
Enabling Mobile Peer-to-Peer Networking

Jens O. Oberender1, Frank-Uwe Andersen3, Hermann de Meer1,
Ivan Dedinski1, Tobias Hoßfeld2, Cornelia Kappler3, Andreas Mäder2,

Kurt Tutschku2

1 University of Passau, Chair of Computer Networks and
Computer Communications. Innstraße 33, 94032 Passau, Germany.

[oberender|demeer|dedinski]@fmi.uni-passau.de
2 University of Würzburg, Department of Distributed Systems.

Am Hubland, 97074 Würzburg, Germany.
[maeder|hossfeld|tutschku]@informatik.uni-wuerzburg.de

3 SIEMENS AG.
Siemensdamm 62, 13623 Berlin, Germany.

[frank-uwe.andersen|cornelia.kappler]@siemens.com

Abstract. In this paper we present a P2P file-sharing architecture op-
timized for mobile networks. We discuss the applicability of current P2P
techniques for resource access and mediation in the context of 2.5G/3G
mobile networks. We investigate a mobile P2P architecture that is able to
reconcile the decentralized operation of P2P file sharing with the inter-
ests of network operators, e. g. control and performance. The architecture
is based on the popular eDonkey protocol and is enhanced by additional
caching entities and a crawler.

1 Introduction

P2P file sharing systems account for a high percentage of the traffic volume
in the fixed Internet, having exceeded http (WWW) or email traffic [1] [2]. The
increasing availability of mobile data networks such as GPRS and UMTS in con-
junction with attractive pricing schemes makes P2P file sharing an interesting
application also in the mobile context. But the operation of P2P systems in mo-
bile environments encounters several problems, such as a relatively narrow and
expensive air interface, highly varying online states (presence) of the subscribers,
a hierarchical network structure (GPRS), and limited device capabilities.

P2P is a distributed application architecture where equal entities, denoted as
peers, voluntarily share resources, e.g. files or CPU cycles, via direct, end-to-end
exchanges. In order to share resources, P2P applications need to support two fun-
damental coordination and control functions: Resource mediation mechanisms,
i.e. functions to locate resources or entities, and resource control mechanisms,
i.e. functions to permit, prioritize, and schedule the access to resources. Pure
P2P architectures are implementing both mechanisms in a fully decentralized
manner [3], while Hybrid P2P systems utilize central entities that collect me-
diation data. An example for a Hybrid P2P system is the eDonkey filesharing

N
O

T
IC

E
:

T
h

is
is

th
e

a
u

th
o
r’

s
v
er

si
o
n

o
f

a
w

o
rk

a
cc

ep
te

d
fo

r
p

u
b

li
ca

ti
o
n

b
y

S
p

ri
n

g
er

.C
h

a
n

g
es

re
su

lt
in

g
fr

o
m

th
e

p
u

b
li
sh

in
g

p
ro

ce
ss

,
in

cl
u

d
in

g
ed

it
in

g
,

co
rr

ec
ti

o
n

s,
st

ru
ct

u
ra

l
fo

rm
a
tt

in
g

a
n

d
o
th

er

q
u

a
li
ty

co
n
tr

o
l

m
ec

h
a
n

is
m

s,
m

a
y

n
o
t

b
e

re
fl

ec
te

d
in

th
is

d
o
cu

m
en

t.
C

h
a
n

g
es

m
a
y

h
a
v
e

b
ee

n
m

a
d

e
to

th
is

w
o
rk

si
n

ce
it

w
a
s

su
b

m
it

te
d

fo
r

p
u

b
li
ca

ti
o
n

in
M

o
b

il
e

a
n

d
W

ir
el

es
s

S
y
st

em
s,

L
N

C
S

3
4
2
7
,

2
0
0
5
.

T
h

e
fi

n
a
l

p
u

b
li
ca

ti
o
n

is
a
v
a
il
a
b

le
a
t

S
p

ri
n

g
er

.

2

protocol, where the index servers collect and distribute file location information
about all peers.

The desire of mobile network operators is to add value to the P2P data
flows and to turn P2P into a service they can charge for. When creating such
services operators retain control on traffic and content. However the basic P2P
user experience and connectivity should be preserved. In this paper, which is
an extension of [4], we describe such a service and analyze its impact on the
network usage by means of a simulation.

This paper is structured as follows. In Sec. 2, we analyze the requirements
and objectives of mobile P2P systems. We also analyze the problems of mobile
P2P file sharing systems, and map out possible solutions. In Sec. 3, we present
our proposed mobile P2P architecture. We identify key concepts (Sec. 3.1), de-
scribe our extension of the eDonkey architecture (Sec. 3.2) and introduce the
Cache Peer (Sec. 3.3), the enhanced Indexing Server (Sec. 3.4) and the Crawler
(Sec. 3.5). Sec. 3.6 identifies caching parameters and introduces caching strate-
gies for mobile networks. In order to evaluate the system performance, we define
a simulation model. Sec. 4 outlines the restrictions imposed by mobile networks
and concludes the cache strategy which fits best for P2P traffic. Sec. 5 presents
the numerical evaluated cache strategies. Finally, Sec. 6 summarizes the efforts
achieved so far and gives an outlook.

