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Abstract—The implementation of Internet of Things (IoT)
applications faces several challenges in practice, such as com-
pliance with QoS requirements, resource constraints and energy
consumption. In this context, the joint edge–cloud paradigm
for IoT applications can resolve some of the issues arising
in pure cloud computing scenarios, such as those related to
latency, energy or privacy. Therefore, an edge–cloud environ-
ment could be promising for resource and energy-efficient IoT
applications that implement Virtual Network Functions (VNFs)
bound together into Service Function Chains (SFCs). However,
a resource and energy efficient SFC placement requires smart
SFC embedding mechanisms in the edge–cloud environment, as
several challenges arise, such as IoT service chain modeling
and evaluation, the trade-off between resource allocation, energy
efficiency and performance, and the resource dynamics.

In this article, we address issues in modeling resource and
energy utilization for IoT applications in edge–cloud environ-
ments. A smart traffic monitoring IP camera system is deployed
as a use case for a realistic modeling of a service chain. The
system is implemented in our testbed, which is designed and
developed specifically to model and investigate the resource and
energy utilization of SFC embedding strategies. A resource and
energy-aware SFC strategy in the edge–cloud environment for
IoT applications is then proposed. Our algorithm is able to
cope with dynamic load and resource situations emerging from
dynamic SFC requests. The strategy is evaluated systematically in
terms of acceptance ratio of SFC requests, resource efficiency and
utilization, power consumption, and VNF migrations depending
on the offered system load. Results show that our strategy
outperforms some existing approaches in terms of resource and
energy efficiency, thus it overcomes the relevant challenges from
practice and meets the demands of IoT applications.

Index Terms—Resource and Energy-aware Service Chain Em-
bedding (RE-SCE), edge - cloud computing, Network Function
Virtualization (NFV), Internet of Things (IoT) applications, smart
city

I. INTRODUCTION

The Internet of Things (IoT) has evolved rapidly in the
recent years, as it has birthed immense opportunities for
the transition from conventional economy to digital economy.
As an intrinsically distributed data-centric system, IoT can
collect and provide an enormous volume of data that can
be processed, analyzed, interpreted, and converted into useful
information and knowledge. Thus, IoT facilitates the creation
of new knowledge-based, intelligent service offerings such as
production [1], machinery [2], automotive [3], agriculture [4],
environment [5], healthcare [6], energy management [7], and
even wireless power transfer to inductively transfer power to
devices [8].

In the context of IoT-based applications, cloud computing
plays a crucial role. As reported by Kaur [9], nearly 50 billion
IoT devices would be connected to the Internet by 2020,
which would create a billion of terabytes that have to be
processed only on the cloud infrastructure in a decentralized
manner. Moreover, the cloud computing paradigm allows
virtualization of physical resources, such as computing power
and storage and network infrastructure, thereby facilitating a
dynamic, scalable, and flexible ”pay-as-you-go” provision-
ing of services that greatly reduces the Capital Expenditure
(CAPEX), as well as the Operational Expenditure (OPEX);
moreover, it allows changing the way businesses are conducted
by decoupling the service providers from the infrastructure
providers.

However, recent implementation of cloud-based IoT systems
shows that the conventional remote cloud infrastructure with
large-sized distributed Data Centers (DCs) located in the core,
and the IoT devices collecting data locating at the edge of the
network will run into a series of difficulties as the follows:

• Latency: Recent technological advances such as smart
grid, healthcare, and AI-integrated systems require data
to be processed and presented in real-time. This stringent
requirement for Quality of Service (QoS) and Quality of
Experience (QoE) can hardly be met in the conventional
cloud scenarios because of the high latency due to limited
transmission bandwidth and increased networking hetero-
geneity.

• Resource allocation: As data have to be generally trans-
ferred from the edge devices to the remote data cen-
ters, it is required that resources, including network
bandwidth, storage, and computing power, are allocated
along the edge-to-cloud path, which could possibly be
bottlenecked, especially at the core network, considering
the volume and velocity of the data expected would be
generated by the IoT devices in the future.

• Energy consumption: Recent surveys have shown that en-
ergy consumption in data centers remarkably contributes
to the total energy consumption of the cloud due to a large
number of high-performance servers deployed, which
considerably contributes to its operational costs [10],
[11]. In contrast, IoT devices at the edge are normally
based on energy-efficient embedded platforms. Thus, a
combination of the edge–cloud environment would be a
promising solution for better energy-efficiency.
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• Privacy: Transferring the data from the edge to the core
of the network through different ISPs, heterogeneous
networking environments, as well as network components
may pose security risks for sensitive data. Thus, for some
applications, it is preferable that the data remains within
the owner’s network and is processed locally at the edge.

Fog computing was introduced by Cisco in 2012 [12].
Together with Edge computing, these concepts emerged in the
recent years in order to tackle the aforementioned problems.
Its architecture is based on the concepts of cloud close
to the ground in terms of distribution of computing power
and storage capacity to the edge of the network. This can
be achieved by leveraging the device-to-device connection
supported by the edge devices in the form of a cluster of
computing machines, or a small-scale data center. Distributing
workload to the network edge, such as by pre-processing raw
data, helps in reducing backbone network traffic and end-to-
end latency, thus improving the overall system performance.
Besides that, keeping functions that process private data out
of public cloud also secures privacy for users.

To achieve such vision, several architectures for edge–
cloud have been proposed in previous studies, for instance,
Cloudlet [13], Mobile Edge Computing, or Multi-access Edge
Computing (MEC) [14], whose results outperform systems that
involve only centralized data centers. Although these models
show clear benefits as compared with the conventional cen-
tralized, data center-based cloud, the edge computing model
has it own disadvantages: (1) limited resources at the edge in
terms of storage, computing power, and energy; and (2) high
complexity in terms of service deployment and management, as
the edge devices are heterogeneous in terms of both hardware
and software. Thus, edge computing is often proposed as a
supplement to cloud computing, so that the combination of
edge and cloud computing would effectively provide a trade-
off between pure edge and cloud paradigms.

To fully utilize the advantages of the edge–cloud paradigm,
Network Function Virtualization (NFV) [15] has emerged as
a promising technology, as it allows network services to be
virtualized. Owing to such virtualization techniques as Virtual
Machine (VM) or container, NFV gives rise to the concept
of Virtual Network Function (VNF), a piece of software
running on commodity and general hardware and responsible
for handling specific network functions. By applying the edge–
cloud model, VNFs can be instantiated in edge devices or
in servers located in data centers; they can be migrated to
other machines as an offloading method for better performance
and resource efficiency. VNFs can also be chained together to
form a Service Function Chain (SFC) [16], [17]. In such a
chain, typically, each VNF executes a certain function and all
VNFs must be processed in a specific order. Software Defined
Networking (SDN) [16], on the other hand, can handle the
configuration and control and steer the traffic through each
VNF to form an SFC seamlessly as per the user’s demand.
The programmability characteristic of SDN is highly suitable
for synergizing with NFV, as it could greatly reduce the costs
and increase the flexibility of the VNFs in the edge–cloud.

