-time.
The training procedure and the model used for it depend on configuration files that are
stored in json format. The training configuration holds hyperparameters like the batch
size or epoch number, variables regarding the callbacks[95] we use during training and
all augmentation parameters.
Model configurations contain optimizer information, variables that are necessary for the
applied loss function, crucial network architecture parameters and thresholds concern-
ing the inference time in order to be able to perform tests. Figure 42 shows examples
of both configuration types. Individual testing procedures for determining precision,
recall and FROC-scores are also implemented. Lastly, a variety of scripts with visualiza-
tions of different fragments of the whole pipeline is provided.
The code is available under [96].

4 Training Methods 70

(a) (b)

Figure 42: Example of a model configuration(a) and training configuration(b) in json
format.

5 Results and Discussion 71

5 Results and Discussion

In this section the results obtained from the training process described in chapter 4.3 are
presented. The lowest validation loss of lossval = 2.51 was achieved in the 67th epoch
after four days of training with the leftmost parameter combination in table 5. The setup
in the middle column delivered a loss of lossval = 5.13 after 80 epochs, the one in the
right column was stopped after reaching a loss of lossval = 5.57 in the 50th epoch. It is
worth mentioning that the following parameter combinations led to early termination
due to lack of improvement or errors during training:

• A setup as in column 2 in table 5 but with rn:p = minneg = 3 resulted in lossval =
nan (not a number) after a few epochs.

• A setup as in column 2 in table 5 but with σx = σy = σz = σw = σh = σl = 1 did
not lead to any improvement compared to the best performing runs.

• Any training run in which the default anchors (see sections 2.3.2 and 4.2) were not
clipped to the image boundaries but allowed to exceed them led to lossval = nan.

Precision, Recall The precision and recall metrics introduced in eq.26 were calcu-
lated for the 19 validation scans with thresholds (see section 2.3.4)

tiou ∈ {0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95}

according to the standard range defined in the COCO challenge[4]. In its current state,
the model achieved a highest IoU to any ground truth box of 0.2, leading to a precision
and recall of zero on the COCO-range for the top-k filtered as well as for the non-filtered
detection results (see section 4.4).

FROC score The FROC score (explained in section 2.4.4) was calculated for the 19
validation scans based on the algorithm described in [3]. There, the confidence thresh-
old over the predictions is varied. For each threshold, the recall and number of FPs per
scan are calculated, only taking into account predictions of type nodule. The recall cal-
culation is based on the following rule: Every candidate that matches a ground truth
is considered a true positive, where a match means that the distance between the cen-
ter coordinates of the nodule and the ground truth is smaller or equal than the maxi-
mum equivalent ground truth diameter. A nodule candidate that matches a non-nodule

5 Results and Discussion 72

ground truth is a false positive and ground truths that were not matched are false neg-
atives.
We calculated the FROC-score over a confidence threshold range of tconf, froc ∈ [0.3, 0.99]
with a step size of 0.03. The result, with a highest recall of 0.68 at 42963 FPs per scan for
the non-filtered detection output, is shown in Fig.43. After top-k filtering with k = 200
there were no true positives among the candidates, leading to a score of zero.

Figure 43: FROC analysis result for our model obtained from a confidence threshold
range of [0.3, 0.99] with a step size of 0.03.

The respective scoreboards of the LNDb Challenge A, which is the nodule detection
challenge we are interested in, are shown in Fig.44 and Fig.45.

Figure 44: FROC score ranking over the train/validation set of the LNDb Challenge
A[97]

5 Results and Discussion 73

Figure 45: FROC score ranking over the test set of the LNDb challenge A[98].

Discussion The results reveal that the model is still not well enough trained in
order to perform lung nodule detection. On the one hand, the bounding box center co-
ordinates are predicted inaccurately. Following from this, the FROC calculation showed
a huge number of false positives. On the other hand, it is clear that the shapes of the
candidate boxes are also unsatisfactory. This shows itself in the fact that, even without
top-k filtering, the highest IoU between prediction and ground truth for the validation
set was 0.2. Therefore, even the boxes that are close enough to a ground truth to be con-
sidered TPs in the FROC paradigm can not assure an IoU value that is large enough for
a meaningful calculation of precision and recall.
The biggest issue was the narrow time frame, which did not allow for sufficient opti-
mization of the training process. With over one hour of training time per epoch, there
was not enough time to train the model for the planned number of 500 epochs and its
currently best checkpoint had to be utilized to carry out the evaluation procedure. The
unsuitable predicted box measures give out a second possible issue: the choice of an-
chor sizes. Misshaped boxes can appear due to anchor sizes that do not fit the dataset.
A different choice may lead to much better results.
Besides that, there is a variety of ideas mentioned in different papers which could en-
hance the model’s performance significantly. The implementation of these methods ex-
ceeded the scope of this work, so we will only discuss their potential improvements
here. The arguably biggest improvement that can be done during preprocessing is the
segmentation of the lung volume. This procedure removes unnecessary tissue outside
of the lung from the scan which may slow down the learning process of the model and
is used in many approaches [77, 80, 78, 82, 74, 83]. It is worth mentioning that in [80] and
[74] U-Nets are used for this task and in [77] it is pointed out that simultaneous training
of segmentation and detection models usually increases the performance of both tasks.

5 Results and Discussion 74

A next possible improvement strategy is the employment of model ensembles. As
was discussed in 3, many of the well performing models are the result of a weighted
average of multiple models trained for object detection. This is something that can be
done fairly easily within the framework in the future.