2 Requirements and Objectives of Mobile P2P Systems

Mobile wireless communication systems are in many aspects different from the
fixed Internet. For the access to IP-based applications like WAP, Web or E-
Mail, a great variety of access technologies such as GPRS, EDGE or the UMTS
packet switched data services exists. Mobile access technologies differ in terms of
the air interface, QoS-capabilities, available bit rates and underlying transport
mechanisms in the core network. In the following, we consider some of these
aspects and their implications for a P2P system.

The Air Interface is commonly seen as the bottleneck in mobile communi-
cation systems. Although 3G systems like UMTS provide bit rates up to 2Mbps
in TDD mode and up to 10Mbps with the HSDPA technology (High Speed
Downlink Packet Access), the cost of data transmissions over the air interface
is generally higher than in fixed networks. This is even more true for 2G and
2.5G systems like GSM/GPRS with a theoretical maximum bit rate of 171 kbps
and typically achievable bit rates between 28 and 50 kbps. Furthermore, the
mean round-trip times are significantly higher than in wired systems due to the
higher protocol overhead and complex error correction schemes, leading to a
lower performance of especially TCP [5]. These results are also confirmed by our
measurements of eDonkey via GPRS [6].

The two main restrictions of the air interface, a relatively low effective band-
width and high latencies, make it essential to reduce the signalling overhead
as much as possible to achieve an acceptable performance. Direct traffic be-
tween peers should be avoided as much as possible, since all mobile-to-mobile

3

Fig. 1. Simplified scheme of core network for packet data transport

transmissions use twice the amount of air interface resources if compared to
mobile-to-fixed-network transmissions.

Furthermore, the limitations of the transmission power and battery capac-
ity cause the uplink bandwidth to be significantly more expensive in terms of
network resource usage than the downlink. So the use of uploads from mobile
devices must be more efficient when asked for. Battery consumption will be a
long-lasting issue for mobile devices. Therefore, mobile user equipment will con-
tinue to have a lower online time if compared to non-mobile Internet devices, on
which the majority of the P2P applications runs today. Reduced online time of
the peers will greatly affect the download time and thus the user experience of
P2P systems.

In general, theCore Network of a mobile communication system is designed
hierarchically. For GPRS or UMTS, the data traffic stream of each mobile tra-
verses along core network, from the UMTS Terrestrial Radio Access Network
(UTRAN) through the packet-switched domain and back. At the GGSN, the
mobile hosts get assigned an IP address. Therefore, the GGSN is both the in-
terface to the Internet and to other mobiles in the mobile domain, making it
also the point in the core network where all packet traffic is concentrated, see
Fig. 1. Note that generally in the core network several GGSNs exist, each serving
as a gateway for a large portion of the mobile network. This hierarchical, very
centralized topology is in strong contrast to the flat, mesh-like overlay network
topologies of most P2P systems.

One of the most important Operational Requirements of mobile network
operators is to maintain control over the network and the ability to charge for
provided services. Furthermore, operators would like to keep traffic in their own
domain to avoid cost due to inter-domain traffic. This is true for both mobile
and fixed-line operators. If mobile P2P is integrated into the service structure, it
is therefore necessary to provide means for controlling and for charging. On the
one hand, the control mechanisms for a mobile P2P system must be carefully
chosen in order to avoid the total degeneration towards a centralized system.
Control mechanisms should not tamper fundamental P2P concepts such as de-

4

centralization. The business model used for charging should also comply with
P2P applications, e.g. reward users for sharing. On the other hand, a mobile
P2P system can benefit from the existing infrastructure and services of a mobile
communication system. The network providers know the location, the online
status and the service agreement of the mobile user, which might be useful to
avoid signalling overhead and to increase the quality of service.

3 An Architecture for Mobile P2P Filesharing-Systems

P2P filesharing systems extensively utilize network resources. As an optimiza-
tion the architecture is adapted to that of the underlying network. The major
challenge of mobile networks is their hierarchical infrastructure. This must be
reflected in an architecture for mobile P2P systems. We designed a caching
mechanism that efficiently maps filesharing onto mobile infrastructures.

3.1 EDonkey Features

To meet the requirements of operator-managed services with P2P-based content
distribution, a hybrid P2P architecture has been selected. The chosen architec-
ture is based on the eDonkey P2P file sharing protocol, because of its popularity
and its proven robustness. It is classified as a hybrid P2P filesharing network, as
data exchange is achieved decentrally between peers while mediation is provided
by centralized index servers.

