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Abstract— The current generation of P2P networks is intended
to provide cost-effective alternatives to the traditional client-
server architecture. The main goal is to store and retrieve data
in a decentralized manner. The challenge in doing so consists in
creating a stable overlay network that allows for fast and efficient
searches. In this paper we consider the Chord P2P algorithm in
this context and analyze its stability and efficiency with stochastic
methods. We present realistic probabilities for a disconnection
and investigate the corresponding scalability.

I. INTRODUCTION

Current peer-to-peer (P2P) networks like gnutella, eMule
and KaZaA are primarily used to share movies, music and
the like [1]. Meanwhile, however, the first business models
based on P2P architectures have emerged. Companies start
to discover the advantages of decentralized P2P networks.
They are no longer dependent on a single central unit nor
do they have to invest in server farms to guarantee the
scalability of their systems. Thanks to a new generation of
structured P2P systems, based on Distributed Hash Tables
(DHTs), distributed storage systems or distributed indexes
become possible. Together with those new systems, however,
new challenges arise as well. The main challenge of a DHT
is to guarantee a consistent global view of the stored data.
However, the stability of P2P overlay networks is strongly
affected by the dynamic behavior of the end user. When
many peers leave simultaneously, the overlay may be split into
several disjoint networks or even collapse entirely. In case of
such an inconsistent overlay state, successful searches can no
longer be guaranteed and it might even not be possible to
reestablish a stable overlay network again. An analysis of the
evolution of such systems can be found in [2] and [3]. In
this paper we concentrate on Chord [4], a DHT based P2P
algorithm, and analyze the way it preserves reachability and
stability of its overlay network. The stability of a Chord-based
P2P system depends on the number of overlay connections a
peer maintains. In contrast to previous studies [4] we show that
the probability to lose the overlay structure of a DHT is not
negligible in all cases. In particular, we present an analytical
expression that can be used to calculate the probability to lose
the routing functionality of a DHT given a certain number of
overlay connections. We are able to evaluate the consequences
of maintaining too many or too few overlay connections in a
running system. The analysis can also be used to compute the
actually necessary number of overlay connections to guarantee
a stable overlay network.

The remainder of this paper is structured as follows. In

Section II we describe the basic ideas behind Chord that are
relevant to our analysis. In particular, we summarize how
Chord realizes robustness and overlay stability. In Section III
the probability for a loss of the overlay stability in Chord
rings is calculated and strengthened by more realistic failure
probabilities in Section IV. The results of our analysis are
presented in Section V and Section VI finally concludes this
paper.

II. CHORD BASICS

The main purpose of P2P networks is to store data in a
decentralized overlay network. Other peers will then be able
to retrieve this data using the corresponding search algorithm.
The Chord algorithm solves this problem by arranging the
participating peers in a ring structure. The position of a peer
on this overlay ring is determined by an m-bit identifier using
a hash function such as SHA-1 or MD5. Additionally, each
document that is to be stored in the P2P network is assigned an
m-bit identifier using the same hash function. Based on these
identifiers the underlying P2P mechanism decides where to
store the documents. That is, the P2P algorithm determines
which peers are going to be responsible for which documents.
Peers searching for particular documents will then use the
same algorithm to retrieve the searched information from the
P2P overlay network.
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Fig. 1. A Chord ring of size n = 16, each peer maintains r = 3 successors.

To maintain the ring structure of the overlay, each peer
stores pointers to the first r successors on the ring, i.e. the
first r peers that follow the peer in a clockwise direction
on the ring. Thus, if one of the peer’s r successors goes
offline, the peer will still know the next r − 1 peers on the
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ring. If a peer, however, loses all its r successors, the ring
will be disconnected. According to [4] the connectivity of the
Chord ring can be obtained with high probability as long as
r = Ω(log2(n)), where n is the current size of the Chord
ring1.

Fig. 1 shows a snapshot of a Chord ring consisting of 16
overlay peers. Peer z maintains a successor list of size 3
consisting of peers s1, s2 and s3.