In the context of the model’s architecture, an important note is that the model was
trained from scratch, which introduces a higher risk of insufficient results, especially in
such early training phases. A reason for that is the already mentioned lack of 3D models
that are working with volumetric data and trained on similar tasks. Not only are there
many more pretrained 2D network structures, but among the already tested 3D models,
ones that use volumetric data instead of point clouds and consist of a single, end-to-end
trainable stage (rather than separately trained parts for detection and FP reduction) are
rare.

Further modifications which could positively influence the training process include
the replacement of the Leaky ReLU activations with Randomized ReLU, which has been
employed in well-performing models[2, 82].
Moreover, modified loss functions seem to be able to improve the performance, the Focal
Loss being a prominent example utilized in successful architectures[50, 82]. In [99] it is
pointed out that this fairly new type of loss function is helpful with regards to the class
imbalance in detection models and can be of particular use in one-stage detectors like
the one presented in this work. This can be crucial for single-phase detection models, as
they are usually outperformed by multi-phase solutions (with separate detection and
FP reduction parts).
The application of Soft NMS instead of the common NMS, mentioned in [2] and [82], is
another possible adjustment that has proven to be effective in detection networks[100].

In addition, the training procedure can profit from many custom adaptations and
a variety of such can be found in the relevant literature. They range from applying
morphological operations to the input image in the preprocessing stage[77, 83], over
anchor-based sampling during training introduced by Xie[2], to adding local magnifi-
cation layers which can result in better sensitivity and FROC-scores[82].
Including those into the present framework, especially in combination with more datasets,
should help to improve the model performance.

6 Conclusion 75

6 Conclusion

The present work analyzed the application of Convolutional Neural Networks to the
task of lung nodule detection in CT scans. It aimed to integrate a single-stage, end-to-
end trainable network which learns from volumetric data into a framework that incor-
porates image preprocessing, model training and evaluation procedures. Using basic
image preprocessing on the LNDb-dataset[1], this pipeline was executed for a model
that is based on a U-Net-like 3D feature extractor with a 3D detector head adapted from
the 2D-SSD architecture. We achieved a maximal recall of 0.68 at 42963 false positives
per scan. Due to the low accuracy of bounding box predictions, precision and recall
calculations on the COCO IoU-range and the calculation of the FROC-score over the
typically used { 1

8 ,
1
4 ,

1
2 , 1, 2, 4, 8 } FPs per scan can not be performed meaningfully at this

stage.
Although the herein presented approach is not yet suitable for accurate lung nodule de-
tection, the theoretical background and state-of-the art analysis together with a larger
time frame for model training promise to be keys for further development and an en-
hanced performance. As explained in section 5, there are numerous methods that can
be added to the pipeline in order to improve its performance, ranging from additional
image processing steps, to a variety of network architectures, to the portrayed enhance-
ments of the training procedure. With the ability to easily include those into the frame-
work, we can be optimistic that we will see better results based on this work in the
future.

Literature 76

Literature

[1] João Pedrosa et al. LNDb: A Lung Nodule Database on Computed Tomography. 2019.
arXiv: 1911.08434 [eess.IV].

[2] Zhongliu Xie. Towards Single-phase Single-stage Detection of Pulmonary Nodules in
Chest CT Imaging. 2018. arXiv: 1807.05972 [cs.CV].

[3] Evaluation in the LNDb grand challenge 2019/20. https://lndb.grand-challenge.
org/Evaluation/. (Visited on 09/13/2020).

[4] COCO Evaluation Metrics. https://cocodataset.org/#detection-eval.
(Visited on 09/21/2020).

[5] Geert Litjens et al. “A survey on deep learning in medical image analysis”. In:
Medical Image Analysis 42 (2017), pp. 60 –88. ISSN: 1361-8415. DOI: https://
doi.org/10.1016/j.media.2017.07.005. URL: http://www.sciencedirect.
com/science/article/pii/S1361841517301135.

[6] Diego Riquelme and Moulay Akhloufi. “Deep Learning for Lung Cancer Nod-
ules Detection and Classification in CT Scans”. In: AI 1 (Jan. 2020), pp. 28–67.
DOI: 10.3390/ai1010003.

[7] K. Hinkelmann. Hyperparameter Optimization. https://towardsdatascience.
com/hyperparameters-optimization-526348bb8e2d. (Visited on 09/21/2020).

[8] Homepage of the LNDb grand challenge 2019/20. https://lndb.grand-challenge.
org/Home/. (Visited on 08/11/2020).

[9] Wei Liu et al. “SSD: Single Shot MultiBox Detector”. In: Lecture Notes in Computer
Science (2016), 21–37. ISSN: 1611-3349. DOI: 10.1007/978-3-319-46448-0_2.
URL: http://dx.doi.org/10.1007/978-3-319-46448-0_2.

[10] S. Haykin. Neural Networks, A Comprehensive Foundation. Second Edition. Pearson
Education, 1999. ISBN: 978-0132733502.

[11] Michael A. Nielsen. Neural Networks and Deep Learning. misc. 2018. URL: http:
//neuralnetworksanddeeplearning.com/.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://
www.deeplearningbook.org. MIT Press, 2016.

[13] K Hinkelmann. Lecture on Neural Networks. http://didattica.cs.unicam.
it/lib/exe/fetch.php?media=didattica:magistrale:kebi:ay_
1718:ke-11_neural_networks.pdf. (Visited on 03/02/2020).

