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Abstract— This publication describes an application of a
Truncated Signed Distance Mapping approach for disaster
intervention in underground mine shafts through geometrical
change detection of the shaft walls. The paper describes two
main problems of such an approach (aligning two potentially
huge point clouds and automatic change detection by comparing
the reconstructed volumes) and explains in detail the proposed
solution.
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I. INTRODUCTION

This Paper is an extention of already published work [1].

Underground mining is a lucrative, but dangerous business.

With the increasing demand of raw substances, the number of

mines world wide is rising steadily. Underground mine shafts

are difficult to maintain and detecting potentially dangerous

changes in the shaft conditions is complicated. Currently, the

general approach is to send in human workers to inspect the

shaft walls. In the vertical shafts, the men are placed on the

pit cage and travel slowly down and up the shaft.

On the one hand, it is an inefficient waste of human work

force, on the other hand, it is dangerous. The number of

injuries in the mining business is rising with the number

of mines world wide. Saving life is one very important

aspect of automating the surveillance process. Another one,

is efficiency. With increasing demand, production needs to

be increased or at least be more efficient.

By replacing the human workers through an automated

system, efficiency is increased. On one hand, human work-

ers are way more expensive than machines, on the other,

an automated system does not need breaks or vacation.

Whenever the production is suspended, the system can do

a measurement run, wherefore unexpected down times in

the production can be used to check the shafts for cracks or

similar.

II. RELATED WORK

The base of the proposed approach is the well known

Truncated Signed Distance (TSD) 3D representation. The

approach was first introduced by Curless and Levoy [2].

Later, an accelerated version (KinectFusion) using one of

the first consumer 3D sensors, the Microsoft Kinect camera,

was published by Izadi et. al. [3] and Newcombe et. al. [4].
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More applications using the TSD followed, i. e. Bleier et. al.

[5].

Previously published work [6] ported the KinectFusion

approach from a Graphic Processing Unit (GPU) based

algorithm to a more energy efficient Central Processing Unit

(CPU) algorithm.

Another problem which has been addressed in this paper

is the memory consumption. A pure Voxel based approach

allocates storage for the complete volume. Since most of the

Voxel contain only free space, this memory is wasted. By

dividing the room in partitions and allocating only space for

non empty ones, only the necessary memory is allocated.

Another detail of the approach are the sensor models. In

such a model, the physical properties of the input sensor is

stored in mathematical methods. It also contains the pose

from which the data was recorded and the actual data. With

this approach, it is possible to fuse multiple sensor inputs

even though the devices differ, into one map.

By removing a dimension, a 2D multi SLAM was created

which is already published as an open source Robot Oper-

ating System (ROS) package and used within the RoboCup

Rescue community ( [7], [8]). This approach was used by

Nüchter et. al. to localize a back pack based 3D SLAM

system [9].

Many approaches on change detection are based on

Gromov-Hausdorff distances e.g. ( [10] [11]). The approach

presented in this paper describes a different way to compare

pointclouds. The dense TSD based representation is devided

in slices and can be converted into 2d images and be

compared step by step using basic image operations.

III. SENSOR MODELS

The EU-funded project iDeepMon aimed at developing an

inspection tool for vertical mine shafts. The system has been

designed particularly for shafts, which contain a lift. The

iDeepMon sensor system contains eight cameras to generate

a panoramic view of the shaft while the lift moves up or down

(scheme is shown in fig. 1). The idea behind this system is,

to build a tool which can be used easily by trained mine

inspectors to check the shaft for rust, water or other visually

apparent damage. Figure 2b depicts the prototype in a mine

in Sweden.
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Fig. 1. Scheme of the iDeepmon prototype.

IV. DATA SOURCES

This approach was developed in the iDeepMon project.

The german company DMT and the German Aerospace

Center (DLR) have developed a mine shaft inspection tool

called Pilot which uses a stereo camera and an Inertial

Measurement Unit (IMU) to build 3D maps of underground

shafts ( [12]). The iDeepMon prototype contains such a

system to improve the localization.

(a) DMT Pilot
source: www.dmt.de.

(b) iDeepMon proto-
type.

(c) Tiff3D reconstruc-
tion from the iDeep-
Mon prototype.

Fig. 2. Sensors for mineshaft reconstruction.

For inspection purposes and depth map generation, the

prototype has eight overlapping cameras. The pictures are

combined to panoramic images. Stereo images are generated

using a structure from motion approach. Figure 2a shows the

Pilot system, figure 2b shows the iDeepMon prototype in a

working ore mine in Kristineberg, Sweden. Figure 2c shows

a TSD reconstructed partial cloud from the shaft in Sweden.

