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Abstract
Many algorithms that were developed for solving three-dimensional bin packing problems use generic data for either
experiments or evaluation. However, none of these datasets became accepted for benchmarking 3D bin packing algorithms
throughout the community. To close this gap, this paper presents the benchmarking dataset for robotic bin packing
problems (BED-BPP), which is based on realistic data. We show the variety of the dataset by elaborating an n-gram
analysis. Besides, we propose an evaluation function, which contains a stability check that uses rigid body simulation. We
demonstrated the application of our dataset on four different approaches, which we integrated in our software environment.
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1. Introduction

Three-dimensional bin packing problems (3D-BPPs) are a
research area with an industrial application in warehouse
logistics. One task in warehouse logistics is to stack a set of
cartons onto a pallet in an optimal way (see Figure 1).
Depending on the use case, optimality is defined as mini-
mizing the utilized space of the packed items while ensuring
that the pile does not collapse.

Since 3D-BPP is NP-hard (Martello et al., 2000), many
scientists conduct research on variants of this problem (Hu
et al., 2017; Zhao et al., 2021). In its variant online three-
dimensional bin packing (O3DBP), which is interpreted as a
three-dimensional version of the video game Tetris, a fixed
sequence of items has to be placed in a bin. While we focus
on online variants, in contrast, there is also offline 3D bin
packing, where the sequence is not fixed, that is, one orders
the items arbitrarily.

Due to the problem complexity, especially, heuristics or
approximation methods were developed that tackle the
problem. Since neural networks showed impressive results
in solving complex problems (Mnih et al., 2015; Silver
et al., 2016), deep reinforcement learning was soon applied
to solve 3D-BPPs (Hu et al., 2017).

In order to compare the performance of different algo-
rithms, benchmark datasets were provided not only for
machine learning (Deng et al., 2009; Lin et al., 2014) but
also for research in robotics (Kümmerle et al., 2009; Geiger
et al., 2013; Leung et al., 2017). However, to our knowl-
edge, a benchmarking dataset for three-dimensional bin
packing problems is missing.

To this end, we present a novel dataset that is used to
evaluate the performance of developed solvers for different
variants of the three-dimensional bin packing problem (cf.
Figure 4). We demonstrate our dataset’s scope of application
on three variants of 3D-BPP. Another novelty of our data is
that it only contains realistic data of boxes with grocery items
in it. Besides the article id, the dimensions, and the weight of
an item, we also provide a product group this item belongs.
For this reason, our data is also applicable to problems with
stacking constraints that are based on article information.

In order to meet our demands to provide a bench-
marking dataset, we operate an evaluation website on
https://floriankagerer.github.io/leaderboard/that stores the
current benchmark, that is, the algorithm that has the
highest rating. Furthermore, with the release of our de-
velopment environment, which is based on the standard
API gym for reinforcement learning, we intend to revive a
virtual manufacturing automation competition.
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2. Related work

Research on three-dimensional bin packing focuses mainly
on the development of solvers. Even though benchmarking
data is missing, some contributions overcame this issue by
providing instance generators. These instances are in-
terpreted as problem configuration, that is, they define a set
of items that have to be packed in a particular target.
Martello et al. (2000) generated instances based on nine
classes that differ in the target bin size and in the range from
which the item sizes are sampled. On the one hand, sam-
pling the item dimension from a range increases the variety
of the items with respect to the size. On the other hand, if the
upper bound of the range is close to the bin dimensions, the
instance complexity decreases, since the items per instance
decrease.

In contrast, the variety of different item sizes in our
dataset may be less than in Martello et al. (2000). However,
the variety in our dataset depends not only on the item size
but also on the different articles and their sequential ar-
rangement. In addition, our instances contain 43 items in
average, which we believe makes our instances quite
challenging.

With the aim of creating realistic instances, Elhedhli et al.
(2019) derived the distribution of the item characteristics from
industry data. Thus, instance complexity increased and the use
of the generator, whichwas presented in Elhedhli et al. (2019),
improved the applicability to industrial applications. To fur-
ther close the gap to reality, we enrich item characteristics in
BED-BPP with article information, which consequently ex-
tends our dataset’s scope of application to problems with
stacking constraints that depend on article information.

Designed for the evaluation of their deep reinforcement
learning approach, Zhao et al. (2021) generated 2000 se-
quences each, for three different strategies. Due to the
determination of the target bin size and network architecture
in that publication, the authors had a set of 64 items they
sampled from. That dataset was reused for evaluating the
developed approach in Zhao et al. (2022) and Puche and Lee
(2022), where the latter were missing a standardized

benchmark to compare different algorithms for variants of
the 3D bin packing problem.