[14] Chigozie Nwankpa et al. Activation Functions: Comparison of trends in Practice and
Research for Deep Learning. 2018. arXiv: 1811.03378 [cs.LG].

https://arxiv.org/abs/1911.08434
https://arxiv.org/abs/1807.05972
https://lndb.grand-challenge.org/Evaluation/
https://lndb.grand-challenge.org/Evaluation/
https://cocodataset.org/#detection-eval
https://doi.org/https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/https://doi.org/10.1016/j.media.2017.07.005
http://www.sciencedirect.com/science/article/pii/S1361841517301135
http://www.sciencedirect.com/science/article/pii/S1361841517301135
https://doi.org/10.3390/ai1010003
https://towardsdatascience.com/hyperparameters-optimization-526348bb8e2d
https://towardsdatascience.com/hyperparameters-optimization-526348bb8e2d
https://lndb.grand-challenge.org/Home/
https://lndb.grand-challenge.org/Home/
https://doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://didattica.cs.unicam.it/lib/exe/fetch.php?media=didattica:magistrale:kebi:ay_1718:ke-11_neural_networks.pdf
http://didattica.cs.unicam.it/lib/exe/fetch.php?media=didattica:magistrale:kebi:ay_1718:ke-11_neural_networks.pdf
http://didattica.cs.unicam.it/lib/exe/fetch.php?media=didattica:magistrale:kebi:ay_1718:ke-11_neural_networks.pdf
https://arxiv.org/abs/1811.03378

Literature 77

[15] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep Sparse Rectifier Neu-
ral Networks”. In: Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics. Ed. by Geoffrey Gordon, David Dunson, and Miroslav
Dudík. Vol. 15. Proceedings of Machine Learning Research. Fort Lauderdale,
FL, USA: PMLR, Apr. 2011, pp. 315–323. URL: http://proceedings.mlr.
press/v15/glorot11a.html.

[16] Bing Xu et al. Empirical Evaluation of Rectified Activations in Convolutional Network.
2015. arXiv: 1505.00853 [cs.LG].

[17] Wikimedia Commons. Error surface of a linear neuron with two input weights. File:
Error surface of a linear neuron with two input weights.png.
Feb. 2013. URL: https://commons.wikimedia.org/wiki/File:Error_
surface_of_a_linear_neuron_with_two_input_weights.png.

[18] Stochastic Gradient Descent- A Super Easy Complete Guide! Apr. 2019. URL: https:
//www.mltut.com/stochastic-gradient-descent-a-super-easy-
complete-guide/.

[19] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization”. In: Journal of Machine Learning
Research 12 (July 2011), pp. 2121–2159.

[20] Matthew D. Zeiler. ADADELTA: An Adaptive Learning Rate Method. 2012. arXiv:
1212.5701 [cs.LG].

[21] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2014. arXiv: 1412.6980 [cs.LG].

[22] Dami Choi et al. On Empirical Comparisons of Optimizers for Deep Learning. 2020.
URL: https://openreview.net/forum?id=HygrAR4tPS.

[23] Guodong Zhang et al. Which Algorithmic Choices Matter at Which Batch Sizes? In-
sights From a Noisy Quadratic Model. 2019. arXiv: 1907.04164 [cs.LG].

[24] Satyam Kumar. Overview of various Optimizers in Neural Networks. https://
towardsdatascience.com/overview-of-various-optimizers-in-
neural-networks-17c1be2df6d5. (Visited on 09/14/2020).

[25] Geoffrey E. Hinton et al. Improving neural networks by preventing co-adaptation of
feature detectors. 2012. arXiv: 1207.0580 [cs.NE].

[26] Overfitting and underfitting. https : / / www . educative . io / edpresso /
overfitting-and-underfitting. (Visited on 09/12/2020).

[27] Anh Vo. Dot-product between Filter and Input. Feb. 2018. URL: https://subscription.
packtpub.com/book/game_development/9781789138139/4/ch04lvl1sec31/
convolutional-neural-networks.

[28] Tyrone Carlisle Nowell. “Detection and Quantification of Rot in Harvested Trees
using Convolutional Neural Networks”. MA thesis. Norwegian University of
Life Sciences, Ås, 2019.

http://proceedings.mlr.press/v15/glorot11a.html
http://proceedings.mlr.press/v15/glorot11a.html
https://arxiv.org/abs/1505.00853
https://commons.wikimedia.org/wiki/File:Error_surface_of_a_linear_neuron_with_two_input_weights.png
https://commons.wikimedia.org/wiki/File:Error_surface_of_a_linear_neuron_with_two_input_weights.png
https://www.mltut.com/stochastic-gradient-descent-a-super-easy-complete-guide/
https://www.mltut.com/stochastic-gradient-descent-a-super-easy-complete-guide/
https://www.mltut.com/stochastic-gradient-descent-a-super-easy-complete-guide/
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=HygrAR4tPS
https://arxiv.org/abs/1907.04164
https://towardsdatascience.com/overview-of-various-optimizers-in-neural-networks-17c1be2df6d5
https://towardsdatascience.com/overview-of-various-optimizers-in-neural-networks-17c1be2df6d5
https://towardsdatascience.com/overview-of-various-optimizers-in-neural-networks-17c1be2df6d5
https://arxiv.org/abs/1207.0580
https://www.educative.io/edpresso/overfitting-and-underfitting
https://www.educative.io/edpresso/overfitting-and-underfitting
https://subscription.packtpub.com/book/game_development/9781789138139/4/ch04lvl1sec31/convolutional-neural-networks
https://subscription.packtpub.com/book/game_development/9781789138139/4/ch04lvl1sec31/convolutional-neural-networks
https://subscription.packtpub.com/book/game_development/9781789138139/4/ch04lvl1sec31/convolutional-neural-networks

Literature 78

[29] Shuihua Wang et al. “Multiple Sclerosis Identification by 14-Layer Convolutional
Neural Network With Batch Normalization, Dropout, and Stochastic Pooling”.
In: Frontiers in Neuroscience 12 (Nov. 2018), p. 818. DOI: 10.3389/fnins.2018.
00818.