The eDonkey protocol introduced the multi-source download protocol,
which is an integral part to the scalability of P2P file-sharing. It means, that the
download process for one resource may utilize multiple sources. Coordination
between several sources is somewhat hard, since files could be tampered or even
renamed. The multi-source download protocol relies on the MD5 Hash-IDs. All
copies of a resource carry the unique Hash-ID with them and so a requester can
be sure that he downloads fragments of the very same file and version. Then the
fragments can be afterwards compiled into the original resource.

The eDonkey protocol addresses the free-rider problem using fragment shar-
ing. Any resource fragment is shared after completion check. Thus all peers
provide fragments during their download. This increases the number of early
available sources and the resource access load is distributed over the community.

The fragment sharing concept forces downloaders of a resource to share com-
pleted fragments with others. Multi-source downloading scenarios culminate into
fully-connected graphs4. The original eDonkey architecture achieves source con-
vergence centrally, i. e. by asking a super peer. Thus a bunch of peers, called a
horde, exists that currently access the same resource. EMule introduced source
exchange, a decentral approach to distribute sources. Because the peers com-
municate with each other, they can easily notify the list of sharing peers. This
behaviour makes frequent request to the super peer unnecessary.

4 unless the maximum number of connections is exceeded

5

To apply a file-sharing protocol on mobile networks, some minor issues
had to be solved. Mobile Internet devices have an IP stack and thus can in prin-
ciple be fully integrated into the Internet. However, security mechanisms like
firewalling, NAT boxing and VPN interfere with basic P2P operations. P2P ap-
plications can handle firewalled connections as long as there is either one partner
with open ports. The eDonkey/eMule terminus HighID denominates a peer in
case foreign hosts can initiate communications with that peer. Firewalled peers
need to establish the connection themselves, other peers may reply message but
cannot initiate transmissions. These are marked with LowID indicating that
these peers need actively connection establishment. P2P networks can handle
firewalled connections as long as either one peer of a direct communication al-
lows incoming connections. Rigid firewalling can be overcome using VPN, which
we have also tested. While the mobile peer software can be updated, such a re-
striction would abandon connections to Internet peers that run current software
releases.

3.2 Extended eDonkey architecture

Our enhancements to the eDonkey architecture comprise three parts: Modifica-
tions to the index server, a cache peer and a crawler. The index server monitors
the file popularity and exports the collected data to the cache peer. The cache
peer stores popular information at the network core. The crawling peers sup-
port the index server with resources that are unknown in the mobile operator
domain. Extended signalling includes information from the mobile network do-
main, e.g. presence information. The architecture components shown in Fig. 2
will be described in detail in this Section.

Index Server

Internet Index Server

Crawling
Peer

Cache Peer

0

2.5/3G
mobile network

Mobile Control Domain (Presence Information)

Mobile Operator Domain

Mobile Peers

Internet Peers

P2P file exchange
mediation signaling
enhanced P2P signalling

Fig. 2. Mobile P2P Architecture Overview

6

With centralized mediation we can gain information on popular files and
cache these at the network core. This improves the overall performance, because
network-edge-stored resources cause higher cost as they generate double traffic
(from network edge to GGSN and then to network edge again) compared to
a resource transfer from the network core. We assume here that networks of
different providers are interconnected and exchange IP traffic, e. g. of a centrally
operated cache peer.

Beneficial caching for P2P has two ingredients: identifying popular re-
sources, and forcing peers to use the cached instance. First, to identify popular
resources in a hybrid P2P network, information at the indexing server can be
utilized. During download each peer frequently requests new sources from the
indexing server; it signals the resource ID and receives a list of sharing peers. Be-
cause the indexing server can distinguish between requesting peers, it can derive
statistics, which resources are heavily accessed. While the number of interested
peers is incorporated, the current allocation and bandwidth remain unknown.

Second, to gain the full benefit of mobile services, the mobile peers must
be encouraged to access the cached instance but no other. The standard peer
software is designed to connect to any available source5, thus gaining multiple
waiting slots and improving chances of an early resource access. Modifications
in the indexing server hide other sources as soon as a cache copy has been
recorded. Shrinking the source peer set at the indexing server does not apply to
peers that have requested sources earlier. Acquiring sources is done by merging
any source candidates, there is no option for removing them. Outdated source
IPs are deselected if they do not respond to ping messages.

A fixed-network cache peer can allow a significantly larger number of simul-
taneous uploads than any mobile peer. Because of the larger upload capacity,
waiting queues are shorter and a faster response can be achieved. This is why we
believe, that most often peers will receive fragments from the cached instances
at the network-core rather than from network-edge peers. Our simulations show
that this can reduce network traffic on the mobile backbone and shorten the
download time for a file (cf. Sec. 5).

The proposed P2P components offer a value-added service. All components
are optional, i. e. an operator could offer a mobile P2P service utilizing just the
index server, crawler and proxy to enforce the use of local resources. Our current
development of integrated features in this architecture is still ongoing.