We postulate that our dataset is challenging enough and
hence has the potential to become accepted for standardized
benchmarking. We believe that when using our data, one
sees how algorithms would perform in non-laboratory
conditions.

3. Data processing

The benchmarking dataset BED-BPP, which is described in
this paper, can be downloaded from https://floriankagerer.
github.io/dataset/as JSON file. It consists of orders, that is,
instances, that are used for solving three-dimensional bin
packing problems. This section describes how we collected
orders for this dataset, the format and the use of the data, and
the way packing results are evaluated.

3.1. Procedure

In general, we divide the generation of the benchmarking
dataset into three steps: on the basis of archival orders, we
(1) prepare the item master data, (2) extract relevant orders
for the dataset, and (3) analyze the selected orders. Our
data is based on different profiles of companies in the
grocery sector.

The main effort of the first step was the removal of non-
essential information. This included that we made the
article data anonymous, for example, we removed the
manufacturer name. For each given article, we tried to find
generic terms, for example, different types of bread were
summarized as bread. Then, we gathered these items in
product groups, for example, bread belongs to the group
bakery products. This information is useful for applica-
tions in industry whenever product groups have to be
separated on different targets. Finally, we set the units of
length, width, and height to millimeters and the unit of
weight to kilogram.

Since the underlying data was a collection of orders that
had been made in the past, we had to identify suitable ones.
For this reason, we defined two commonly used targets for
our bin packing tasks: (1) a Euro-pallet with a base area of
1200 mm × 800 mm and (2) a rollcontainer with a base area
of 800 mm × 700 mm. With these definitions, we describe
the volume of an order as average height with respect to a
target’s base area.

In addition to the extent of an order, we also took the
amount of different item footprints, that is, base areas, into
account. To represent size tolerances like in reality, we used
the item’s side lengths in 2 cm steps for determining its
footprint. Consequently, we obtained orders by using the
following three filter criteria: (a) The target is a Euro-pallet
with at least five different item footprints and an average
height of [150 cm, 190 cm]. (b) The target is a Euro-pallet
but with at least nine different item footprints and an average
height of [120 cm, 150 cm). (c) The target is a rollcontainer

Figure 1. Robot test setup for online 3D bin packing.
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with at least five different item footprints and an average
height of [150 cm, 180 cm].

Finally, we evaluated the selected orders. Table 1
summarizes the characteristics of the dataset. Besides sta-
tistical characteristics, an n-gram analysis was performed
that shows a variety of our orders (Cavnar and Trenkle,
1994). Since we designed the dataset especially for online
three-dimensional bin packing, for all orders we searched
the longest item subsequence that occurs in one another, that
is, the biggest n.

For this reason, the n-gram of an order was composed
of substrings, where each substring contains the di-
mensions of an item. Similarly like determining the
footprints above, we used a size tolerance of 2 cm, which
means that we rounded the dimensions to a multiple of
20 mm. As a result, the description of an item’s size in
centimeters reduced not only the computing time but also
gave a lower bound of the dataset’s variety. Note that
algorithms must take the size tolerances and the accuracy
of the palletizing system into consideration to avoid box
collisions.

The strings of the items are separated with a blank space.
For example, the string “341828 281836” represents the
sequence of items with sizes (a) 340 mm × 180 mm ×
280 mm and (b) 280 mm × 180 mm × 360 mm.

A key result of the n-gram analysis on our dataset is that
the longest item subsequence of an order that occurs
identically in at least one other order is eight on average.
This circumstance is explained by the fact that in our real-
life data, in many cases not only one item is ordered per
article but also in a bigger amount.

3.2. Structure

On the basis of Figure 2, we use the terminology of Python
to describe our data. After parsing the JSON file in Python, a
dictionary is obtained. The keys in the dictionary are unique
order identification strings, and the values contain the
corresponding order. The order itself is a dictionary with the
keys “item_sequence” and “properties.”

An element in the item sequence represents an object
that has to be packed. It is defined by its dimensions, its
weight, an article name with the product group it belongs,
an id, and the position in the sequence. Besides the packing
target, the properties contain additional information about
an order.

3.3. Evaluation of packing plans

For a standardized evaluation of the results, we define the
structure as in Figure 3(a) and denote the output of a solver
as packing plan. Similar to the structure of BED-BPP, a
packing plan is a dictionary with the unique order identi-
fication strings as keys and its values are interpreted as
packing lists. The latter are composed of actions, which are
defined by (a) the placed item, (b) its orientation, and (c) its
front-left-bottom (FLB) coordinate.