The IoT service in the edge–cloud environment has at-
tracted attention from the academia, as well as the industry

recently [18]. On the one hand, it is the perfect solution to the
aforementioned problems. On the other hand, there remain
challenges such as IoT service chain modeling, resource
allocation vs. performance, energy efficiency, and so forth.
This article addresses the deployment of IoT applications over
the SDN/NFV-enabled edge–cloud model with the following
contributions:

• An edge–cloud framework for IoT applications with
testbed based on OpenStack [19] and Kubernetes [20]
is proposed. Through its open interfaces, the testbed
was used as an environment for IoT SFC modeling, as
well as prototyping, implementing, and testing of SFC
embedding algorithms.

• The impact of a service chain on different key per-
formance measures of an edge–cloud system, such as
resource and energy consumption has been investigated
and modeled. A traffic monitoring IP camera system for
smart city was taken into account as a use case for a
realistic modeling. The traffic monitoring camera system
was selected on purpose due to its high requirements in
terms of resources and the high dynamics related to the
variation in traffic flow and traffic environment [21].

• Based on the developed models, a heuristic resource
and energy-efficient SFC embedding strategy called the
Resource and Energy Efficient Service Chain embedding
(RE-SCE) has been designed for edge–cloud IoT en-
vironments. Evaluation results show that our approach
outperforms some of the existing systems in terms of SFC
request’s acceptance ratio, resource utilization, as well as
energy consumption.

The rest of this article is organized as follows: Section II
addresses previous work on edge–cloud deployment in IoT, as
well as energy and resource efficient SFC embedding mech-
anisms; in Section III, the research challenges and objectives
have been discussed; next, a service architecture for resource
provisioning in the edge–cloud environment and its testbed
deployment have been discussed in Section IV; in this section,
different test cases are also addressed to measure the perfor-
mance parameters of the edge–cloud system. In Section V
system modeling is addressed, while Section VI proposes a
new SFC embedding strategy, including VNF offloading, VNF
mapping, and virtual link mapping algorithms. Section VII
discusses performance results and Section VIII concludes the
work.

II. RELATED WORK

Recent advances on the edge–cloud interplay for IoT appli-
cations have been discussed in previous literature. As covered
by a special issue of the IEEE Internet of Things Journal [22],
there are several recent research aspects that draw attention
from the industry and academia as the follows:

• Firstly, it is the realization of novel edge–cloud architec-
tures that can facilitate a flexible and dynamic IoT service
deployment of the edge–cloud infrastructure.

• Based on the IoT system architecture, advanced SFC
placement and resource allocation strategies are another
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aspect of research interest, which closely relates to ad-
vanced SFC embedding algorithms that satisfy multi-
criteria embedding objectives, such as QoS, resource, and
energy efficiency.

• Use cases for IoT applications, such as healthcare, trans-
portation, smart city, finance are also of interest.

• Finally, security and privacy are also a focus, which
addresses approaches to protect the edge–cloud IoT sys-
tem from different kinds of attacks and prevent privacy
leakage.

The scope of this work covers the first, second, and third
research aspects mentioned above. In this section, the im-
plementation of the edge–cloud paradigm for IoT has been
discussed first. Background information, concepts, and typical
previous work have been discussed as a basis for under-
standing this research. We have then introduced the current
state-of-the-art edge–cloud architectures that involve SDN and
NFV. Secondly, we conduct an intensive survey in the field
of SFC placement’s algorithm whose goals are multi-criteria
embedding objectives in general and resource efficiency, par-
ticularly energy efficiency. We focused on two methods of
the SFC placement algorithm, namely offloading and mapping
strategies. Table I provides a taxonomy and classification of
the related work and highlights the contribution of our work.

A. Edge–cloud architectures in support of IoT services

1) Edge–cloud architectures in general: As stated in the
first section, edge–cloud model helps to troubleshoot the prob-
lems incurred from using the conventional cloud model or edge
model for IoT applications. To this end, it has attracted much
attention of both academia and industry in the recent years.
There are several well-known edge–cloud models such as
mobile edge computing (MEC) [14]. MEC was introduced by
the European Telecommunications Standards Institute (ETSI)
in 2014, and it primarily focused on a specific area of mobile
networks; ETSI has also identified IoT as one of the key use
cases of MEC. In this model, MEC servers can be deployed
at edge sites such as Long Term Evolution (LTE) macro base
stations (eNodeB) to support workload from end-user devices.
On the other hand, Cloudlet model [13], a project of Carnegie
Mellon University, does not co-locate with base station, but its
reinforcement resources for end-user is presented as a small
“data center in a box” close to the user’s devices. Cloudlet’s
design enable it to work in Wi-Fi environment. Nastic et
al. [23] introduced the concept of software-defined IoT units
– a novel approach to IoT cloud computing that encapsulates
fine-grained IoT resources and IoT capabilities in well-defined
APIs to provide a unified view on accessing, configuring,
and operating IoT cloud systems, thereby simplifying the
provisioning and enabling flexible runtime customizations of
software-defined IoT cloud systems.

There are currently various open-source platforms such
as OpenStack [19] and CloudStack [24] that help operators
to implement the aforementioned edge–cloud concepts. For
instance, the Cloudlet model was implemented as OpenStack’s
extension named ”OpenStack++” [25], which was also used
to build applications such as ”GigaSight,” ”QuiltView,” and

”Gabriel.” In this model, edge devices can flexibly ask the
Cloudlet infrastructure to launch VMs for computing power,
and VMs can be created and discarded dynamically. However,
it is challenging to implement the above platforms in the edge–
cloud environment, where the distributed edge devices have
limited computational and storage resources. Kubernetes [20],
on the other hand, has been adopted to deploy IoT services
in edge devices in the form of a container, which has a
lower resource’s footprint than that of VM. With Kubernetes,
operators can deploy IoT applications in a set of smaller ser-
vices called microservices, which have many advantages over
traditional IoT applications. Microservices are complementary
to edge–cloud architecture, as it allows IoT applications to be
distributed among different locations.

Recently, the academia has seen a research trend exploring a
new computing model named serverless computing. Serverless
can be seen as a sub-set of microservices that focuses more on
lightweight services composed of stateless/lambda functions.
This type of function, usually a small piece of code, performs
specific tasks such as image pre-processing. It does not store
the function state in memory to limit resource usage, as its
concept favors IoT applications. Therefore, these functions are
usually nested inside containers rather than VMs. Serverless
provides an even more dynamic capability in delivering ser-
vices than the conventional microservice, as it only operates
whenever a specific task is ”triggered.” This behavior promises
increasing resource efficiency for infrastructure providers and
provides more elastically billing methods for IoT developers.
The serverless platform approach has been adopted by Ama-
zon for AWS Lambda and by Google for Google Cloud Func-
tion. The same applies for Azure Functions of Microsoft and
IBM OpenWhisk. However, a standard architecture and special
workflow need to be identified for serverless computing [26].

2) Edge–cloud interplay based on SDN and NFV for next-
generation IoT applications: The provision of services in the
edge–cloud paradigm gives rise to the concept of Network
Function Virtualization (NFV), in which a service is defined
as a Service Function Chain (SFC), including several Virtual
Network Functions (VNF). A VNF is a piece of software
that can be instantiated on a commodity server based on
virtualization techniques, such as virtual machine or container.
Thus, the NFV technology allows IoT services to be virtu-
alized and deployed flexibly and dynamically on the edge–
cloud infrastructure in an on-demand manner. The process of
creating an SFC is referred to as service function chaining.