3.3 Cache Peer

Peers access and share resources. In a way one could see them as a cache, be-
cause information that has been downloaded to the peer is also shared with the
community. For caching an autonomous control is indispensable: a cache peer
needs to decide, which resources should be cached. In our solution this decision
will be determined using information provided from the indexing server. We did
not investigate legal issues in our project.

5 Restricted number of connected to sources from 150 up

7

The cache peer is a specialised peer that stores popular files at the network
core to reduce the amount of expensive air-interface usage. The cache peer owes
its name to the fact that we recommend to implement it as an ordinary peer.
It interfaces with both the mobile domain controller and the indexing server.
These negotiate what resources should be stored at the network-core. In our
implementation the cache peer receives the list of popular resources from the
indexing server to adopt its caching strategy. Based on this, it decides whether
to fetch or to drop a cached resource.

If the access characteristic measured at the index servers signals multiple
downloads of a popular file, caching is initiated. For downloading of files, the
cache peer uses the same mechanism as an arbitrary peer. At that moment,
resource access control is partly shifted from the network-edge towards the
network-core. This signalling of chunk completion is required as it switches the
super peer behaviour; from then on, all other sources except the cache peer will
be hidden from further source requests. New downloads from peers on the mobile
infrastructure are prevented.

3.4 Enhanced index server

The eDonkey protocol belongs to the hybrid class of P2P systems using weakly
centralized resource mediation, which is provided by several index servers. The
index servers provide two essential services: name search and to answering source
requests. In name search a peer asks for all resources that match a given string.
Secondly, when peers start to download a certain resource, they ask for peers
that currently share this resource.

In our solution we recommend using a single index server that administrates
all resources known inside the mobile domain. Thus popular resources can be
identified and then caching can be initiated. Two extensions can deliver suffi-
cient information to bring the caching mechanism in place. First, we log source
requests by resource ID. All peers that are connected to this index server fre-
quently ask for any new source that has been discovered lately. In reverse, from
this message we gain a list of resources that are actively downloading by now.

Second, we alter the response messages of resource requests. If the cache
peer is contained in the result, all other sources are rejected. Note, that the
cache peer publishes the first resource fragment and this will block all other
sources with possibly other fragments. However the cache peer will download
only complete resources and therefore should soon reach a state where the full
resource is available.

3.5 Crawler

The eDonkey community offers a large variety of resources. If the primary index
server does not return enough query hits, the software automatically connects to
other available index servers. For the mobile context this weakly-decentralized
mediation behavior is undesirable, since the mobile domain index server cannot

8

keep track of popular files. Besides, other index servers cannot distinguish cache
peers and therefore cannot hide other sources.

To maximize the benefits of the modified eDonkey architecture, mobile peers
must connect to one of the enhanced index servers. The crawler entity is used
for coordination between index servers of the mobile domain with any external
index servers (other operators or Internet). The index server requests unknown
resources from the crawler, which fetches mediation data from the Internet index
servers. Thus, any resource available inside the global eDonkey community can
be located and accessed.

3.6 Caching Strategies for Mobile P2P File-sharing Systems

The cache peer is a central element in the current mobile P2P architecture. In
order to realize the objectives of the cache (minimized external and air-to-air
traffic, reachability of files despite the absence of their providing mobile peers,
etc.), a specially optimized caching strategy is needed. It has to take into account
the characteristics of the mobile network and of the file-sharing protocol in use.

Depending on the type of storage units to be cached, one can divide the
caching mechanisms in file-based and chunk-based strategies. For file-based stra-
tegies, the granularity of the cache is a single file. However, the file-based strate-
gies are not flexible enough if only small pieces of a big file are needed, as the not
required parts of the file also occupy memory capacity of the cache. A chunk-
based caching strategy works on chunks which are also the natural data exchange
units in many P2P networks, like eDonkey. This granularity fits well to P2P traf-
fic, as most of the files are not downloaded completely. The users usually search
through many files until they find exactly the file they need. For each promising
target file, only some chunks or chunk portions (typically at the beginning and
the end) are downloaded. The user may decide, whether the resource is suited
for his needs. Otherwise the user will cancel the download. A file based cache
strategy cannot handle such download behavior effectively, while a chunk based
strategy handles this automatically, since only requested chunks are cached.

In general, the chunk-based strategy leads to a better system performance
than a file-based one due to the smaller granularity, the better adaptation to the
user behavior, and the better utilization of the cache capacity. But in current
GPRS networks we assume most of the exchanged files to be smaller than an
eDonkey chunk of 9 MB, cf. Section 5. Thus, we do not differ between a file-
based and a chunk-based strategy in the following. Moreover, a file based strategy
would not have the additional overhead for fragmenting and defragmenting files.