We define the coordinate system on a target as depicted
in Figure 3(b). In general, the origin of the coordinate
system is in a corner on the top of the target. The x- and
y-axes are parallel to the longer and shorter edge of the
target, respectively. Therefore, the FLB corner of an item is
always the corner that is closest to the origin of the coor-
dinate system.

Another assumption we made is that the longer edge of
an item with orientation 0 is parallel to the longer edge of
the target. In contrast, a value one of the orientation means
that the item is rotated by 90°.

3.3.1. Key performance indicators (KPIs). For the purpose
of evaluation, we consider the amount of unpalletized items
per packing list nu, the volume utilization ηutil, the maxi-
mum stacking height on the target hn in meters, the mean of
the support areas of all items on a target Asupp, the inter-
locking ratio rinterl, and the physical stability of a pile that is
created with the actions of a packing list.

We define the volume utilization ηutil as the ratio of the
sum of the volume of all items on a target divided by the
volume of the circumscribed cuboid (cf. Figure 3(c)). The
value of this dimensionless indicator is in (0, 1] and
measures which percentage of the volume is filled with
items.

When we speak about the support area of an item, we
mean the ratio of the item’s base area in which the item has
direct support with a surface below. Thus, items that are
directly placed on the target have a support area of one and
Asupp 2 ð0; 1�.

For determining the interlocking ratio rinterl, we only
consider items without direct target contact. If all items
touch the target, we set the value to NaN. Otherwise, rinterl is
the quotient of the amount of items that are placed on either
a single item with different orientation or more than one
item regardless of the orientation, divided by the amount of

Table 1. Characteristics of BED-BPP.

Property Value (mean ± standard deviation)

Length 10 003 orders
Different articles 2621 articles
Different item sizes 974 sizes
Items per order 43 items ± 14 items
Length of longest n-gram 8 items ± 3 items
Different item sizes per order 22 sizes ± 8 sizes
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items on the target. This indicator is dimensionless and has
values in [0, 1].

In order to simplify the definition of metrics, we sum-
marize the KPIs in xkpi 2R

6 with

xkpi : ¼
�
nu
.
N , ηutil, hn,Asupp, rinterl, 1stable

�T

(1)

where N is the total amount of items in an order and 1stable
is the indicator function that decides whether a pile is
stable.

3.3.2. Stability check. The decision whether a pile that is
defined by a packing list is stable is based on a rigid body
simulation. For this, we use the physics engine of

Blender,1 which is an open source 3D creation suite, and
create a scene.

Since this simulation is resource intensive, we decided to
check for stability after all items are placed. According to
the packing list, we assert an item’s geometry and mass to a
cuboid object, move it to the determined coordinates, ac-
tivate the rigid body property, and set the friction value
to 0.5.2

Then, the simulation runs for 240 frames, which rep-
resent 10 s. If for any item the deviation of final to initial
position exceeds a predefined threshold, the stability check
fails and the indicator function 1stable returns 0. Otherwise,
the check is successful and 1stable ¼ 1. Figure 3(d) visualizes
two frames of a stability check.

3.3.3. Metrics. To make the results of two packing lists that
belong to the same order comparable, we define scores. Due
to the definition of the KPI vector (1), we easily obtain
weighted score (2) by multiplying xkpi with a weight vector
w2R

6, which reads as follows

scw : ¼ ðw1,w2,w3,w4,w5,w6Þxkpi (2)

For the special choice of w = (�1, 1, H�1, 1, 1, 1), we
obtain the dimensionless KPI score (3)

sc1 : ¼ �nu
N

þ ηutil þ
hn
H

þ Asupp þ rinterl þ 1stable (3)

where H > 0 is a suitable, maximum palletizing height in
meters that limits the ratio hn/H by 1. Consequently, al-
gorithms should aim to maximize score (3) of a
packing list.

The previously defined scores describe how well
items are placed on a target. For a future, virtual pal-
letizing competition, we require an evaluation proce-
dure for algorithms. We are interested to develop an
algorithm that performs well on a wide range of orders,
that is, produces a big amount of stable packing lists
with high scores. To this end, we introduce our rating
scheme.

Figure 2. Example of the format of an order within the dataset.

Figure 3. Depictions that support the understanding of the evaluation of packing plans. (a) Example of structure of a packing plan, (b)
definition of coordinate system on a target and FLB corner of an item, (c) detailed front view of upper part of a target: ηutil records how
much air is included within a packing plan (shaded area), and (d) start and end frames of a stability check in Blender with 1stable ¼ 0.
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3.3.4. Benchmark score of an algorithm. Finally, to
compare different methods, we rate an algorithm based
on its packing plan evaluation results. Since it is a non-
trivial task to get a meaningful score by setting ap-
propriate weights in (2), we rate an algorithm by
summing up the percentage of stable palletized items per
packing list within a certain height level and denote the
value as Σalgo.