[30] Wikimedia Commons. Objects detected with OpenCV’s Deep Neural Network module
(dnn). Reading a network model stored in Darknet model files.It uses a YOLOv3 model
trained on COCO dataset capable of detecting 80 common objects in context. Jan. 2019.
URL: https://commons.wikimedia.org/wiki/File:Detected-with-
YOLO--Schreibtisch-mit-Objekten.jpg.

[31] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. YOLOv4: Op-
timal Speed and Accuracy of Object Detection. 2020. arXiv: 2004.10934 [cs.CV].

[32] Ritesh Kanjee. YOLOv4 — Superior, Faster & More Accurate Object Detection. https:
//medium.com/@riteshkanjee/yolov4-superior- faster- more-
accurate-object-detection-7e8194bf1872. (Visited on 09/14/2020).

[33] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. 2014. arXiv: 1409.1556 [cs.CV].

[34] Amar Hekalo. Lecture notes in Programming with Neural Networks. June 2020.

[35] Zhong Chen, Ting Zhang, and Chao Ouyang. “End-to-End Airplane Detection
Using Transfer Learning in Remote Sensing Images”. In: Remote Sensing 10 (Jan.
2018), p. 139. DOI: 10.3390/rs10010139.

[36] Peter J. Huber. “Robust Estimation of a Location Parameter”. In: Ann. Math.
Statist. 35.1 (Mar. 1964), pp. 73–101. DOI: 10.1214/aoms/1177703732. URL:
https://doi.org/10.1214/aoms/1177703732.

[37] Qianhui Luo et al. 3D-SSD: Learning Hierarchical Features from RGB-D Images for
Amodal 3D Object Detection. 2017. arXiv: 1711.00238 [cs.CV].

[38] Joseph Redmon et al. You Only Look Once: Unified, Real-Time Object Detection. 2015.
arXiv: 1506.02640 [cs.CV].

[39] Joseph Redmon and Ali Farhadi. YOLO9000: Better, Faster, Stronger. 2016. arXiv:
1612.08242 [cs.CV].

[40] Martin Simon et al. Complex-YOLO: Real-time 3D Object Detection on Point Clouds.
2018. arXiv: 1803.06199 [cs.CV].

[41] Jasper Uijlings et al. “Selective Search for Object Recognition”. In: International
Journal of Computer Vision 104 (Sept. 2013), pp. 154–171. DOI: 10.1007/s11263-
013-0620-5.

[42] Ross Girshick et al. Rich feature hierarchies for accurate object detection and semantic
segmentation. 2013. arXiv: 1311.2524 [cs.CV].

[43] Tomasz Grel. Illustration of an ROI-pooling operation. https://deepsense.ai/
region-of-interest-pooling-explained/. (Visited on 08/14/2020).

https://doi.org/10.3389/fnins.2018.00818
https://doi.org/10.3389/fnins.2018.00818
https://commons.wikimedia.org/wiki/File:Detected-with-YOLO--Schreibtisch-mit-Objekten.jpg
https://commons.wikimedia.org/wiki/File:Detected-with-YOLO--Schreibtisch-mit-Objekten.jpg
https://arxiv.org/abs/2004.10934
https://medium.com/@riteshkanjee/yolov4-superior-faster-more-accurate-object-detection-7e8194bf1872
https://medium.com/@riteshkanjee/yolov4-superior-faster-more-accurate-object-detection-7e8194bf1872
https://medium.com/@riteshkanjee/yolov4-superior-faster-more-accurate-object-detection-7e8194bf1872
https://arxiv.org/abs/1409.1556
https://doi.org/10.3390/rs10010139
https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1214/aoms/1177703732
https://arxiv.org/abs/1711.00238
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1803.06199
https://doi.org/10.1007/s11263-013-0620-5
https://doi.org/10.1007/s11263-013-0620-5
https://arxiv.org/abs/1311.2524
https://deepsense.ai/region-of-interest-pooling-explained/
https://deepsense.ai/region-of-interest-pooling-explained/

Literature 79

[44] Ross Girshick. Fast R-CNN. 2015. arXiv: 1504.08083 [cs.CV].

[45] Shaoqing Ren et al. Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks. 2015. arXiv: 1506.01497 [cs.CV].

[46] R. Girschick. voc-dpm. https://github.com/pierluigiferrari/ssd_
keras. 2012.

[47] A. Rosebrock. Non-Maximum Suppression for Object Detection in Python. https:
//www.pyimagesearch.com/2014/11/17/non-maximum-suppression-
object-detection-python/. (Visited on 09/21/2020).

[48] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Net-
works for Biomedical Image Segmentation. 2015. arXiv: 1505.04597 [cs.CV].