Our cache strategy consists of two aspects: Cache population strategy and
cache replacement strategy. The latter is used when the cache population con-
ditions for a new file f are fulfilled and the file size sf exceeds the available
capacity of the cache. Here a certain ranking Xf (i) to the stored files is applied.
Depending on the strategy, the value Xf (i) may include the number Qf (i) of
file requests at the index server and the amount of uploaded traffic Vf (i) of the
cache for file f during the time interval [(i−1)∆t; i∆t] =def ti. If a file is inserted

9

into the cache during the time interval ti, the file f with the minimal ranking
value Xf (i− 1) of the prior interval ti−1 is replaced.

RANDOM, FIFO, LRU (Least Recently Used), LFU (Least Frequently Used),
LSB (Least Sent Bytes) are standard replacement strategies [7] that do not re-
quire any special application level knowledge about future caching events. E.g.
the ranking value is Xf (i) = Qf (i) for LFU and Xf (i) = Vf (i) for LSB, respec-
tively. In the following sections we propose a cache strategy which is adapted
onto P2P traffic in mobile telecommunication systems and incorporates the oc-
curring restrictions of mobile P2P. This strategy is referred to as Intelligent
Memory Usage (IMU).

IMU – Cache Population Strategy
The basic concept for inserting a file f into the cache is that the number of file
requests exceeds a given threshold Θ at time t ∈ ti, i.e. Qf (i− 1) > Θ. If a file
is inserted during the time interval ti, it is not replaced during this period. The
idea behind this is that we assume that the file is only inserted into the cache,
because this increases the system performance during the current time interval
ti; otherwise Θ was badly chosen. The measurement values Xf (i) are used in
the following time interval ti+1 to decide which file is a replacement candidate.

Another condition for inserting a file f into the cache has to be fulfilled in
order to ensure that f does not replace a more useful file with respect to the key
aspects of the cache. This is done by checking if Qf (i) > Qm(i) for the file m
with the minimal replacement value Xm(i− 1).

IMU – Cache Replacement Strategy
One major problem of the standard cache strategies is that they do not take
into account the lengths of the files they cache. For example, a FIFO strategy
always removes the last file in its caching queue. If a new file of length 5 kB has
to be cached, it is obviously not necessary to remove a file of length 1 GB when
there are files of length 6 kB already in the cache. However, if the huge file is
the last in the FIFO queue, it is removed.

One way to consider the file sizes in the replacement decision is to use a
slightly modified LRU strategy. The kick-out criteria should not be directly
related with the last access time for a file, like in the standard LRU. The amount
Vf (i) of traffic generated by this file during ti describes in a more correct way
the importance of the file, because minimizing of the traffic to external peers is
a key aspect of the cache.

The size of a file on the other hand means additional costs for the cache peer,
i.e. huge files use more storage resources. It would be reasonable to remove big
files first, if they produce the same traffic as small files. This dependency is taken

into account if the ranking value includes the factor
(

Vf (i)
sf

)α

. α is the weighting

factor and determines how strong it influences the ranking with respect to the
number of file requests. sf denotes the compressed file size because eDonkey
compresses files before transmitting.

The number Qf (i) of file requests during time interval ti is another measure
indicating the popularity of a file. The more requests are seen at the index server,
the more popular the file is. Hence, we define the initial ranking value of IMU

10

for a file f which is inserted during ti0 by

Xf (i0) = Γf (i0) with Γf (i) =

(
Vf (i)

sf

)α

·Qf (i). (1)

Since the file f is then not replaced during ti0 , we are able to include historical
values for the following time intervals. This avoids too fast reacting on very
frequent changes of the file requests and smooths the variation over time. The
parameter β is called the aging factor. We propose the following ranking value
of IMU for i > i0:

Xf (i) =
βXf (i− 1) + Γf (i)

2
(2)

4 Simulation Model

In the literature, many papers about caches and their performance exist. Even
for P2P networks, cache replacement policies are investigated, e.g. in [8–10].
However, in this work we propose the IMU strategy especially adapted on P2P
traffic in mobile networks which is evaluated by means of the simulation.

mobile P2P simulation model

source traffic model

peers
resources

network model

index
server

cache
peer

mobile
network

Fig. 3. Components of the mobile P2P simulation model

The mobile P2P simulation model consists of the source traffic model and the
network model. The latter describes the restrictions of the P2P system because
of the mobile network architecture. The source traffic model of a P2P specific
system comprises the resources, i.e. the provided files, and the behavior of a
peer, among other things the characteristics of a mobile subscriber. Figure 3
illustrates the components of the mobile P2P simulation model.

4.1 Peer and Resource Model

The resource model depicts the provided files and their popularity determining
the file request arrival rate. In P2P networks, there is a large number Nfiles of
files available. Typically, only a small number Npop of very popular files generate
a huge amount of traffic [11]. In our simulation, the request arrivals follow a
Poisson process with rate λf for each file f .