Cziva et al. [27] have proposed GLANF, a container-based
NFV for SDN framework. In the study, a GLANF agent
daemon is implemented in commodity servers to communicate
with Docker and other machines. The CORD architecture
(Central Office Re-architected as a Datacenter) [28] has several
solutions such as M-CORD and R-CORD for SDN/NFV-
enabled edge–cloud environment similar to the one provided
in this paper. However, these models focus more on MEC and
its related access technologies to minimize service latency,
CAPEX and OPEX. However, the energy-efficiency aspect
is not discussed. Moreover, CORD’s solutions and documen-
tation are not yet fully developed, which complicates the
designing of a testbed for specific use case. For the same
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reason, a fully open API to integrate different SFC embedding
algorithms is unidentified in CORD. Therefore, we utilized our
own implementation of the overall architecture in this work.
One of our key contributions is the proposed Resource and
Energy-aware Service Chain Embedding (RE-SCE) algorithm,
which can also be executed within [28].

The SDEC architecture (Software-Defined Edge Comput-
ing) [29] offers an open IoT system architecture based on
software-defined edge computing. It decouples upper level
IoT applications from the underlying physical edge resources
and builds dynamically reconfigurable smart edge services.
The automated provisioning of IoT applications over cloud
and fog resources is the key concept of [30], offering an
IoT Platform-as-a-Service for NFV-based hybrid cloud/fog
systems. A different aspect has been considered in [31],
where an auction-based MEC-IoT resource trading market is
proposed. The market allows the IoT devices to offload their
tasks to MECs for better performance in terms of shorter
response times. For the edge computing resource allocation,
a reinforcement learning- and belief learning-based double
auction mechanism is developed.

Up to now, most architectures with NFV and SDN are
designed on Openstack and Kubernetes, which provides a
strong foundation for orchestrating virtual infrastructure. From
both academia and industry, operators can implement their
own project or use third-party open projects such as Open-
MANO [32], OPNFV [33], and ONOS [34] to leverage their
legacy system to SDN-NFV-based edge–cloud architecture.
However, due to the variation of edge–cloud models on
specific user cases, a standard architecture for the concept is
undetermined at the moment.

B. Next generation IoT service provisioning based on SDN
and NFV

In this work, provisioning IoT services on the SDN/NFV-
based edge–cloud infrastructure is formulated as the SFC em-
bedding problem, which is closely related to multi-component
application placement [35], virtual network embedding [36], or
virtual data center embedding [37]. In general, SFC embedding
deals with mapping VNF requests in the edge–cloud substrate
and connecting them together to found an SFC. SFC embed-
ding can be reduced to two well-known NP-hard optimization
problems – the facility location problem and the Generalized
Assignment Problem (GAP). Therefore, the SFC embedding
problem is NP-hard, too [38]. SFC embedding can further
be formulated as an optimization problem with particular
objectives such as efficient resource utilization or minimal
energy consumption. Methods for these objectives roughly fall
into two categories, namely (1) offloading strategies, which
deal with deciding if an VNF or an SFC is placed in the
edge or offloaded to the cloud, and (2) mapping strategies
that choose the exact location of the VNF or SFC in physical
machines located in the edge or data center. An efficient SFC
embedding is generally the combination of both offloading and
mapping strategies, as they can balance the resource, energy, as
well as other optimization objectives when embedding VNFs
at the edge or in the cloud. Existing work on offloading and
mapping has been addressed below.

1) Offloading strategies for efficient IoT service provision-
ing: As for offloading strategies, Jemaa et al. [39] introduce
a heuristic approach called Baseline (BL). The algorithm
basically tries to place every VNF at the edge tier, and
offloading only occurs when the edge runs out of resources.
Zhao et al. [40] proposed the SFC Mapping Algorithm for
Classifying and Combining Homogeneous SFCs (SFCCM )
algorithm that focuses on solving live-streaming video requests
by combining similar requests and mapping them into nodes
(edges or servers) that have the minimum cost in terms of
processing and bandwidth unit. By assuming that the costs at
the edge are generally lower than that of in the cloud, SFCCM
tends to allocate resources for SFC requests at the edge
tier. These two papers and some other research dealing with
offloading strategies suggest that placing as many VNFs as
possible at the edge may result in a good performance in terms
of reducing complexity, latency, or cost, when compared with
that of cloud. However, choosing the minimum cost without
balancing edge–cloud resource allocation in several cases will
also limit the number of accepted chains in the system as, the
”less-expensive” resource might always be preferred, leading
to resource shortage for future SFC requests. Moreover, the
strategies mentioned above usually do not deal with mapping
the requests on specific, precise cloud physical servers or
embedded computers in a topological physical substrate.

In [41], the authors presented a joint optimal offloading
strategy for large-scale IoT maritime communication com-
bined with mobile edge computing to provide efficient com-
puting capability. The trade-off between latency and energy
consumption is addressed by proposing a two-stage joint
optimal offloading algorithm. The two stages deal on the one
hand with the optimization of the computational effort, and on
the other hand, with the allocation of communication resources
with limited energy and sensitive latency.

An efficient offloading of SFCs with dynamic VNF place-
ment in geo-distributed cloud systems has been provided in
[42]. Further, an optimization problem has also been formu-
lated that minimizes the embedding costs and the number
of placed VNF instances. Moreover, the SFC eMbedding
APproach (SFC-MAP) and VNF Dynamic Release Algorithm
(VNF-DRA) have been proposed. The performance evaluation
results indicate a high SFC request acceptance rate, high
network throughput, and high VNF utilization. Nevertheless,
mapping has not been addressed, and an evaluation of the
energy efficiency is missing.

2) Mapping strategies for efficient IoT service provision-
ing: With respect to mapping strategies, recent research has
developed mapping algorithms based on solutions for the bin-
packing problem. Most of them follow the concept of First Fit
algorithm [43], in which the requests are packed in a smallest
number of physical resources so that resource utilization is
optimized, and the physical resources can accommodate a
maximum number of requests. Regarding optimal solution,
Dinh-Xuan et al. [44] formulated the SFC placement as an
ILP problem with objectives to minimize service response
time and resource utilization. The problem was then solved
with OPLmodel in a network of multiple user DCs (edge)
or DCs (cloud). The work assumed that all physical links
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within a data center have infinite bandwidth and zero delay,
which is not practical in real environments. On the other hand,
Eramo et al. [45] proposed a heuristic algorithm with the
goal of maximizing the accepted SFC requests. An online
algorithm and the design of an SFC scheduling architecture
have been proposed to deal with SFC requests arriving in
an online manner. The basic principle of the work is to
map SFC requests on least loaded physical servers and links
in the edge–cloud to maximize the acceptance ratio of the
requests. The algorithm’s objective that balances bandwidth
usage does not consider the edge–cloud mapping trade-off to
optimize the resources and energy consumption. To the best
of our knowledge, until now, there is little research focusing
on the dynamic resource problems, in which SFC requests
join and leave the system dynamically, which could lead
to the resource fragmentation problem [37] that reduces the
system resource utilization. To mitigate this problem, many
online systems adopt consolidation technique that migrates
VNFs from low-utilized servers to other machines to optimize
resources and energy. However, consolidation VNFs without
a proper strategy may degrade the QoS/QoE of the SFC,
especially throughput, from 12.36% to even 50.30% [46], [47].
The behavior is called VNF interference. The reason behind
this is the competition between VM/containers for network
I/O bandwidth. Zhang et al. [47] suggested in their algorithm
that VNFs should be consolidated into the hosts that still have
large available throughput.