In other words, for each list in the packing plan we (a)
check whether the resulting pile is stable. (b) If it is
stable, we count the amount of items ~nu that are un-
palletized and add the amount of items whose top ex-
ceeds a pile height of 2 m. If the stability check fails, ~nu
equals the amount of items of the order the packing list
belongs to. (c) Finally, we sum up the ratio of the amount
of palletized items related to the amount of items in BED-
BPP, denoted as NBED�BPP. The resulting score is
1stableð1� ~nu=NBED�BPPÞ.

4. Experiments with BED-BPP

With regard to previous virtual manufacturing automa-
tion competitions, this section describes experiments,
which we think are worth investigating. In addition to the
dataset, we share our Python environment on https://
github.com/floriankagerer/bed-bpp-env, which we used
to develop algorithms and to conduct the suggested
experiments.

4.1. Tasks for experiments

In Figure 4, four variants of O3DBP are visualized, for
which we propose to use our data. Due to the fact that three-
dimensional bin packing is NP-hard, it is difficult to develop
algorithms that provide optimal results. To improve the
performance of “online” algorithms, one adds additional
information to the solver, for example, the size of upcoming
items. But one should be aware that adding more and more
information about upcoming items means that the solver
tends to be an “offline” solver.

4.1.1. Online 3D bin packing with preview and
selection. Since this task provides most information for a
solver, we expect that the results of this variant surpass those

of other online tasks. Online 3D bin packing with preview p
and selection s (O3DBP-p-s) is interpreted as follows: The
picking robot selects one out of s items that is packed next.
In its decision, it takes into account its knowledge about the
upcoming p items and thus improves the outcome of the
decision.

In general, p, s2N : p ≥ s holds. For our experiments,
we define that p 2 [2, 5] and s 2 [2, p]. Note that for
having preview and selection, that is, to select the next
item from a pool of items and still have a preview, p > s
must hold.

4.1.2. Online 3D bin packing with selection. The special
case where p = s is named online 3D bin packing with
selection. This task represents the situation in which a
picking robot knows the next s items and selects one for
palletization.

Since it knows the upcoming s items, but not any further
items, the value of the preview p is identical to the amount of
the items to select. With the previously defined upper bound
of s for our experiments, we get s 2 [2, 5].

4.1.3. Online 3D bin packing with preview. When only one
item is selectable for the next placement, but information
about p upcoming items is known, we speak about online
3D bin packing with preview (O3DBP-p).

This task represents the scenario, where the picking robot
takes only the next item but knows the upcoming p items
when taking the current item. Based on the limits mentioned
above, the value of p 2 [2, 5].

4.1.4. Online 3D bin packing. In contrast to O3DBP-p-s, in
online 3D bin packing algorithms neither have an item
preview nor a possibility to select the next item. They must
place the item that is obtained. Since in this case, the solver
obtains little information, we believe that this is the most
challenging task.

The previously presented experiments all have an appli-
cation in industry. Although offline 3D bin packing algorithms
are the state-of-the-art in warehouse logistics, they come with
the disadvantage that the pre-calculated item sequence has to
be guaranteed in order execution, which leads to performance
losses in the automated storage and retrieval systems of
modern warehouses. The use of online solvers (O3DBP)
overcomes this disadvantage but typically results in worse
packing densities. A way to overcome this disadvantage is to
increase the information an algorithm obtains (O3DBP-p-s and
O3DBP-p). Each of these tasks is feasible in industrial
applications due to the structure of a warehouse.

5. Applications of dataset

In order to show the scope of applicability, we present
four approaches that address different tasks and use the
benchmarking dataset. For details on the im-
plementation, we refer to the previously mentioned

Figure 4. Variants of the three-dimensional bin packing problem.
Green cuboids are selectable for the next palletizing step, for the
yellow ones only the item information is known, and red objects
are completely unknown.

Kagerer et al. 5

https://github.com/floriankagerer/bed-bpp-env
https://github.com/floriankagerer/bed-bpp-env


repository. The main effort in the integration of the
software was the conversion of the data. The results are
summarized in Table 2.

5.1. Online 3D bin packing

To demonstrate the task O3DBP, we selected the novel
approach of Zhao et al. (2022). The authors introduced a
packing configuration tree to represent the state and action
space of packing and developed a deep reinforcement
learning model.

We used the default parameters to train two Online-
3D-BPP-PCT3 solvers, one for Euro-pallets as target and
one for rollcontainers as target. Furthermore, we changed
the data that is used to train the solvers such that it
matches with the item sizes in the benchmarking dataset.