The project had a quite difficult birth. After a feasibility

study addressing numerous mining companies, the original

sensor model (localization using an Inertial Measurement

Unit (IMU) and odometer, volume reconstruction using two

2D laser scanners mounted below) had to be completely

exchanged with an 8 camera system and localization using

a hand held stereo camera device.

In the iDeepMon project, the Pilot system is integrated

into the camera system to give a more accurate localization.

Unfortunately, it is not possible to get raw data out of the

pilot, because it calculates Simultaneous Localization and

Mapping (SLAM) on the fly and the only output is a map and

point clouds in the world coordinate system. As the sensor

system was newly developed during the project, the pilot

data was the only real data available for most of the project

so the TSD framework needed to be adjusted in order to use

this data. So it is necessary to handle both data sources with

the same priority.

A. Pilot

This setup has been developed with the German Aerospace

Center (DLR) and is normally used to inspect difficult to

access mine shafts, bunkers, ship hulls or similar. The project

itself has been described by Benecke et. al. [12]. Figure 2a

illustrates the device and shows, how to use it.

As already described in previous work ( [6]), the TSD

framework requires a sensor model with a mathematical

description. In order to use it with the framework, a back

projection approach is necessary as well as a Raycast model.

As the pilot uses a stereo camera system, a pinhole camera

model would be applied under normal circumstances. As the

data is in point cloud format, a more generic approach needed

to be found.

Following the original sensor concept (bottom mounted

2D laser scanner with 3D localization), the point cloud is

divided in to slices as it would have been measured by a

downward moving 2D laser scanner. The back projection

approach addresses all Voxel in the representation, it works

as follows.

The input point cloud is sorted into a data array, containing

the slices similar to laser scans. The algorithm therefore has

to calculate a slice index iz and a beam index ib. This tuple
~i = (iz, ib)

T defines where the corresponding point ~pi out

of the input cloud is mapped to. The calculation is straight

forward and depicted in equations 2 and 1, where pz is the

z-coordinate of the corresponding point and s is the number

of slices to calculate. Fig. 4a depicts how one slice of the

array is calculated. The calculated index i is used to sort the

corresponding point ~pi into the array D = {‖~p(iz, ib)‖}.

Finally, the data is pushed into the representation. By

applying equations 2 and 1 to the center of the current voxel,

the corresponding array element i is determined. The signed

distance is calculated using equation 3, with ~ti the current

translation and ~vi the center of the current voxel. Figure 3a

shows a raw point cloud input from the pilot, figure 3b the

corresponding TSD reconstruction.

iz =
pz

s
(1)

ib =
atan2(

py

px)

s
(2)

d(~v) = D(i)− ‖~ti − ~vi‖ (3)

The sensor is completed with a Raycasting approach for

reconstruction. For the cylindrical sensor model, rays are

defined similar to a 2D laser scanner. The rays run in the x-

y-plain. Creating multiple slices along the z-axis completes

the Raycasting model. Figure 3c depicts how the rays are

calculated.
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(a) Pilot input point-
cloud

(b) TSD reconstruction (c) Cylindrical raycast /
reconstruction model

Fig. 3. TSD Reconstruction in the cylindrical model.

B. Tiff3D, iDeepMon prototype

With the finalization of the sensor concept, a data structure

for the recorded images and the estimated depth data was

needed. The Tiff3d format contains color data, depth data as

well as intrinsic and extrinsic data. The iDeepMon prototype

records panoramic images and by estimating stereo features

in images while moving downwards, 3D data is estimated.

As the stereo matching is done for every single camera,

the application the TSD framework is straight forward.

Previous work ( [6]) has already shown the capabilities of the

framework with a pinhole based 3D camera. The application

on the panoramic camera system is straight forward, as

simply eight single instances are pushed one after another

into the volume.

The same approach is applied to the Raycasting recon-

struction. Instead of using a single sensor, the panoramic

reconstruction is generated by repeating the Raycast from

eight different poses and pushing the resulting point data into

one point cloud. Figure 4b visualizes the Raycasting from

one camera, figure 4c shows a panoramic reconstruction out

of a TSD volume.