III. VALIDATION OF CHORD’S STABILITY

A P2P overlay network is connected if there exists a route
from every peer to every other peer. Running the Chord
algorithm, each peer maintains a list of O(log2(n)) successors
to keep the overlay connected. A peer gets disconnected from
the network if all of its successors fail. According to [4] a
Chord overlay network stays connected with high probability,
even if every peer fails with probability 1

2 . The proof relies
on the fact that even though every individual peer fails with
probability 1

2 , it is very unlikely that all O(log2(n)) successors
of a peer fail at the same time. The conclusion that thus all
peers stay connected with high probability, however, misses a
subtle point. Although a local disconnection (one specific peer
loses all its successors) might be very unlikely, one can not
draw the conclusion that a global disconnection (at least one
peer in the overlay loses all its successors) is very unlikely
as well. To gain a better understanding of this subtle but
important point, we introduce some definitions:

• pfail: probability that a node fails
• pld(r): probability that a specific node loses all its r

successors and gets locally disconnected
• pgd(n, r, pfail): probability of a global disconnection,

i.e. the probability that at least one peer gets locally
disconnected in a network of size n, where each node
knows r successors and each node fails with probability
pfail

The probability for a local disconnection can then easily be
calculated as

pld(r) = prfail (1)

Obviously, the more successors a peer has, the less likely it
gets locally disconnected. Since peers usually maintain a suc-
cessor list of size r = O(log2(n)), a local disconnection is less
likely in larger networks2. However, based on this observation
alone, we can not conclude that the probability of a global
disconnection is comparably small as well. The more nodes
there are in the overlay network, the higher the probability
that at least one of them gets locally disconnected. In other
words, there is a trade-off between these two mechanisms. On
the one hand, the larger the Chord ring becomes, the more
successors are maintained by a peer, resulting in a smaller
probability for a local disconnection. On the other hand, the
larger the Chord ring becomes, the more peers run the risk of

1Definition: T (n) = Ω(f(n)) if and only if there are constants
c0 and n0 such that T (n) ≥ c0f(n) ∀ n ≥ n0

2See [5] for a discussion of how to estimate the size n of the current overlay
network

getting locally disconnected, resulting in a higher probability
for a global disconnection.

To estimate the stability of a Chord ring, we need to calcu-
late the probability pgd(n, r, pfail) of a global disconnection,
i.e. the probability that at least once r or more contiguous
peers fail on the Chord ring. As an approximation we neglect
the ring structure of the overlay network and imagine the
overlay peers arranged in an ascending row as shown in
Fig. 2. We regard the probability prd(x, r, pfail) that at least

11 rr nnr - 1r - 1

Fig. 2. The n peers of a Chord ring arranged in an ascending row.

once r or more contiguous peers fail in such a row of x
peers. Moreover, we can assume a random distribution of
failures, since the hash function distributes peers equally in
the identifier space and physical proximity therefore does not
reflect overlay proximity. For the sake of simplicity, we use
the short notation prd(x) instead of prd(x, r, pfail) where
appropriate. Obviously, the probability that r or more peers
fail in a row of less than r peers is zero, as indicated by the
dotted peers in Fig. 2. If we consider the same probability in
a row of exactly r peers, all peers have to fail accordingly.
The corresponding equations are:

prd(x, r, pfail) = 0 if x < r (2)

prd(x, r, pfail) = pld(r) = prfail if x = r (3)

In case of x > r we obtain:

prd(x) = prd(x−1)+(1−prd(x−r−1)) · (1−pfail) ·pld(r)
(4)

The probability prd is defined recursively. To calculate prd(x),
we take the probability prd(x − 1) that there was at least
one local disconnection in the first x − 1 peers and add
the probability that the first local disconnection occurs at
peer x. The second term of this sum is best explained using
Fig. 3. There are two requirements in order that the first local

)1(1 −−− rxprd failp−1 )(rpld
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Fig. 3. Probability, that the first local disconnection occurs at peer x.

disconnection occurs exactly at peer x. First of all, there must
not be a local disconnection in the first x − r − 1 peers as
indicated by the box in Fig. 3. Secondly, peer x − r must
not fail, while all of the last r peers have to fail to cause the
disconnection at peer x.