[49] Fonova. “3D Deep Convolution Neural Network Application in Lung Nodule
Detection on CT Images”. LUNA 2016 challenge submission paper. URL: https:
//grand- challenge- public.s3.amazonaws.com/f/challenge/
71/bea787d4-5cb3-4669-a48b-caa0a3048d66/20171128_034629_
LUNA16FONOVACAD_NDET.pdf (visited on 08/16/2020).

[50] “3DCNN for Lung Nodule Detection And False Positive Reduction”. LUNA
2016 challenge submission paper. URL: https://grand-challenge-public.
s3.amazonaws.com/f/challenge/71/8ac994bc-9951-420d-a7e5-
21050c5b4132/20180102_081812_PAtech_NDET.pdf (visited on 08/16/2020).

[51] Tsung-Yi Lin et al. Feature Pyramid Networks for Object Detection. 2016. arXiv:
1612.03144 [cs.CV].

[52] Sik-Ho Tsang. Review: FPN — Feature Pyramid Network (Object Detection). https:
//towardsdatascience.com/review-fpn-feature-pyramid-network-
object-detection-262fc7482610. (Visited on 08/23/2020).

[53] David Powers and Ailab. “Evaluation: From precision, recall and F-measure to
ROC, informedness, markedness and correlation”. In: J. Mach. Learn. Technol 2
(Jan. 2011), pp. 2229–3981. DOI: 10.9735/2229-3981.

[54] Hongge Chen. “Novel machine learning approaches for modeling variations in
semiconductor manufacturing”. PhD thesis. Jan. 2017.

[55] Peter Flach. “The Geometry of ROC Space: Understanding Machine Learning
Metrics through ROC Isometrics”. In: vol. 1. Jan. 2003, pp. 194–201.

[56] Peter Flach. Tutorial on "The Many Faces of ROC Analysis in Machine Learning".
http://people.cs.bris.ac.uk/~flach/ICML04tutorial//. (Visited
on 08/13/2020).

[57] Harold Miller. “The FROC Curve: A Representation of the Observer’s Perfor-
mance for the Method of Free Response”. In: The Journal of the Acoustical Society
of America 46 (1969). DOI: 10.1121/1.1911889.

https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1506.01497
https://github.com/pierluigiferrari/ssd_keras
https://github.com/pierluigiferrari/ssd_keras
https://www.pyimagesearch.com/2014/11/17/non-maximum-suppression-object-detection-python/
https://www.pyimagesearch.com/2014/11/17/non-maximum-suppression-object-detection-python/
https://www.pyimagesearch.com/2014/11/17/non-maximum-suppression-object-detection-python/
https://arxiv.org/abs/1505.04597
https://grand-challenge-public.s3.amazonaws.com/f/challenge/71/bea787d4-5cb3-4669-a48b-caa0a3048d66/20171128_034629_LUNA16FONOVACAD_NDET.pdf
https://grand-challenge-public.s3.amazonaws.com/f/challenge/71/bea787d4-5cb3-4669-a48b-caa0a3048d66/20171128_034629_LUNA16FONOVACAD_NDET.pdf
https://grand-challenge-public.s3.amazonaws.com/f/challenge/71/bea787d4-5cb3-4669-a48b-caa0a3048d66/20171128_034629_LUNA16FONOVACAD_NDET.pdf
https://grand-challenge-public.s3.amazonaws.com/f/challenge/71/bea787d4-5cb3-4669-a48b-caa0a3048d66/20171128_034629_LUNA16FONOVACAD_NDET.pdf
https://grand-challenge-public.s3.amazonaws.com/f/challenge/71/8ac994bc-9951-420d-a7e5-21050c5b4132/20180102_081812_PAtech_NDET.pdf
https://grand-challenge-public.s3.amazonaws.com/f/challenge/71/8ac994bc-9951-420d-a7e5-21050c5b4132/20180102_081812_PAtech_NDET.pdf
https://grand-challenge-public.s3.amazonaws.com/f/challenge/71/8ac994bc-9951-420d-a7e5-21050c5b4132/20180102_081812_PAtech_NDET.pdf
https://arxiv.org/abs/1612.03144
https://towardsdatascience.com/review-fpn-feature-pyramid-network-object-detection-262fc7482610
https://towardsdatascience.com/review-fpn-feature-pyramid-network-object-detection-262fc7482610
https://towardsdatascience.com/review-fpn-feature-pyramid-network-object-detection-262fc7482610
https://doi.org/10.9735/2229-3981
http://people.cs.bris.ac.uk/~flach/ICML04tutorial//
https://doi.org/10.1121/1.1911889

Literature 80

[58] Arnau Oliver. FROC Analysis. http://eia.udg.edu/~aoliver/publications/
tesi/node147.html. (Visited on 08/13/2020).

[59] Ke Yan, Mohammadhadi Bagheri, and Ronald Summers. “3D Context Enhanced
Region-Based Convolutional Neural Network for End-to-End Lesion Detection”.
In: Sept. 2018, pp. 511–519. DOI: 10.1007/978-3-030-00928-1_58.

[60] Homepage of the ANODE09 grand challenge. https://anode09.grand-challenge.
org/. (Visited on 08/11/2020).

[61] Homepage of the Kaggle Data Science Bowl. https://www.kaggle.com/c/
data-science-bowl-2017. (Visited on 08/12/2020).

[62] Homepage of the LUng Nodule Analysis 2016 grand challenge. https://luna16.
grand-challenge.org/. (Visited on 08/11/2020).