In Figure 5(a), we visualized the pile that results
of the packing list of Online-3D-BPP-PCT for the or-
der “00100408”. The KPIs for this packing list were
xkpi = (0, 0.614, 2.105, 0.814, 0.458, 1). This algorithm was
able to create 28.661% stable piles for BED-BPP, which led
to a final score of 0.197204.

5.2. Online 3D bin packing: Preview
and selection

We set preview p = 3 and selection s = 2, hence, we de-
veloped a heuristic for O3DBP-3-2. Besides the item ori-
entation and the item position, derived from corner points,
cf. Martello et al. (2000), in this task the heuristic has to
decide which item to palletize next. To determine the next
action, the heuristic uses information about the upcoming
items, that is, it virtually places all known items one after
another. After placing, the heuristic only investigates the
25 actions with the highest ratings as starting point for the
next placing.

The rating of a single action is a weighted sum of
values of the (i) estimated support area, (ii) normalized
estimated height in this location, (iii) item orientation, and
(iv) normalized distance to origin in R

3. Since the

heuristic aims to maximize the score of an action, the used
weights are (i) 1.3, (ii) �2.0, (iii) �1.00001, and
(iv) �1.2. Finally, the heuristic chooses the next action
that virtually leads to the combination with the highest
sum of action ratings. For implementation details, see
https://github.com/floriankagerer/bed-bpp-env

Figure 5(b) depicts the resulting pile for order
“00100408” of our heuristic. The KPIs had the value xkpi =
(0, 0.443, 2.925, 0.959, 0.261, 1). Our heuristic was able to
create 6.418% stable piles for the orders in the dataset,
which led to a final score of 0.020356.

5.3. Offline 3D bin packing

Even though we proposed to use BED-BPP for variants of
O3DBP, it is applicable to offline three-dimensional bin
packing problems as well. To demonstrate this, we in-
tegrated the solver sisyphus4 that won the IEEE ICRA
Virtual Manufacturing Automation Competition
(VMAC) in 2012 (Demisse et al., 2012). This approach
tries to build layers out of articles with the same height.
Whenever it is impossible to group enough items for a
layer, they are placed in the center on the top of the target
(see Figure 5(c)). The actions of sisyphus accomplished
the KPIs xkpi = (0, 0.385, 3.360, 0.893, 0.545, 1) for
order “00100408”. This algorithm was able to create
94.212% stable piles for BED-BPP, which led to a final
score of 0.724553.

Furthermore, we integrated the heuristic solver xflp5

that was developed for real-world container-loading
problems in 3D and was inspired by Martello et al.
(2000); de Castro Silva et al. (2003); and Crainic et al.
(2012). We configured the solver for single-bin packing
with rotation of items. We slightly had to change the
sequence of the items this algorithm produced. In order to
be able to pack the items in reality, we sorted the items
ascending with respect to the z-coordinate of the FLB
corner. The pile of the packing list that is visualized in
Figure 5(d) had the KPIs xkpi = (0, 0.648, 1.995, 0.822,
0.087, 0). This algorithm was able to create 2.669% stable

Table 2. Results of algorithms on BED-BPP.

Algorithm Σalgo

KPIs for “00100408”

nu/N ηutil hn Asupp rinterl 1stable

Online-3D-BPP-PCT 0.197204 0 0.614 2.105 0.814 0.458 1
heuristic O3DBP-3-2 0.020356 0 0.443 2.915 0.959 0.261 1
sisyphus 0.724553 0 0.385 3.360 0.893 0.545 1
xflp 0.010930 0 0.648 1.995 0.822 0.087 0
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packing plans for BED-BPP, which led to a final score of
0.010930.

6. Conclusion

In this paper, we presented BED-BPP, a novel dataset for
three-dimensional bin packing that contains beside item
sizes also article information and information about the
packing target. Thereby, the orders were not randomly
sampled but extracted from real industry data of grocery
companies. To determine the variety of the dataset, we
developed an n-gram analysis on the item sequence and
compared the results of all orders.

We demonstrated that our dataset is usable for
benchmarking different algorithms, not only for offline
three-dimensional bin packing but also for online var-
iants of 3D bin packing.

In future work, we would like to extend BED-BPP:
include data from other industry sectors and incorporate
stacking rules that depend on item information. Further-
more, to close the gap between simulation and reality, the
stability check needs to incorporate the placement by a robot
and continuously check for stability. Regarding palletizing
algorithms, we think that machine learning approaches have
the potential to provide good results for online 3D bin
packing. Our next step is to develop such an algorithm that
satisfies the requirements for industrial use.
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