According to Eq. (2) and Eq. (3), the first local discon-
nection can occur at peer r. Thus, there are still r − 1
peers that could experience a local disconnection but are not



accounted for in our equation. To improve the accuracy of our
approximation, we add r − 1 peers at the end of the row as
shown in Fig 4. Thus, there are n peers in a row of n+ r− 1

11 rr nnr - 1r - 1 n + r - 1

n peers

Fig. 4. To incorporate the first r− 1 peers, they are added at the end of the
row.

peers that can experience a local disconnection. The resulting
approximation for the probability of a global disconnection in
a Chord ring of size n is:

pgd(n, r, pfail) ≈ prd(n+ r − 1, r, pfail) (5)

The reason for the approximation is that we neglect the ring
structure of the overlay network. In fact the probability is
slightly overestimated since the r − 1 peers we added at the
end of the row are obviously correlated with the first r − 1
peers in the row. That is, there are some failure patterns in the
last r − 1 recursion steps that have already been taken into
account before and are thus counted twice.

In Section V we validate Eq. (5) by simulation and present
realistic probabilities of a global disconnection. Note that the
formula is not limited to the special case of

r = �log2(n)�.

In fact, we are able to evaluate the consequences of using too
large or too small values for r, i.e. of using more or less than
log2(n) successors.

IV. REALISTIC FAILURE PROBABILITIES

In the previous section we were simply assuming values for
pfail, the probability that a node fails. In practice, however,
there is not much sense in saying a node fails with a certain
probability, without specifying a corresponding time frame. To
guarantee overlay stability, a Chord peer refreshes its successor
list every tstab seconds by periodically calling a stabilize()
procedure. This stabilize() function takes care that a peer’s
successor list is up to date by merging its list with the list of
its closest successor. Thus, a peer gets locally disconnected if
all of its known successors go offline between two stabilize()
calls. Therefore, one should consider the probability that a peer
fails within this periodic update interval instead of assuming
some arbitrary values for pfail.

On account of this, we regard the average online time of
a peer Eon in seconds. Assuming that the online time is
exponentially distributed with λon = 1

Eon
it follows that

A(t) = 1− e−λont (6)

is the distribution function of the online time of a single peer.
Due to the memoryless property of the exponential distribution

the probability that a peer goes offline within tstab seconds is3:

pfail = A(tstab) = P (A ≤ tstab). (7)

We can then use this pfail in Eq. (5) to calculate the probability
of a global disconnection within tstab seconds. The probabil-
ity of a global disconnection increases with the number of
stabilize() calls. The longer the Chord ring exists, the greater
the probability of a global disconnection within its lifetime
becomes. The probability pit(n, i) that a Chord ring of size n
gets globally disconnected sometime within i stabilize() calls
can be calculated as follows:

pit(n, i) = 1− (1− pgd(n, r, pfail))
i. (8)

In Section V we present a parameter study, covering rea-
sonable values for tstab, Eon and r, the current size of the
successor list. We also show the impact of realistic failure
probabilities on the probability of a global disconnection and
analyze how this probability increases over time.

V. NUMERICAL RESULTS

In this section we concentrate on results regarding the
problem of a disconnection. At first we have a closer look
at the probability of a local disconnection. Figure 5 illustrates
the probability of a local disconnection (cf. Eq. (1)) against
the overlay size for three different failure probabilities of a
peer. The number of successors is thereby set to �log2(n)�. As
expected the probability of a local disconnection strongly de-
creases with the size of the overlay network. This is obviously
due to the fact that a peer maintains more successors in larger
networks and is thus less likely to be disconnected. Note that in
a ring of size n = 106 and a failure probability of pfail =

1
2

we have a very low probability of a local disconnection of
about 10−6.
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Fig. 5. Probability of a local disconnection for different values of pfail

To show that based on these facts alone, we can not derive
a very low probability for a global disconnection as well,

3The probability that a peer goes offline and online again within tstab
seconds is neglected in this context.



we calculate the probability of a global disconnection for
pfail = 1

2 . Fig. 6 shows this probability (cf. Eq. (5)) for
networks of size n = 2k, where each peer maintains a
successor list of size r = log2(n) = k. The probability of
a global disconnection does indeed decrease with the size of
the overlay network. However, it does not approach zero but
asymptotically reaches a probability of about 40 percent. So
when every node fails with probability pfail =

1
2 and every

peer maintains a successor list of size r = log2(n) Chord
does not stay connected with very high probability but gets
disconnected with a probability of roughly 40 percent.
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To confirm this result we simulated the probability of a
global disconnection by generating snapshots of rings of a
specific size and counting the percentage of those rings that
did not get disconnected after 50 percent of all peers failed.
The simulations were repeated until the confidence intervals
became smaller than 0.001. For smaller values of n the results
obtained by our analysis are slightly above the simulated
values as the analysis does not take the ring structure into
account. The error becomes negligible for overlay sizes above
n = 100.