[63] Homepage of the LUNGx Challenge 2015. https://wiki.cancerimagingarchive.
net/display/Public/LIDC-IDRI. (Visited on 08/11/2020).

[64] Summary Of The National Lung Screening Trial NLST. https://cdas.cancer.
gov/learn/nlst/trial-summary. (Visited on 08/11/2020).

[65] Bram van Ginneken et al. “Comparing and combining algorithms for computer-
aided detection of pulmonary nodules in computed tomography scans: The AN-
ODE09 study”. In: Medical Image Analysis 14.6 (2010), pp. 707 –722. ISSN: 1361-
8415. DOI: https://doi.org/10.1016/j.media.2010.05.005. URL:
http://www.sciencedirect.com/science/article/pii/S1361841510000587.

[66] Ying Ru Zhao et al. “NELSON lung cancer screening study”. eng. In: Cancer imag-
ing : the official publication of the International Cancer Imaging Society 11 Spec No
A.1A (Oct. 2011), S79–S84. ISSN: 1470-7330. DOI: 10.1102/1470-7330.2011.
9020. URL: https://pubmed.ncbi.nlm.nih.gov/22185865.

[67] Justin S. Kirby et al. “LUNGx Challenge for computerized lung nodule classifi-
cation”. In: Journal of Medical Imaging 3.4 (2016), pp. 1 –9. DOI: 10.1117/1.JMI.
3.4.044506. URL: https://doi.org/10.1117/1.JMI.3.4.044506.

[68] The Lung Image Database Consortium image collection LIDC-IDRI. https://wiki.
cancerimagingarchive.net/display/Public/LIDC-IDRI. (Visited on
08/11/2020).

[69] Michael F. McNitt-Gray et al. “The Lung Image Database Consortium (LIDC)
Data Collection Process for Nodule Detection and Annotation”. In: Academic Ra-
diology 14.12 (2007), pp. 1464 –1474. ISSN: 1076-6332. DOI: https://doi.org/
10.1016/j.acra.2007.07.021. URL: http://www.sciencedirect.
com/science/article/pii/S1076633207004497.

[70] Arnaud Setio et al. “Pulmonary Nodule Detection in CT Images: False Positive
Reduction Using Multi-View Convolutional Networks”. In: IEEE Transactions on
Medical Imaging 35 (Mar. 2016), pp. 1–1. DOI: 10.1109/TMI.2016.2536809.

http://eia.udg.edu/~aoliver/publications/tesi/node147.html
http://eia.udg.edu/~aoliver/publications/tesi/node147.html
https://doi.org/10.1007/978-3-030-00928-1_58
https://anode09.grand-challenge.org/
https://anode09.grand-challenge.org/
https://www.kaggle.com/c/data-science-bowl-2017
https://www.kaggle.com/c/data-science-bowl-2017
https://luna16.grand-challenge.org/
https://luna16.grand-challenge.org/
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
https://cdas.cancer.gov/learn/nlst/trial-summary
https://cdas.cancer.gov/learn/nlst/trial-summary
https://doi.org/https://doi.org/10.1016/j.media.2010.05.005
http://www.sciencedirect.com/science/article/pii/S1361841510000587
https://doi.org/10.1102/1470-7330.2011.9020
https://doi.org/10.1102/1470-7330.2011.9020
https://pubmed.ncbi.nlm.nih.gov/22185865
https://doi.org/10.1117/1.JMI.3.4.044506
https://doi.org/10.1117/1.JMI.3.4.044506
https://doi.org/10.1117/1.JMI.3.4.044506
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
https://doi.org/https://doi.org/10.1016/j.acra.2007.07.021
https://doi.org/https://doi.org/10.1016/j.acra.2007.07.021
http://www.sciencedirect.com/science/article/pii/S1076633207004497
http://www.sciencedirect.com/science/article/pii/S1076633207004497
https://doi.org/10.1109/TMI.2016.2536809

Literature 81

[71] Jia Ding et al. Accurate Pulmonary Nodule Detection in Computed Tomography Images
Using Deep Convolutional Neural Networks. 2017. arXiv: 1706.04303 [cs.CV].

[72] Guohua Cheng et al. “Deep Convolution Neural Networks for Pulmonary Nod-
ule Detection in CT imaging”. In: 2018. URL: https://grand-challenge-
public.s3.amazonaws.com/f/challenge/71/101b150c-88c5-4f9d-
a374-d8d3fc166aff/20171222_073722_JianpeiCAD_NDET.pdf (vis-
ited on 08/16/2020).

[73] Jiaxu Ning et al. “A Computer-Aided Detection System for the Detection of Lung
Nodules Based on 3D-ResNet”. In: Applied Sciences 9 (Dec. 2019), p. 5544. DOI:
10.3390/app9245544.

[74] Ross Gruetzemacher, Ashish Gupta, and David B. Paradice. “3D deep learning
for detecting pulmonary nodules in CT scans”. In: Journal of the American Medical
Informatics Association 25 (2018), 1301–1310.

[75] Qi Dou et al. Automated Pulmonary Nodule Detection via 3D ConvNets with On-
line Sample Filtering and Hybrid-Loss Residual Learning. 2017. arXiv: 1708.03867
[cs.CV].

[76] Gao Huang et al. Densely Connected Convolutional Networks. 2016. arXiv: 1608.
06993 [cs.CV].