The authors of [48] considered also the dynamics of such a
system into account in their approach. An efficient deployment
of VNFs cannot be based on a rigid placement. It is important
to consider the dynamics of the system when many small de-
vices such as IoT devices communicate with each other under
energy efficiency constraints. The authors proposed an energy-
aware routing and adaptive delayed shutdown mechanism for
improving the substrate network’s energy efficiency and the
delay experience of virtual network functions.

C. Multi-criteria objectives in SFC embedding

1) Optimal SFC embedding with multiple objectives: There
exists a multi-objective optimization challenge in network
deployment and operation. Upon receiving an SFC request,
the network should embed the request based on several criteria
such as cost, network resources, QoS, energy consumption,
and so forth. This poses a challenge in placing the SFC
optimally on the physical edge–cloud substrate so that these
embedding objectives are met. Moreover, as SFCs join and
leave the edge–cloud system dynamically, resources in terms
of server capacity, available link bandwidth may become
fragmented. Thus, SFC embedding algorithms should cope
with the degradation of system utilization.

NFVdeep [49] proposed an adaptive online service function
chain deployment with deep reinforcement learning. The op-
timization goal was to minimize the operation cost of NFV
providers and maximize the total throughput of requests while
automatically deploying SFCs for requests with different QoS
requirements. An efficient path computation for SFC requests
was also developed with deep learning by [50], which resulted

in high performance in terms of the SFC acceptance rates
and the delay of paths. However, both concepts [49], [50]
were proposed for NFV in general without considering the
characteristics of the edge–cloud interplay and the constraints
of edge nodes. In [51], the authors discussed multi-attribute
decision making of the mobile edge computing migration
strategy based on NFV and SDN techniques. In the end,
three sets of simulation experiments were carried out based
on MATLAB to validate their multi-attribute decision making
strategy with migrations in MEC. The work [52] additionally
considered the service chain of such a mobile edge computing
use case. Based on actual business needs, multiple VNFs
were grouped into SFCs in a predefined order. The authors
propose a breadth-first search-based algorithm for efficient
SFC provisioning and improving the overall utilization of the
physical network. In [53], the authors constructed a delay-
sensitive priority-aware offloading strategy for scheduling and
processing the tasks based on multilevel feedback queuing.
The authors in [54] also considered latency as one of their
objectives besides resource efficiency. They formulated these
objectives as a mixed integer linear programming problem
(MILP) and propose a heuristic algorithm with a near optimal
result. The algorithm aimed to reuse the deployed VNFs and
select the VNF path with the most reused VNFs to save
system’s resources. However, the algorithm was designed for
offline system. Thus, the acceptance ratio was not within the
evaluation scope as it is in this work. Besides, their work
focused on VNF deployment amongst distributed small data
centers placed at the edge, while our work considers edge–
cloud environment in which a VNF can be deployed in a server
or edge embedded system with different resource profiles
suitable for IoT systems.

2) Solutions towards resource and energy efficient IoT
service provisioning: Among various objectives of SFC em-
bedding, resource and energy efficiency are of interest to this
research work.

Resource efficiency is achieved through the smart placement
of application functions in different locations of the edge–
cloud infrastructure. Recent advances in embedding virtual
networks for NFV can be attributed to the use of machine
learning-based approaches. The key idea of Deepvine [55] is
to encode physical and virtual networks as two-dimensional
images, which are then perceivable by a convolutional deep
neural network. Quang et al. [56] provided a deep reinforce-
ment learning approach for VNF Forwarding Graph Embed-
ding. Jianing et al. [57] aimed at an optimal VNF placement in
SDN/NFV-enabled networks, which is realized by employing
deep reinforcement learning. Other heuristic solutions of the
underlying optimization problem of VNF placement utilize
graphs and graph metrics such as the betweenness centrality
algorithm for component orchestration of NFV platforms
(BACON) for small- and large-scale DC networks in [58].
However, the focus is neither on SFC nor on the characteristics
of the edge–cloud interplay.

Another issue in the edge–cloud paradigm is the wasted
energy of edge–cloud systems while performing resource allo-
cation for IoT service functions. Even if IoT devices are energy
efficient in individual cases, the consumption ratio of the
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overall application use cases with many devices is high, taking
into account the total number of devices and the required
service life time [59]. The energy efficiency of different parts
of IoT use cases could be improved with proper mechanisms.
This includes (1) energy-efficient access technologies and
access mechanisms of sensor devices like proper device sleep
schedules; (2) energy-efficient communication protocols also
exploiting recent technological advances like device-to-device
communications [60] [61]; as well as (3) green cloud comput-
ing and data center technology for power savings in the edge–
cloud. An overview of recent advances on greening IoT for
IoT and smart city applications is provided in [62]. Irida and
Mattias in [63] investigate the effects of different application
partitioning scenarios on edge device energy consumption and
application latency in the edge-cloud environment. On the one
hand, the results are similar to the modeling results we present
in this paper showing that different placement strategy yields
different power consumption and responding time. To meet
design constraints, a smart partitioning strategy is required in
the application development process. On the other hand, the
work does not consider NFV aspects, which leverages IoT
deployment’s agility and flexibility.

Particularly, upon provisioning IoT services in edge–cloud
environments, the workload might be fragmentarily distributed
all over the computing machines without an efficient alloca-
tion and consolidation methods. In case of data center, this
scenario could draw an energy wastage as high as 60% of the
server energy consumption [64]. Moreover, more the number
of servers running, more is the energy needed for cooling
system, as it can take up as much as 50% of the data center
energy consumption. Hence, the study of energy efficiency
in cloud-involved models also contributes to the resilient,
green development of the Information and Communication
Technology (ICT) industry.

As stated in the Thematic Issue of the European Commis-
sion in 2015 [65], the limitation of the current approaches
is the lack of a combined solution for resource and energy
efficiency. Regarding the SFC embedding solutions, many
previous approaches [40], [44], [66] focused on finding the
placement for allocating VNF with the lowest cost. These
approaches may draw more energy consumption, as more
servers and network switches could be turned on, which
results in as much as 45% and 15% of total data center
energy consumption, respectively [67]. The authors of [68]
also considered minimizing service deployment cost. In [69],
the authors proposed an energy cost model and two resource
allocation strategies for inter-domain NFV-enabled networks.
As energy cost accounts for more than half of the total underly-
ing network cost, it is crucial to minimize the total energy cost
while keeping high mapping revenue for resource allocation.
They proposed a novel and efficient mapping strategy and
labeled it EERID, which can map each virtual resource among
inter-domain networks within polynomial time.

D. Differentiation and taxonomy of related Work

A taxonomy of the related work on the edge–cloud interplay
based on SDN and NFV for IoT applications is provided in

Table I. In particular, for each paper listed in the summary
table, we have mentioned clearly whether offloading and
mapping mechanisms are proposed. We have also evaluated
if the IoT system is capable of dealing with dynamics of SFC
requests. The evaluation considers performance (acceptance
rate, utilization), energy-efficiency, and VM migrations for
varying loads. These features of the taxonomy are represented
by the different columns in Table I. It is evident that our paper
goes beyond state-of-the-art. To the best of our knowledge,
it is the only work that considers offloading and mapping
mechanisms for the edge–cloud IoT system, which is evalu-
ated holistically regarding performance, energy efficiency, and
overhead in terms of migrations.