We assume that there are mobile specific content types, like ring tones (MIDI
or mp3) or digital images, which are shared in mobile P2P. The file sizes for
different content types have been measured at the University of Würzburg. We

11

fitted the cumulative distribution function for the file size with a lognormal
distribution which we applied in the simulation. Table 1 shows the measured
parameters.

In order to reflect the highly fluctuating connection status of a mobile peer,
we describe a mobile peer by an ON/OFF-process. This means that a peer
is either in the ON state, i.e., the peer is present in the mobile domain and
is connected to the P2P network, or in the OFF state, i.e., the peer is not
connected to the P2P network. In addition, the ON period and OFF period are
determined by exponential distributions with means LON and LOFF . Therefore,
the transition rates between these two states are 1

LON
and 1

LON
. During the ON

period, the peer participates in the P2P network by providing its own files and
requesting for other files. With probability pnew, a peer entering the ON state
shares a new file.

Another mobile specific aspect is the small memory capacity of a mobile peer.
If a newly requested file exceeds this capacity, the oldest files which are shared
longest are deleted (FIFO) until sufficient memory is available for storing the
new file. Additionally to the mobile peers, we also consider Internet peers. The
main difference between both is the access type. In our simulations presented
here, we use a ratio of 2:1 between GPRS and DSL users.

In the eDonkey application, we have an upload list reflecting the simultane-
ously served peers and a waiting list which contains all requesting peers. The
upload bandwidth is equally split among the requesting peers in the upload
list. Thus, the received bandwidth is very easy to calculate in a system where
the bottleneck is the receiver upload bandwidth and not the possible download
bandwidth. This is not valid in a mobile telecommunication system. Here, the
problem is that not only the upload bandwidth of the peers but also the down-
load bandwidth is a limiting factor due to the small bandwidth of mobile peers.

While the upload list is limited in order to guarantee a minimal download
bandwidth, the waiting list is unlimited. A newly arriving file request joins the
end of the waiting list; this also holds after downloading a download unit. It
has to be noted that in eDonkey, a file is structured into chunks of 9.5 Mb and
each chunk is downloaded in smaller pieces of fixed size, the so-called ’download
units’. Immediately after downloading an entire chunk, it is provided as source
of the file in the P2P network.

4.2 Mobile P2P Network Model

We consider GPRS, since we have performed measurements of eDonkey over
GPRS (without our proposed mobile network elements) in parallel to the sim-

Table 1. Measurement of the file sizes for mobile P2P specific contents

ring tone game image mp3-audio

mean [kB] 8.5762 37.9288 420.2075 4829.3306

standard deviation [kB] 9.3479 26.5833 21.3963 2305.5083

12

ulation, cf. [6]. We assume that a peer always utilizes its full capacity in uplink
and downlink direction. It is interesting to see that, starting with the GPRS data
service, asymmetric data paths are introduced by 3GPP standards that may also
change over time (due to real time cell effects). Another characteristic of the air
interface which affects the performance of a mobile user is the significantly high
round trip time (RTT), which is also depending on the number of subscribers in
a cell. We consider the data transfer of eDonkey via TCP whose throughput is
then slowed down.

In the eDonkey network, a user has to be connected to an index server for
participating in the network. Thus, the index server immediately notices when a
peer goes online. We additionally assume that the index server discovers instan-
taneously when a peer goes offline due to not replied hello-packets. Therefore,
the user presence information is always known to the index server and all files
in the network and their corresponding sources are also known.

Each peer searching for a file asks for sources at the index server, which sends
200 sources at maximum to the requesting peer. We have limited the number
of sources according to the original eDonkey source code because the searching
peer requests the file at every sharing peer. Hence, the requesting peer joins the
waiting list of each sharing peer. The waiting time before entering the upload list
is increased and the overall throughput and the effective download bandwidth
of all peers in the upload queue of sharing peers is decreased. This problem is
overcome by limiting the number of retrieved sources. The index server returns
uniform randomly 200 sources in order to distribute the emerging load equally
within the network.

If the cache peer shares the file requested by a peer, the cache peer is always
returned as first element of the source list. It is also possible to select in the
simulation that the cache peer is the only returned source and all other sources
are hidden.

The cache peer is assumed to be attached to the network with a link with
almost infinite capacity. In this case, we have selected a 4 Gbps link, so that
we can rule out a bottleneck in the interconnection of the cache peer with the
downloading peers. The number of parallel upload connections from the cache
is limited to 400, i.e. 400 mobile subscribers may download from the cache with
21.44 Mbps.