[77] Fangzhou Liao et al. “Evaluate the Malignancy of Pulmonary Nodules Using
the 3-D Deep Leaky Noisy-OR Network”. In: IEEE Transactions on Neural Net-
works and Learning Systems 30.11 (Nov. 2019), 3484–3495. ISSN: 2162-2388. DOI:
10.1109/tnnls.2019.2892409. URL: http://dx.doi.org/10.1109/
TNNLS.2019.2892409.

[78] Wenkai Huang, Yihao Xue, and Yu Wu. “A CAD system for pulmonary nodule
prediction based on deep three-dimensional convolutional neural networks and
ensemble learning”. In: PLOS ONE 14.7 (July 2019). DOI: 10.1371/journal.
pone.0219369.

[79] Daniel Hammack. “Forecasting Lung Cancer Diagnoses with Deep Learning”.
Data Science Bowl 2017 Technical report. Apr. 2017.

[80] Julian de Wit. 2nd place solution for the 2017 national datascience bowl. http://
juliandewit.github.io/kaggle-ndsb2017/. (Visited on 08/16/2020).

[81] Du Tran et al. Learning Spatiotemporal Features with 3D Convolutional Networks.
2014. arXiv: 1412.0767 [cs.CV].

[82] Ning Zhang et al. 3D Aggregated Faster R-CNN for General Lesion Detection. 2020.
arXiv: 2001.11071 [cs.CV].

https://arxiv.org/abs/1706.04303
https://grand-challenge-public.s3.amazonaws.com/f/challenge/71/101b150c-88c5-4f9d-a374-d8d3fc166aff/20171222_073722_JianpeiCAD_NDET.pdf
https://grand-challenge-public.s3.amazonaws.com/f/challenge/71/101b150c-88c5-4f9d-a374-d8d3fc166aff/20171222_073722_JianpeiCAD_NDET.pdf
https://grand-challenge-public.s3.amazonaws.com/f/challenge/71/101b150c-88c5-4f9d-a374-d8d3fc166aff/20171222_073722_JianpeiCAD_NDET.pdf
https://doi.org/10.3390/app9245544
https://arxiv.org/abs/1708.03867
https://arxiv.org/abs/1708.03867
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://doi.org/10.1109/tnnls.2019.2892409
http://dx.doi.org/10.1109/TNNLS.2019.2892409
http://dx.doi.org/10.1109/TNNLS.2019.2892409
https://doi.org/10.1371/journal.pone.0219369
https://doi.org/10.1371/journal.pone.0219369
http://juliandewit.github.io/kaggle-ndsb2017/
http://juliandewit.github.io/kaggle-ndsb2017/
https://arxiv.org/abs/1412.0767
https://arxiv.org/abs/2001.11071

Literature 82

[83] Junjie Zhang et al. “NODULe: Combining constrained multi-scale LoG filters
with densely dilated 3D deep convolutional neural network for pulmonary nod-
ule detection”. In: Neurocomputing 317 (2018), pp. 159 –167. ISSN: 0925-2312. DOI:
https://doi.org/10.1016/j.neucom.2018.08.022. URL: http://
www.sciencedirect.com/science/article/pii/S0925231218309378.

[84] Fisher Yu and Vladlen Koltun. Multi-Scale Context Aggregation by Dilated Convo-
lutions. 2015. arXiv: 1511.07122 [cs.CV].

[85] Ali Tianchi dataset. https://tianchi.aliyun.com/competition/entrance/
231601/information. (Visited on 09/15/2020).

[86] Jason Brownlee. Best Practices for Preparing and Augmenting Image Data for CNNs.
https : / / machinelearningmastery . com / best - practices - for -
preparing - and - augmenting - image - data - for - convolutional -
neural-networks/. (Visited on 08/20/2020).

[87] Tami D. DenOtter and Johanna Schubert. Hounsfield Unit information sheet. https:
//www.ncbi.nlm.nih.gov/books/NBK547721/. (Visited on 09/20/2020).

[88] Tutorial on Data Augmentation with Tensorflow. https://www.tensorflow.
org/tutorials/images/data_augmentation. (Visited on 09/20/2020).

[89] Lei Mao. Bounding Box Encoding and Decoding in Object Detection. https://
towardsdatascience.com/review-fpn-feature-pyramid-network-
object-detection-262fc7482610. (Visited on 09/21/2020).

[90] Discussion Thread on Variances in the Priorbox Layer. https://github.com/
weiliu89/caffe/issues/155. (Visited on 09/21/2020).

[91] P. Ferrari. Keras SSD v0.9.0. https://github.com/pierluigiferrari/
ssd_keras. 2018.

[92] Tensorflow documentation of the ReduceLROnPlateau callback. https://www.tensorflow.
org/api_docs/python/tf/keras/callbacks/ReduceLROnPlateau.
(Visited on 09/21/2020).

[93] François Chollet et al. Keras. https://keras.io. 2015.

[94] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. 2015. URL: https://www.
tensorflow.org/.

[95] Tensorflow documentation of the Callback class. https://www.tensorflow.
org/api_docs/python/tf/keras/callbacks/Callback. (Visited on
09/27/2020).

[96] GitLab repository of the introduced framework. https://gitlab2.informatik.
uni-wuerzburg.de/ext702819/lungnoduledetection. (Visited on 09/27/2020).