III. PROBLEM FORMULATION

This section addresses research challenges in edge–cloud
use cases that offer IoT services. We have described a traffic
monitoring IP camera system in the context of smart city. The
system is used as a specific use case and can be considered
a typical edge–cloud IoT system, in which energy consump-
tion and resource utilization are two important performance
factors. Based on the system, specific technical issues that
will be solved using the framework of this research are to be
addressed.

A. Challenges in providing IoT services in edge–cloud envi-
ronments

Providing IoT services in edge–cloud environments based
on NFV/SDN has attracted attention of the research and
industrial community recently [70] owing to the challenges
it poses:
• Resource allocation, energy efficiency vs. performance:

An issue that arises when creating an SFC is how to
embed the service chain on top of the edge–cloud physi-
cal substrate so that the physical resources are efficiently
utilized, while keeping the energy consumption of the
system as low as possible and the QoS performance of
the network service optimal. This issue is related to the
distribution of the VNFs over different hosts, which is
known as the VNF placement problem [71]. Notably, the
performance and efficient resource utilization and energy
consumption can hardly be achieved at the same time.

• Resource dynamics: In reality, SFC requests can arrive in
the system and leave dynamically on demand according
to the pay-as-you-go service model in edge–cloud. This
poses a challenge as to how to develop mechanisms that
can optimally and dynamically reallocate resources, while
maintaining low complexity of network operations.

• Modeling and evaluation of SFC embedding in edge–
cloud: In order to design and evaluate the performance
of SFC embedding algorithms, the behaviors of the edge–
cloud infrastructure in terms of QoS, resource utiliza-
tion, energy consumption, etc. should be known. That
is, measurement and modeling in edge–cloud should be
performed. So far, very little is available in the literature
in this regard.
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TABLE I: Taxonomy of work related to the edge–cloud interplay based on SDN and NFV for IoT applications

Paper Edge-Cloud Offloading Mapping Performance Energy Dynamics Migrations Testbed Use Case
Openstack++ [25] " " — " — " " " Interactive mobile apps

and services (cloudlets)
Software-Defined — — — — — " — " IoT cloud systems
IoT [23]
Container-based — " — " — — — " Network functions
NFs [27] (NFs)
DeepViNE [55] — — " " — " — — Virtual network

embedding
VNF placement [57] — " — " — " — — NFV networks
Virtual network embed- — " " " " " " — Virtual network
ding: a survey [36] embedding
Energy-efficient net- — " " " " " — — Virtual network
work embedding [37] embedding
Baseline Offloading [39] " " — " — — — — QoS-aware VNF
SFC placement [44] " " " " — — — — General cloud services
VNF interference [46] — — — " — — " " QoS-aware VNF

consolidation
Interference-aware VNF " — " " — — " — 5G network slices
placement [47]
SFCCM Offloading[40] " " — " — — — — edge–cloud services
Geo-distributed Cloud [42] " " " " " — — — edge–cloud SFC
Least Loaded Mapping [45] " — " " — " — — SFC NFV
CORD [28] " — — " — — — " Telco network

infrastructure
Software-defined edge " " " " — — — — IoT cloud systems
Computing [29]
IoT PaaS [30] " " " " — " — " NFV networks
NFVdeep [49] — — " " — " — — Network services
Multi-task deep [50] — " " " — " — — VNF chains
Maritime IoT [41] " " — " " — — — Maritime
EAR-ADS [48] — — " " " " — — Delay-sensitive

applications
Multi-attribute MEC [51] " — " " " " " — IoT services
Breadth-first search [52] — " " " — " — — VNF SFCs
DPTO [53] " " — " — — — —
CDFSA-PGA [54] — — " " — — — — MEC services
BACON [58] — " " " — " — — NFV networks
Cost-efficient VNF " " — " " " — — Cross-edge SFCs
orchestration [68]
EERID [69] — — " " " " — — Inter-Domain networks
Our proposed " " " " " " " " Smart traffic
solution monitoring

B. Motivating use case

A smart traffic monitoring IP camera system was used as a
case study to model an edge–cloud IoT system. The IP camera
system was originally developed in a previous work of Phuc
et al. [72]. The design of the system stems from a requirement
to get traffic information in busy Asian cities such as Hanoi,
where traffic congestion usually occurs, especially during the
peak hours. The original IP camera system can detect traffic
condition of the road in real-time by processing motion JPEG
pictures. Instead of sending the pictures to a central server
located in the cloud that could require a high performance
server system, as well as high network throughput with high
deployment cost, the system makes use of a low cost ARM-
based Raspberry Pi (RPi) residing near the camera to process
the pictures. It can deliver four traffic Levels of Service (LOS)
over a low bandwidth transmission line to a central application
server, namely (1) free flow, (2) stable flow, (3) unstable flow;
and (4) breakdown flow.

In this research, we have further assumed that this smart
traffic detection system can be deployed in a big city for traffic

monitoring by installing IP cameras in many intersections.
The massive deployment of thousands of IP cameras with
smart processing units at the edge is a typical IoT application,
where the edge–cloud implementation could be beneficial. On
the one hand, as the resources at the edge are limited, a
combined resource allocation strategy in both edge and cloud
that allows tasks to be offloaded to the cloud can help increase
the overall system utilization. On the other hand, due to the
fact that the centralized data centers with computing-intensive
applications consume a lot of energy [10], [11], and sending
heavy data to the central cloud can be costly, placing some
tasks at the edge can reduce the system energy consumption, as
well as bandwidth requirement, thereby reducing operational
costs. Moreover, we find that energy and resource profiling
is essential for developing realistic service chain embedding
algorithms. However, resource and energy profiling and mod-
eling of a real system is difficult to find in the literature.
Thus, in our research, a system’s testbed has been developed to
measure, profile, and model resource and energy consumption.

In order to deploy the service in the edge–cloud system,
the traffic monitoring software is divided into four different
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Fig. 1: Traffic monitoring IP camera system as SFC distributed
over edge–cloud architecture.

functions, which can be placed in different locations:
• (1) Capturing (Cap): connected directly to the camera

and gets pictures at six frames per second, with a res-
olution of 640 × 480. This function solely runs on the
Embedded Computer (EC) and sends captured images to
the Decoding block.

• (2) Decoding (Dec): transforms received images into gray
scale images, sets some initial parameters, and sends
the initial parameters and gray images to the Density
Estimation block. This function can be placed at the edge
or in the cloud.

• (3) Density Estimation (Des): makes use of the initial
parameters and the next gray images to calculate the
traffic density and sends the information to the LOS
decision block on the server. This function can reside
either at the edge or in the cloud.

• (4) Levels of Service (LOS) decision: receives information
sent from the Density Estimation and decides whether the
traffic is congested or not. This function solely runs on
the central server in the cloud.

These four functions must be performed in order. As de-
picted in Fig. 1, by modularizing the IoT service, the IoT
functions can now be formed as the SFC and be distributed
over the edge–cloud infrastructure.

C. Objectives

Based on the above motivations, the objectives of this work
are as the follows:
• Resource efficiency of the physical edge–cloud substrate

should be improved in the sense that the overall utilization
can be increased. Thus, more SFCs can be served using
limited physical resources.

• Energy efficiency must be improved, that is, the overall
energy consumption should be proportional to the system
utilization. This is called the system’s energy proportional
property, as shown in Fig 2, that is, the energy con-
sumption in a low utilization scenario should be much

Fig. 2: Ideal energy proportional property.

lower than in a case of high utilization. In other words,
the average energy consumption per SFC should be kept
ideally constant, independent of the system’s utilization.
In this research, the energy consumption should be in
proportional to the traffic intensity of vehicles on the
roads.