θ

(a) Raycast model
slice

(b) Raycast model
pinhole camera

(c) Panoramic cam-
era reconstruction

Fig. 4. Raycasting Models

V. ALIGNMENT OF VOLUME RECONSTRUCTIONS

Volumetric change detection is performed, by comparing

the 3D reconstructions of different measurement runs. By

repeating such runs in constant intervals, a change detection

software can detect potentially small volumetric changes.

Such changes can be signs of imminent disaster. In order to

compare two reconstructed volumes, they need to be aligned

first.

Small changes in the starting position and noise on

localization or sensor data causes misalignment between the

volumes which has to be corrected before. Therefore, an

alignment procedure is required, which determines the error

between both data sets. It consists of a Rotation Matrix

R3x3 and a translation vector ~t(x, y, z)T , both combined in

the transformation matrix T4x4.

T =









R00 R01 R02 tx
R10 R11 R12 ty
R20 R21 R22 tz
0 0 0 1









Aligning potentially big point clouds is a difficult and

expensive process, wherefore this publication proposes an

iterative approach, exploiting the benefits of a TSD based

representation. As its dense representation allows high reso-

lution Raycasting, new sensor frames can be matched easily

to an already existing model space.

Therefore, the described approach uses the input data

with its localization for an iterative alignment. One of the

major upsides of a TSD based reconstruction is its dense

data structure, which allows high quality reconstruction via

raycasting. This particular benefit is used to match new data

not against the previous sensor frame but directly against

the map which fuses all aquired measurements using a

weighted average and is therefore virtually drift free. The

main difference to approaches which use only the sensor

input for matching is, that no drifting error is accumulated.

The described approach has already been used in previous

work, a 2D Multi SLAM approach ( [7]), [8]).

In iDeepMon, new sensor frames are tagged with a lo-

calization generated by a sensor system. In the following,

the reference data is called Modelspace (M) and the to be

matched data set Scenespace (S). To correct potential drift

on the pose of the new scene data, it is matched against the

already existing data of the Modelspace using Raycasting

and a scanmatching approach.

The scene data is pushed from the corrected pose into the

Scenespace, generating a drift corrected space which only

contains the potentially dangerous volumetric changes which

the second stage of the algorithm has to detect. Figure 5

shows the undistorted Modelspace, and the Scenespace with

a simulated drift prior to alignment. The data used for this

reconstruction has been provided by the DLR.

In order to align two big point clouds from different

measurement campaigns, a similar approach as in the multi

SLAM is applied. All sensor frames contain the measured

data and a T4x4 transformation matrix:

To generate the modelspace, the data is simply pushed into

a TSD volume. In order to reduce the drifting error, every
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Fig. 5. TSD Shaft reconstructions before the alignment. Reference volume
(left), drift afflicted measurement (right).

new frame is matched against the already generated volume.

An iteration of the alignment process starts with recon-

structing the model data by using a sensor specific ray caster.

This data, the model data M = {~mi | i = 1..nm}, is

generated from the current position ti, stored in the sensor

frame. It contains coordinates ~mi = (xi, yi, zi)
T

. The sensor

also contains the scene data from the measurement D =
{~mi | i = 1..nm}.

The well known Iterative Closest Point (ICP) algorithm

introduced by Zhang and Zhengyou [13] and Chen and

Medioni [14] is used to match M and D against each

other and the resulting transformation matrix T∗ contains

the drifting error. The sensor pose is corrected by applying

T∗ to its pose:

Ti+1 = T
−1
∗

∗Ti (4)

VI. CHANGE DETECTION

The algorithm proposed in this approach exploits the

benefits of the TSD based representation. The TSD-function

can be transformed into a 2D image by coloring the referring

pixel according to the value and sign of the TSD function in

a slice of the representation. While this approach works for

all dimensions, the proposed algorithm uses slices along the

z-axis.

The image is generated by reading by iterating over the

slice Voxel by Voxel and reading the contained TSD value. In

order to depict the sign change, red and blue colors are use.

Red corresponds to negative, blue to positive sings (see figure

6). As the value of the TSD is in a range of ‖[−1.0, 1.0]‖
and the zero transition is the most important to see, the

lowest TSD value corresponds to the brightest color. By

comparing two spaces slice by slice, even small changes can

be detected and localized using methods of image processing

e.g. thresholding.

The so generated difference images are converted back

into a point cloud. To localize the changes, a clustering

Fig. 6. Reconstructed pointcloud with marked change

approach and a principal component analysis implementation

generate bounding boxes. Figure 7a shows z-slice taken from

the Modelspace. Figure 7b shows the corresponding scene

slice with a marked change.