In practice, however, a failure probability of pfail =
1
2 is

obviously too pessimistic. To obtain realistic values for pfail
we evaluate Eq. (7) for different average online times of a
peer and different values of tstab. Fig. 7 shows that even if the
average peer only stays online for 10 minutes and successor
lists are only refreshed every 60 seconds, the probability that a
peer fails within this frame of time is still less than 10 percent.

In the following analysis we therefore concentrate on pfail=
0.1, 0.05 and 0.01. Fig. 8 illustrates that a global disconnection
is very unlikely for these values of pfail. Even for a peer
failure probability of 10 percent, a Chord ring of size 105 will
be globally disconnected with a probability of less than 10−12.
The staircase shape of the curve arises from the fact that the
plot is done for arbitrary n and corresponding successor lists
of size r = �log2(n)�. So whenever the overlay size n crosses
a power of two, each peer starts to maintain one additional
successor in its successor list. Therefore, the probability of
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Fig. 7. Failure probabilities in dependency of the average online time of a
peer

a disconnection abruptly decreases whenever a power of two
is exceeded. It then slightly increases until the next power of
two, since the probability of a local disconnection stays the
same, but there are more peers that can get disconnected and
cause a global disconnection.
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Fig. 8. Probability of a global disconnection maintaining a successor list of
�log2(n)�.

So far, the results relied on a dynamic adaptation of the
size of a peers successor list. In practice, however, it is more
common to choose a fixed successor list size a priori. Fig. 9
illustrates the probability of a global disconnection for fixed
successor list sizes of 3, 6 and 9. The failure probability of a
peer is set to pfail = 0.01. As we can see, the probability of a
disconnection increases with the overlay size but scales very
well to larger networks. Moreover, the order of magnitude of
the probability of a global disconnection can be adjusted by
choosing the corresponding successor list size. Obviously, less
than �log2(n)� neighbors are sufficient to guarantee a stable
Chord ring when we assume a realistic failure probability of
pfail = 0.01.
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Fig. 9. Impact of a fixed number of successors on the global disconnection.

To illustrate the effects of extremely high failure probabili-
ties we plot the probability of a global disconnection against
the number of successors r. In Fig. 10 we show the results
for a peer failure probability pfail = 1

2 and three different
ring sizes n = 25, 210 and 215. The vertical black dotted lines
represent the suggested successor list size �log2(n)�. Again,
the suggested number of successors results in a disconnection
probability of about 40 percent. To guarantee a global discon-
nection probability close to zero in this example, a peer has
to maintain a successor list of size �log2(n)�+ 7 or more.
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Fig. 10. Probability of a global disconnection for different successor list
sizes.

Note that so far we calculated disconnection probabilities
within one single stabilize() period. As mentioned in Sec-
tion IV, the probability of a global disconnection increases
over time. The longer the Chord ring exists, the greater the
probability that it gets disconnected within its lifetime. Fig. 11
plots the probability that a Chord ring gets disconnected
sometime within i stabilize() calls against the number of
stabilize() calls for different global disconnection probabilities
(cf. Eq. (8)). Assuming a stabilize() period of length tstab = 30
seconds, 8 · 104 stabilize() calls roughly correspond to one

month. Thus, the results demonstrate that the probability that
a Chord ring gets disconnected sometime within the first
month of its lifetime is by magnitudes greater than the same
probability within one single stabilize() period.
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Fig. 11. Probability of a global disconnection after i stabilize() calls

VI. CONCLUSIONS

In this paper we studied the efficiency and stability of a
P2P system based on the Chord algorithm. The main focus of
this paper is on the problem of a disconnection of the Chord
ring. In contrast to previous work it was shown, that when
every peer fails with probability 1

2 , a successor list of size
r = Ω(log2(n)) is not sufficient to guarantee a stable Chord
ring with high probability. In fact, the probability of a global
disconnection is approximately 40 percent in this case.

For realistic use cases we derived an equation to calculate
failure probabilities in dependence of the average online time
of a peer and showed that subject to these circumstances
Chord can still guarantee a stable overlay network with high
probability. For system dimensioning purposes the analysis
can be used to compute the actually necessary number of
successors to guarantee a stable overlay network.
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