• Resource dynamics is the ability to reallocate resources at
the edge or in the cloud dynamically, as SFC requests join
and leave the system over time. Thus, the SFC embedding
algorithm must be performed periodically to maintain a
high system resource utilization. As a consequence, VNFs
shall be consolidated in other machines as a result of SFC
remapping. VNF re-location might happen often, which
poses a challenge in the implementation. Thus, in any
approach, the implementation complexity should be taken
into account.

IV. SYSTEM ARCHITECTURE, TESTBED AND
MEASUREMENT

A. System architecture

Fig. 3 represents the developed architecture of the edge–
cloud framework for providing IoT services proposed in
this work. The architecture uses two open-source platforms,
namely OpenStack [19] and Kubernetes [20] as its core.
In our framework, the infrastructure, including computing,
storage, and network resources, are managed by OpenStack’s
basic modules, namely Nova, Cinder, and Neutron. The VNF
Manager (VNFM) and NFV Orchestrator (NFVO) are partly
composed of Kubernetes controllers and OpenStack modules’
controllers. Container and hypervisor are the two widely-used
virtualization technologies in commercial computing systems.
While some public clouds such as Terremark and Amazon
Web Service (AWS) use either ESXi Hypervisor or XEN
Hypervisor, which have gained tremendous popularity. Kernel
Virtual Machine (KVM), another hypervisor technology is
trusted by OpenStack, Microsoft Azure, and its private cloud.
On the other hand, Google, IBM/Softlayer, and Jonent are
typical examples of successful public cloud platforms using
containers. In containerization technology, applications share
the same OS, and therefore the deployment sizes and pro-
cessing time are much less than that of hypervisor. Because
of its light weight deployment, containers can run on devices
with limited hardware resources such as RPi, Beaglebone, or
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Fig. 3: Overall architecture of three-tier traffic camera system.

other common embedded platforms. In this research work, to
take the advantages of containers, we implemented container-
based VNFs in both edge tier and cloud tier. The components
of the framework are described in the order from left to right
as follows:

• The Management block is responsible for monitoring
the system states, receiving SFC requests from outside,
and performing SFC embedding strategy based on the
developed SFC embedding algorithms. It contains two
components. The Centralized Monitoring (CM) compo-
nent manages network resource states and is implemented
using the Prometheus [73] project. Prometheus is also
installed in the computing units (virtual machines or
embedded computers) for gathering necessary metrics
such as CPU usage, bandwidth usage, and RAM usage.
These information are sent to the CM host in the cloud
via HTTP API. The other block performs SFC embedding
algorithms for VNF provisioning. Different SFC embed-
ding strategies can be integrated and tested via the testbed
open API. When an SFC request arrives, locations of
the incoming VNFs are decided using SFC embedding
algorithms based on current system state information.
A template is then created and sent to the Container
Orchestrator in the next block.

• The Provisioning block takes charge of creating VNFs,
VNF networks, and the provisioning container-based
VNFs to the computing units following the template from
the Management block. The block consists of Network
Hypervisor (NH) and Container Orchestrator (CO). While
NH is managed by Neutron, which is responsible for pro-
visioning a unified network among computing units, CO
is a Kubernetes controller implemented by Magnum [74]
that reads the deployment template from the previous
block and deploys VNFs to the Kubernetes nodes. Since

Neutron is used as the hypervisor for container net-
working, Kuryr–Kubernetes [75] is required to make the
communication between Neutron and CO block feasible.

• The Cloud tier and Edge tier blocks contain the comput-
ing units where VNFs are deployed. At the Cloud tier,
VMs play the role of computing units and host VNF’s
containers, whereas physical EC directly host virtual
containers for VNFs at the Edge tier. ECs also take charge
of the communication with data collection devices such as
camera and sensor. The computing units are initiated in
Kubernetes environment and Docker container runtime.
Hence, they serve as the Kubernetes worker nodes in the
system. VNFs are provisioned on the computing units
in the form of Kubernetes pod. The pod networking is
transparent and is managed by Neutron controller because
of the Kuryr driver.

It is noted that the proposed architecture can be generalized
to be used for other IoT applications and is not necessarily
specific to the context of this research.

B. Testbed and measurement results

A testbed based on the conceptual architecture shown in
Fig. 3 was built for the measurement and modeling of SFC
deployment in the edge–cloud infrastructure. Table II shows
the testbed configurations. As can be seen, the testbed was set
up using an RPi 2B for the edge and Dell high-performance
commodity servers for the cloud tier and for the management
and provisioning blocks. The energy consumption at edge
was measured using a USB multimeter. Besides that, several
softwares are also used as measurement and monitoring tools,
such as htop [76] and vnstat [77] for process and bandwidth
monitoring, respectively.

The operations of the SFC embedding were investigated
using the testbed. VNFs were deployed at both RPi and
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TABLE II: Testbed configurations

Hardware Software Description
Data tier 3 x Logitech C170 cameras Resolution: 640 x

480 Frame rate: 6fps
N/A Capture traffic pic-

tures
Edge tier Rasberry Pi 2B (RPi): 900MHz quad-core ARM

Cortex-A7 CPU, 1GB RAM, 100 Base Ethernet
OS: Raspbian Stretch; Ku-
bernetes v1.12; Container:
Docker v8.09.5

One Pi serves up to 3
cameras

Cloud tier &
controller Dell server, 2 x Intel Xenon 5570: 2.93GHz x 4

cores, 96GB memory, 1TB storage, 4x NICs
OS: Ubuntu Server16.04
LTS; OpenStack Ocata;
Kubernetes v1.12; Con-
tainer: Docker v18.09.5

SFC embedding & re-
source management

Network devices Cisco Linksys-X2000 router; 4 x 100Mbps NICs N/A Transmitting data
from edge to cloud

Measurement MakerHawk USB multimeter UM25;
Voltage resolution/accuracy: 0.01V /±0.2%;
Current resolution/accuracy: 0.001A/±0.8%

htop, vnstat, NTP Measure energy
consumption,
computing/RAM
utilization, latency

TABLE III: Resource utilization in terms of CPU, RAM, power, and bandwidth of each VNF type running on the testbed.

VNF type
CPU (%) RAM (MB) Power (W) Bandwidth(Mbps)

(Bu)RPi Server RPi Server RPi Server
Idle 1.10 0.10 107.00 169.00 1.21 205.10 0.00

Capturing 3.00 N/A 1.50 N/A 0.43* N/A 47.35
Decoding 8.00 1.50 8.00 26.21 0.09 1.67 16.32

Density Estimation 13.60 6.50 2.50 19.66 0.11 7.23 0.60
LOS Decision N/A 4.96 N/A 13.10 N/A 5.52 N/A

*Camera power included

the server, and they were chained together to form an SFC.
Based on the deployment, various tests and measurements
were conducted, which were divided into two sets of test cases,
namely single VNF test cases and combination test cases.

Firstly, in the single VNF test cases, the performance pa-
rameters of the hardware infrastructure and 4 individual VNFs
were conducted, including CPU, RAM, power consumption as
well as bandwidth and latency. We conducted both test cases
using the same toolset in the same environment for 10 times;
each time, we recorded 50 instantaneous measuring samples.
The final results are the average number of these values, as
shown in Table III and discussed below.