Figure 6 depicts a 3D reconstruction of a TSD space

with marked (dark) change in the point cloud and estimated

bounding box.

(a) Slice of
Modelspace.

(b) Slice of
Scenespace
with marked
damage.

(c) Difference
cloud.

Fig. 7. Slice comparism.

VII. EXPERIMENTS

A. Pilot data

At the current project stage, the DMT pilot is the only

available data source. A measurement run from top to

bottom and back contains a significant drift ((x, y)-axis

approximately 5m ). The TSD volume is able to correct this

drift so the top to bottom measurement run can be compared

to the bottom to top. The main problem of the iDeepMon

project was, that the hardware changed completely after

the feasibility study in the beginning. The point clouds

recorded by the pilot in Reichenzeche was the only available

real data source. The change detection approach requires at

least two data sets, preferable from two different dates. The

measurement with the pilot contained a path downwards and

upwards which contained a significant drift which caused a

misalignment between the point clouds.

In order to test the cylindrical sensor model and the

alignment approach, these two point clouds consisting of

around 122 m shaft length where aligned.
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Fig. 8. TSD volumes before (left) and after alignment (right)

Image 8 shows both reconstructed point clouds before

and after alignment. Image 9 shows the starting point which

contained the most drift aligned in detail. This experiment

showed, that the cylindrical model can be used to reconstruct

a TSD volume from point cloud data. It also depicts, that the

alignment of the spaces is possible with the approach.

B. Simulated Tiff3D data

The DLR provides simulated Tiff3D data. The recon-

structed shaft is twisted and elongated using a simulated

random drift. The threshold for the random data is increased

in every stage of the algorithm to evaluate the capabilities

of the alignment algorithm. The data of the iDeepMon

prototype will be provided in Tiff3D format. As already

mentioned, the only usable data, is simulated from the DLR.

This data has been used in order to test the alignment with a

simulated drift as well as the change detection with simulated

deformation.

Fig. 9. End of shafts before (left) and after alignment (right)

For the alignment, the worst case has been simulated. The

algorithm adds a random value to the rotation around the

z-axis yaw angle and translation. To simulate the worst case,

the error is been added in every iteration with positive values

so with increasing depth, the shaft gets twisted and elongated.

The approach therefore has to compensate this simulated

error. The drift simulation takes a random value from 0 to x

with x being an adjustable parameter.

(a) Corrected
factor 10

(b) Unaligned
factor 10

(c) Corrected
factor 25

(d) Unaligned
factor 25

Fig. 10. Experimental space alignment with increasing simulated drift.

(a) Corrected
factor 50

(b) Unaligned
factor 50

(c) Corrected
factor 75

(d) Unaligned
factor 75

Fig. 11. Experimental space alignment with increasing simulated drift.

The figures 10a, 10b, 11a, 11b, 11c and 11d depict the

experiment. The random drift values are added between a

each panoramic tiff3D sensor frame. Images 12a and 12b

illustrate the currently highest shaft distortion, the approach

can still correct.

C. Change Detection

In order to test the change detection, a partial area in the

simulated Tiff3D data is shifted geometrically. In order to test

the capabilites of the change detection, the size of the area
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(a) Corrected factor 100 (b) Unaligned factor 100

Fig. 12. Experimental space alignment with increasing simulated drift.

is decreased in every step of the experiment. In order to test

this part of the approach, a simulated deformation has been

added to the Tiff3D data. The generated TSD volume was

compared to a damage free reference space and visualized

with a bounding box. This experiment was performed with

the simulated tiff3D data from the DLR.

(a) Size 100 (b) Size 250 (c) Size 500

Fig. 13. Change detection example.

The figures 13a, 13b and 13c show the results of this

experiment. While creating the Scenespace, a part of the

input tiff is pushed back and therefore creates an artificial

hole the algorithm has to detect. The figures show, how the

test decreases the size of the deformation in order to test the

capabilities of the approach.

VIII. CONCLUSION

In this paper, we presented a novel application for a

TSD based 3D reconstruction. By exploiting the special

design features of this representation, we created an appli-

cation which can be used for disaster intervention vertical

mineshafts. We provided experiments which showed the

capabilities of the approach.

However, most experiments have been done with simu-

lated data or the wrong sensor. Therefore, in future work,

the approach has to be tested with data from the iDeepMon

prototype. In order to get more data, new sensor interfaces

will be developed to integrate point data from other existing

shaft measurement systems.
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