[97] Train/Validation Ranking of the LNDb grand challenge 2019/20. https://lndb.
grand-challenge.org/TrainValidationRanking/. (Visited on 09/21/2020).

https://doi.org/https://doi.org/10.1016/j.neucom.2018.08.022
http://www.sciencedirect.com/science/article/pii/S0925231218309378
http://www.sciencedirect.com/science/article/pii/S0925231218309378
https://arxiv.org/abs/1511.07122
https://tianchi.aliyun.com/competition/entrance/231601/information
https://tianchi.aliyun.com/competition/entrance/231601/information
https://machinelearningmastery.com/best-practices-for-preparing-and-augmenting-image-data-for-convolutional-neural-networks/
https://machinelearningmastery.com/best-practices-for-preparing-and-augmenting-image-data-for-convolutional-neural-networks/
https://machinelearningmastery.com/best-practices-for-preparing-and-augmenting-image-data-for-convolutional-neural-networks/
https://www.ncbi.nlm.nih.gov/books/NBK547721/
https://www.ncbi.nlm.nih.gov/books/NBK547721/
https://www.tensorflow.org/tutorials/images/data_augmentation
https://www.tensorflow.org/tutorials/images/data_augmentation
https://towardsdatascience.com/review-fpn-feature-pyramid-network-object-detection-262fc7482610
https://towardsdatascience.com/review-fpn-feature-pyramid-network-object-detection-262fc7482610
https://towardsdatascience.com/review-fpn-feature-pyramid-network-object-detection-262fc7482610
https://github.com/weiliu89/caffe/issues/155
https://github.com/weiliu89/caffe/issues/155
https://github.com/pierluigiferrari/ssd_keras
https://github.com/pierluigiferrari/ssd_keras
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ReduceLROnPlateau
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ReduceLROnPlateau
https://keras.io
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/Callback
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/Callback
https://gitlab2.informatik.uni-wuerzburg.de/ext702819/lungnoduledetection
https://gitlab2.informatik.uni-wuerzburg.de/ext702819/lungnoduledetection
https://lndb.grand-challenge.org/TrainValidationRanking/
https://lndb.grand-challenge.org/TrainValidationRanking/

Literature 83

[98] Test Ranking of the LNDb grand challenge 2019/20. https://lndb.grand-
challenge.org/TestRanking/. (Visited on 09/21/2020).

[99] Tsung-Yi Lin et al. Focal Loss for Dense Object Detection. 2017. arXiv: 1708.02002
[cs.CV].

[100] Navaneeth Bodla et al. Soft-NMS – Improving Object Detection With One Line of
Code. 2017. arXiv: 1704.04503 [cs.CV].

https://lndb.grand-challenge.org/TestRanking/
https://lndb.grand-challenge.org/TestRanking/
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1704.04503

Eidesstattliche Erklärung

Ich versichere, die von mir vorgelegte Arbeit selbstständig verfasst zu haben. Alle Stellen,
die wörtlich oder sinngemäß aus veröffentlichten oder nicht veröffentlichten Arbeiten
anderer entnommen sind, habe ich als entnommen kenntlich gemacht. Sämtliche Quellen
und Hilfsmittel, die ich für die Arbeit benutzt habe, sind angegeben. Die Arbeit hat
mit gleichem Inhalt bzw. in wesentlichen Teilen noch keiner anderen Prüfungsbehörde
vorgelegen.

Unterschrift : Ort,Datum :

	List of Symbols
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and goals
	1.2 Outline

	2 Theoretical Framework
	2.1 Neurons and Neural Networks
	2.1.1 The Neuron
	2.1.1.1 Activation Functions

	2.1.2 Combining Neurons to a Network
	2.1.3 Training a Neural Network
	2.1.3.1 Cost Functions
	2.1.3.2 Error Surface
	2.1.3.3 Backpropagation
	2.1.3.4 Optimization Approaches

	2.1.4 Hyperparameters
	2.1.5 Overfitting

	2.2 Convolutional Neural Networks
	2.2.1 The Convolution Operation
	2.2.2 The Convolutional Layer
	2.2.3 The Pooling Layer
	2.2.4 Flattening
	2.2.5 Feature Extraction

	2.3 Object Detection and Recognition
	2.3.1 Loss Functions
	2.3.1.1 Classification Loss
	2.3.1.2 Localization Loss

	2.3.2 Single-Stage Detection Models
	2.3.3 Two-Stage Detection Models
	2.3.4 Confidence Thresholding and Non-Maximum Suppression
	2.3.5 U-Net
	2.3.6 Feature Pyramid Networks (FPN)
	2.3.7 Object Detection in Two and Three Dimensions

	2.4 Evaluation metrics
	2.4.1 Confusion Matrix
	2.4.2 Precision, Sensitivity/Recall, Specificity
	2.4.3 Receiver Operating Characteristic
	2.4.4 Free-response Receiver Operating Characteristics (FROC)

	3 Related Work and State of the Art
	3.1 Datasets
	3.1.1 NLST
	3.1.2 Anode09
	3.1.3 Spie-AAPM-NCI LungX
	3.1.4 LIDC-IDRI
	3.1.5 LUNA
	3.1.6 LNDb

	3.2 Recent Challenges
	3.3 Related Work

	4 Training Methods
	4.1 Dataset
	4.1.1 Annotations
	4.1.2 Preprocessing
	4.1.3 Data Augmentation

	4.2 Network Architecture
	4.3 Training
	4.4 Inference and Postprocessing
	4.5 The Framework

	5 Results and Discussion
	6 Conclusion
	Literature
	Eidesstattliche Erklärung