1) CPU and RAM utilization: The CPU utilization in
percentage of the total system computing capacity and the
RAM utilization (in MB) were investigated for the embedded
computer and the server in the following test cases:

• Idle mode: is the state when the computer is turned on
but does not run any application, that is, the computer
just runs basic services of the OS. In this case, CPU
utilization takes up only 1.1% and 0.1% of the total CPU
in the embedded computer and the server, respectively.
Moreover, RAM utilization is minimal; CPU and RAM
utilization in the idle mode are the utilization of the
computing hardware infrastructure without any virtual
service deployed.

• CPU and RAM utilization of VNFs: next, the CPU and
RAM utilization was measured when the computer hosted
one of the four VNFs in the service chain. In the RPi,
a container for the corresponding VNF was instantiated
directly in the OS, while for the x86 server platform,
the container was embedded into a virtual machine. Note

that a VM can host a number of containers. As shown
in the table, the resource utilization of the same function
is different when placed at the edge or in the core. As
the RPi at the edge is less powerful, CPU utilization
at the edge is generally larger than that at the core.
As can be seen, a server requires more RAM to run
a function than the edge computer. The reason is that
edge and cloud platforms have different hardware and OS.
The server OS and hardware are designed to best utilize
its computing power for generic purposes, while a less
powerful edge embedded system gears towards resource
and energy efficiency. Also, the external libraries to make
the VNFs compatible with both ARM-based and x86-
based processors are different.

2) Power consumption: The power consumption (in Watt)
of the embedded computer and high performance server is
then measured. It is to be noted that in this paper, energy and
power consumption are used interchangeably.

• Baseline power consumption is the basic power consump-
tion when the computer is in the idle state. In this state,
the computer consumes minimum power, as the clock
operates at its minimum frequency. As can be seen in
Table III, even in the idle mode, the high performance
server in the core consumes much more power than the
RPi.

• Power consumption of VNFs: With the same configura-
tions mentioned above, we measured the power consump-
tion of the VNFs when running on different platforms. As
can be seen, running a function at the core is more power-
intensive than the same function running at the edge.
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(a) CPU & Bandwidth usage 1 SFC (b) Power consumption 1 SFC (c) Latency 1 SFC

(d) CPU & Bandwidth usage 2 SFCs (e) Power consumption 2 SFCs (f) Latency 2 SFCs

(g) CPU & Bandwidth usage 3 SFCs (h) Power consumption 3 SFCs (i) Latency 3 SFCs

Fig. 4: Experiment result in terms of CPU, BW, Latency, and Power of the edge computer according to each test case: (TC1)
Capturing at edge, the rest in cloud; (TC2) Capturing and Decoding at edge, the rest in cloud; (TC3) Capturing, Decoding and
Density Estimation at edge, LOS Decision in cloud.

3) Required bandwidth: As the motion pictures were sent
from the edge to the cloud along the service chain in the
order of Capturing – Decoding – Density Estimation – LOS
Decision, we measured the bandwidth required to send the data
from a function to the next one. Sending raw pictures from
the Capturing function requires the maximum bandwidth, that
is, 47.35Mbps, while sending the processed data from the
Density Estimation to the LOS Decision requires the least,
that is, 0.60Mbps.

4) Latency: In this work, latency has been defined as the
time needed for the SFC to capture images until it can give out
the Level-of-Service. Latency is highly random, depending on
different factors such as channel utilization, CPU load, number
of SFCs embedded in the system, and so forth (Fig. 4).

After conducting the single VNF testcases as discussed
above, the second test cases to be conducted were the com-
bination test. In the test setups, we composed the VNFs in
service chains and instantiated them in different locations in
the edge and the core. The purpose of the combination test

was to investigate the system behaviors and the impacts of
the SFC embedding in terms of resource utilization, power
consumption, latency, etc. when multiple SFCs are mapped
on the physical substrate.

When the system receives multiple SFC embedding re-
quests, there are different combinations of resource alloca-
tion and VNF placement depending on the SFC embedding
strategies. Various scenarios have been investigated on the
testbed, but only nine test cases are shown in the Fig. 4.
As the edge embedded computer can host up to three SFC
requests concurrently, the measurement of one SFC embedding
(Fig. 4a, b, c), two SFC (Fig. 4d, e, f) embedding, and
three SFC embedding (Fig. 4g, h, i) have been shown. The
measurement in each figure is further categorized into (1) TC1:
only the Capturing function of an SFC is located at the edge,
while the others are in the cloud; (2) TC2: the Capturing and
Decoding are at the edge, the other two are in the cloud; and
(3) TC3: only the LOS Decision is in the cloud, while the
others are at the edge.
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5) Impact of the VNF locations on resources and perfor-
mance:
• Bandwidth vs. CPU utilization vs. power consumption:

Fig. 4a, d, g clearly show that bandwidth and CPU
utilization are inversely proportional to each other. Thus,
there should be a trade-off between the highly loaded
edge computer with computing intensive VNFs and the
high bandwidth requirement when offloading these func-
tions to the cloud. Also, it is obvious that placing more
functions at the edge causes more power consumption in
the embedded computer. However, as the server in the
cloud consumes much more power, placing functions at
the edge may also save the total power consumption, as
shown later on in this article.

• Latency: Fig. 4c, f, i show that latency is lower when
Capturing, Decoding, Density Estimation are placed at
the edge computer. This can be explained by the fact
that latency is optimal if the image processing is placed
locally near the camera, which requires intensive comput-
ing power, as well as high bandwidth between functions.
The information sent to the LOS Decision needs minimal
bandwidth (as shown in Table III) to reduce network
delay. The only exception is shown in Fig. 4i. As can
be seen, when three SFCs with three VNFs each are
embedded at the RPi, the latency increases. It is because
the embedded computer is overloaded with the average
CPU utilization reaching 80% (Fig. 4g).

Thus, it is observed that placing more functions at the edge
can reduce latency and required transmission bandwidth but
may cause the edge computer to be overloaded.

6) Impact of the number of SFCs on resource and perfor-
mance: It is obvious that the more SFCs with VNFs are placed
in the edge computer, the more the computer is overloaded.
When placing 3 SFCs with 9 VNFs at the edge, as represented
in Fig. 4g, h, i (TC3), the average CPU utilization becomes
as high as 80%, and the transmission bandwidth becomes
saturated at around 94Mbps, which is maximum bandwidth
of the Fast Ethernet interface in our experiment. This shows
that the RPi cannot host more than 3 SFCs for the smart traffic
detection services.

V. SYSTEM MODELING

The measurement results in Section IV have been analyzed
and modeled so that they can be applied to a larger scale
simulation of the system. Table IV defines notations used for
the formulation.

A. SFC embedding problem

In the model, the physical substrate Gp contains three
physical elements, namely Np, NDp, and Lp. Np denotes the
set of computing units, including the set of edge devices Ep

and servers in the cloud Sp. NDp and Lp denote the sets of
physical network devices and physical links, respectively. The
set of SFC requests serving active cameras in an edge device
Rj consists of several requests {rij}, each of which consists
of other parameters, as indicated in Table IV.