4.3 Abstract Model

The goal of the abstract simulation is to answer which cache replacement strategy
fits best for the mobile P2P network. In contrast to the detailed simulation, we
only use a subset of the parameters for the abstract simulation resulting in a
much smaller computing time. The distinctive feature of the P2P network which
plays an important role for the investigation of the cache is the file request arrival
process. The popular files are requested very often; there are also a lot of less
popular files which also generate many requests in total. Thus, the file request
arrival process has to be simulated in detail, while the used transport mechanism

13

0 2 4 6 8 10 12
50

60

70

80

90

100

time [h]

pe
rc

en
ta

ge
 o

f p
op

ul
ar

 c
ac

he
d

fil
es

IMU
LFU
LSB

Fig. 4. Percentage of popular cached files

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

re
la

tiv
e

er
ro

r

time [h]

γ = 99.9%
γ = 99%
γ = 95%
γ = 90%

Fig. 5. Relative error of the results

or eDonkey’s complex upload queue mechanism can be neglected for evaluating
the performance of different cache strategies.

5 Numerical Results

In this section, we evaluate different cache strategies (LFU, LSB, IMU) by appli-
cation of the abstract simulation. The target value which we use is the percentage
Ψ of popular files which are stored in the cache. This value directly relates to
the byte-hit-rate, the request-hit-rate, and the amount of traffic which is kept
within the mobile domain. The latter aspect is very important for a provider.
The more popular files are stored in the cache the more data is sent from the
cache to the requesting peers with the maximal available download bandwidth
of the peers and the more file requests are successfully served.

Afterwards, the influence of the proposed strategy on the mobile P2P network
is demonstrated quantitatively by means of the detailed simulation. We consider
the upload data volume and different interactions between cache peer and index
server.

5.1 Comparison of the Cache Strategies

We simulate 100 popular mp3-files and start with 50% of them in the cache. The
cache peer is dimensioned as large as the sum of the popular files’ sizes. Thus, Ψ
may reach 100%. The used parameters of IMU are α = 1,β = 0.5,∆t = 15min,
Θ = 4. Figure 4 shows the percentage of popular cached files for each time
period ∆t. It seems to be astonishing that LFU is nearly as effective as the
recommended IMU strategy, but the reason is the independent and identically
distributed (iid) size for every file. Thus, the file request arrival rate is the main
indicator for the file’s popularity and LFU delivers good results. For a scenario
with a more complex file size distribution, e.g. several large files, the LFU cannot
return as good results as IMU, because a large, popular file may not be cached,
although it produces more traffic. In this case, LSB may outstrip LFU.

In the regarded scenario, LSB comes off badly, although the transferred data
volume is directly proportional to the number of file requests. Hence, LSB should

14

perform as well as LFU. But this is only valid if the time interval during which
the measurements are taken is large enough for a download of a file to finish
within this period. Figure 4 shows that IMU achieves the best results, because
the transmitted data volume and the number of the file requests are considered.
About 95% of the popular files are detected within a short time frame. Fur-
thermore, IMU is a good base for estimating whether a file is really popular or
not, because temporarily high or low measurement values during the last time
interval are weighted by the historical values. Thus, the popularity of a file in the
next time frame can be estimated by the actual measured value and the curve
progression from past.

Figure 5 shows the relative error for different levels of significance γ. It is
defined as the half-width of the confidence interval normalized by the mean
value. We performed 1,000 simulation runs and obtained a relative error below
5% even for γ = 99.99%. The peak at the beginning results from the random
initialization of the cache.

5.2 Influence of the Proposed Strategy

The following numerical values focus on a single popular file and its influence
on the transferred data volume on the upstream, while the file disperses in the
P2P network. In a first step, we begin to pick out a single chunk file, i.e. a file
whose file size is less than the chunk size of 9 MB, because the probability that
a file is smaller than 9 MB is more than 90%.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time [h]

tr
an

sf
er

re
d

vo
lu

m
e

[G
B

]

mobile peers
internet peers
cache peer

Fig. 6. Uploaded data volume of mobile
and Internet peers and of the cache peer

0 50 100 150
0

0.5

1

1.5

2

time [h]

tr
an

sf
er

re
d

vo
lu

m
e

[G
B

]

mobile peers
internet peers
cache peer

Fig. 7. Uploaded data volume with the
cache peer as exclusively returned source

Figure 6 shows the data volume characteristic for a file of size 3MB with an
initial diffusion of 0.1%, i.e. at the beginning of the simulation 0.1% share this file.
On the y-axis, the totally transmitted data volume in uplink direction of mobile
and Internet peers and the cache peer within a time interval of 1 hour is plotted.
At this point, we have to refer back on Section 4.2. The index server returns
randomly 200 sources of all sources to the searching peer. The latter requests
download units of this file at every returned peer, independent of the access speed

15

of the providing peer. Obviously, 2/3 of the returned peers are mobile peers.
With each mobile peer that successfully finishes its download, the probability
for retrieving a mobile peer by the index server increases. Therefore, the data
volume transmitted from the Internet peers decreases because the number of
mobile, providing peers prevails the Internet peers.

The upload rate of the cache peer oscillates about 0.2 Gigabit per hour. This
is because of the bottleneck in the downlink of the mobile peers. The downlink
like the uplink has fair shared bandwidth. So the bandwidth is shared in similar
parts for each uploading peer, as long as the uploading peer can provide this
amount of data. With too many active downlink connections at a specific peer,
the cache peer is not able to bring its high bandwidth capacity to bear.

Figure 7 shows the same scenario, but the index server answers source queries
for the file only with the cache peer, as soon as the cache peer provides the file.
Neither the mobile peers nor the Internet peers upload data, after the upload
from the cache peers has started. As we can see, this modification is required in
order to utilize the cache peer completely.

Summarizing, the index server should answer a file request not only with the
sources but also with the available upload bandwidth in order to minimize the
download time. In this case, the cache peer is always preferred. The simulation
results are given in Table 2. Another point is that the user behavior should be
adapted in mobile P2P environment. E.g. in the case of downloading 8 files,
one from the cache peer and the other from other mobile peers, the downlink
bandwidth is equally split between all data connections. In this case, the upload
bandwidth of the cache peer cannot be utilized. Thus, it would be more appro-
priate only to download 2 or 3 files in parallel. Although the throughput is the
same in both cases, the time for a single file download is much lower in the latter
case.

Table 2. Percentage of traffic kept in the mobile network and the byte-hit-rate

cache peer... as single source among other sources

traffic within mobile network 99.68% 89.06%

byte-hit-rate 99.18% 15.26%

6 Conclusions

Current access and mediation control mechanisms has been discussed for appli-
cability in the mobile context and as a result the eDonkey file sharing system has
been enhanced by caching peers and crawlers. The new architecture for a mobile
P2P service has been implemented for GPRS (2.5G) networks and has also been
tested with UMTS. With the eDonkey index server, the three components adapt
the resulting overlay network to the core structure in 2.5G/3G networks and

16

especially to the needs of mobile operators and subscribers, thus improving the
P2P performance.

Users remain in charge of access control, while network operators gain control
on mediation of resources. This influence allows for keeping some P2P traffic in-
side the operator’s network. Popular content will be cached at a central instance
to reduce traffic. This also remedies bandwidth shortages caused from repeti-
tion of data transfers, which are observed in today’s access networks, Unlike
other mechanisms that oppress P2P traffic, this architecture offers a network-
supported service that allows peers to cooperate with the global community.

The simulation model for mobile P2P architectures includes the proposed
IMU cache strategy and the numerical results show good adaption outperforming
standard cache strategies, like LFU or LSB. In future work, we will investigate
more influence factors, like the mobile subscriber behavior or the mobile access
type.

References

1. Azzouna, N.B., Clerot, F., Fricker, C., Guillemin, F.: Modeling ADSL traffic on
an IP backbone link. In: Annals of Telecommunications, Traffic engineering and
routing. (2004) 1260–1314

2. Sen, S., Wang, J.: Analyzing peer-to-peer traffic across large networks. IEEE/ACM
Trans. Netw. 12 (2004) 219–232

3. Barkai, D.: Peer-to-Peer Computing. Intel Press, Hillsborow, OR (2001)
4. Andersen, F.U., de Meer, H., Dedinski, I., Kappler, C., Mäder, A., Oberender, J.O.,

Tutschku, K.: An Architecture Concept for Mobile P2P File Sharing Services. In
Dadam, P., Reichert, M., eds.: GI Jahrestagung (2). Volume 51 of LNI., GI (2004)
229–233

5. Meyer, M.: TCP performance over GPRS. In: First Wireless Communications and
Networking Conference (IEEE WCNC), New Orleans, MS (1999) 1248–1252

6. Hoßfeld, T., Tutschku, K., Andersen, F.U.: Mapping of File-Sharing onto Mobile
Environments: Feasibility and Performance of eDonkey with GPRS. Technical
Report 338, University of Würzburg (2004)

7. Tanenbaum, A.: Modern Operating Systems. 2 edn. Prentice Hall (2004)
8. Wierzbicki, A., Leibowitz, N., Ripeanu, M., Wozniak, R.: Cache Replacement

Policies Revisited The Case of P2P Traffic. European Transactions on Telecom-
munications, Special Issue on P2P Networking and P2P Services 15 (2004)

9. Leibowitz, N., Bergman, A., Ben-Shaul, R., Shavit, A.: Are file swapping networks
cacheable? Characterizing P2P traffic. In: 7th Int. WWW Caching Workshop,
Boulder, CO (2002)

10. Iyer, S., Rowstron, A., Druschel, P.: SQUIRREL: A Decentralized, Peer-to-Peer
Web Cache. In: Twenty-First ACM Symposium on Principles of Distributed Com-
puting, Monterey, CA (2002)

11. Wierzbicki, A., Leibowitz, N., Ripeanu, M., Wozniak, R.: Cache Replacement
Policies For P2P File Sharing Protocols. European Transactions on Telecommuni-
cations 15 (2004) 559–569