TABLE IV: Notations used for system modeling

Notation Description

Gp = {Np,NDp, Lp} Physical substrate graph

Np = {Ep, Sp} Set of edge computers and cloud servers,
respectively

Ep = {epi }; i ∈ Ωe Set of edge computers

Sp = {spj }; j ∈ Ωs Set of servers in the cloud

NDp = {np
k}; k ∈ Ωn

Set of physical network nodes, including
nodes in the core of the network and nodes
in data center networks

Lp = {lpm};m ∈ Ωl Set of physical links

Rj = {r1j , r2j , rij , ...}
Set of SFC requests originated from the
edge computer epj , thus the beginning of
the SFC should be from epj

rij = {VNFi
j , L

Vi
j , tij , d

i
j}

The ith request originated from edge
computer epj

A = {r11 , r21 , rij , ...}
Set of SFC requests that has been mapped
successfully to the system

vnf i,k
j

VNF type k ∈ {Cap,Dec,Des, LOS}
belonging to the ith request originated
from edge computer epj

VNFi
j = {vnf i,k

j } Set of VNFs belonging to the ith request
originated from edge computer epj

L
Vi
j = {lVi

j (u, v)}
Set of virtual links belonging to the ith

request originated from edge computer epj ,
interconnecting vnf i,u

j and vnf i,v
j

l
Vi
j (u, v)

Virtual link belonging to the ith request
originated from edge computer epj that
connects two consecutive VNF vnf i,u

j and
vnf i,v

j

tij Arrival time of request rij
dij Service time of request rij

The mapping of an SFC request rij to the physical substrate
Gp can be divided into two actions: mapping of VNF set
VNFi

j with the corresponding CPU and RAM demands to the
physical nodes Np; and mapping of virtual link set LVi

j to
physical links Lp and network devices NDp. The mapping
process can be expressed as follows:

f : Rj −→ Gp (1)

Which are separated into two sub-processes:

g : VNFi
j −→ NP (1a)

h : LVi
j −→ (NDP , LP ) (1b)

We further introduced several binary variables to indicate if
the mapping was successful:

α(vnf i,k
j → npi ) =





1;npi ∈ Np if vnf i,k
j is mapped to npi

successfully
0 otherwise

(2)

α[lVi
j (u, v)→ lpm] =





1 if virtual link lVi
j (u, v) is mapped

to physical lmp successfully
0 otherwise

(3)

12



δ(rij → Gp) =

{
1 if SFC rij is mapped successfully
0 otherwise

(4)

B. Resource utilization

1) CPU utilization of physical nodes: As shown in Sec-
tion IV-B, the CPU usage increases linearly depending on the
number and type of VNF embedded. Therefore, the CPU usage
in percentage of an edge device epj and a cloud server spk can
be modeled as the sum of the CPU utilization in the idle mode
and the CPU utilization of all VNFs residing in this computer.
This can be expressed as the following:

C(epj ) = C(∅ → epj )

+
∑

i∈arg(A)

∑

v∈arg(rij)
α(vnf i,v

j → epj )× C(vnf i,v
j → epj ) (5)

C(spk) = C(∅ → spk)

+
∑

i∈arg(A)

∑

v∈arg(rij)
α(vnf i,v

j → spk)× C(vnf i,v
j → spk) (6)

In Eq. (5) and (6), C(∅ → epj ) and C(∅ → spk) express the
CPU utilization in idle mode of the edge computer and cloud
server, respectively. C(vnf i,v

j → epj ) and C(vnf i,v
j → spk)

express the CPU utilization of the VNF type v, belonging to
SFC i originating from edge epj when embedding on the edge
epj or server spk, respectively. The actual CPU utilization of
individual VNF types is shown in Table III. Besides, the CPU
capacity of edge device epj and cloud server spk are denoted as
Ccap(e

p
j ) and Ccap(s

p
k), respectively.

2) Bandwidth utilization of physical link: Function B(.)
is used to demonstrate the bandwidth usage of a link. For
example, bandwidth demand of virtual link lVi

j (u, v) when
being mapped to physical link lpm ∈ Lp is defined as
B[lVi

j (u, v) → lpm]. The total bandwidth usage of a physical
link lpm is the total bandwidth demands of all virtual links
successfully embedded on that link, expressed as follows:

B(lpm) =
∑

i∈arg(A)

∑

arg[l
Vi
j (u,v)]∈arg(LVi

j )

α[lVi
j (u, v)→ lpm]

×B[lVi
j (u, v)→ lpm]

(7)

The bandwidth capacity of a physical link lpm is denoted as
Bcap(l

p
m). It should be noted that if vnf i,u

j and vnf i,v
j reside

at the same node, no physical link is required to interconnect
these VNFs; thus, the bandwidth demand on the physical link
can be denoted as B[lVi

j (u, v) → ∅] = 0. The bandwidth
demand of each type of VNFs has been shown in in Table III.

C. Power consumption

As energy consumption is significantly proportional to the
states of the servers and network devices [37], power saving
goal can be achieved by reducing the power consumption of
servers and network devices. It is assumed that the computing

TABLE V: Power profile of HP Enterprise switch [80]

Operating speed Power(W)
Pstatic 39
P10-10Mpbs per port 0.42
P100-100Mpbs per port 0.48
P1000-1Gpbs per port 0.9

units and network devices are able to change their states
depending on actual loads [78], [79], that is, devices are able
to turn off or enter sleep/standby mode after consolidation
or offloading while maintaining the ability to wake up when
necessary. Power consumption of a device can significantly be
reduced when inactive, as shown in previous work [37], [78],
[79]. In this work, the state of a physical device is denoted
by the binary function state, which is equal to 1 when the
device is in ON_state and 0 otherwise (OFF_state).
• state(spk, t) and state(epj , t) denotes the working

state of the server spk ∈ Sp and edge device epj ∈ Ep

at time t, respectively.
• state(ndp

k, t) denotes the working state of the network
device ndpk ∈ ndp at time t.

1) Power consumption of computing units: As observed
earlier in Section IV-B, similar to CPU model, power con-
sumption of computing unit also follows the linear trend
depending on the number and type of hosted VNFs, that is, the
power consumption of a computing unit (i.e., edge computer
or cloud server) is in proportion to the number of VNFs
running inside the computer. Let us denote P (∅ → epj ) as
the baseline power of an edge device epj , P (vnf i,v

j → epj ) as
the power consumption of vnf i,v

j when it resides in epj , and
state(epj , t) as the working state of the edge epj ; then the
power consumption of an edge device at time t can be defined
as baseline power and the power of all VNFs located in epj :

P (epj , t) = state(epj , t)× [P (∅ → epj )

+
∑

i∈arg(A)

∑

v∈arg(rij)
α(vnf i,v

j → epj )× P (vnf i,v
j → epj )]

(8)
Similar to the edge device, we have formulated cloud server

power consumption as follows:

P (spk, t) = state(spk, t)× [P (∅ → spk)

+
∑

i∈arg(A)

∑

v∈arg(rij)
α(vnf i,v

j → spk)× P (vnf i,v
j → spk)]

(9)
2) Power consumption of network devices: The power

consumption of a network device in the corresponding working
states was modeled based on previous analysis [37], [81], [82].
The state of a network element nd p

k is defined by binary
indicator state(nd p

k , t), which is 1 if the device is turned on
and 0 otherwise. For the simulation section, we have chosen
the energy-aware commercial 24-port HP Enterprise [80] with
the power modeling, as shown in Table V. A switch can adapt
the capacity of its network interfaces to the actual load, so that
the power consumption can be saved. In the equation below,
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P (∅ → nd p
k ) is denoted as the baseline power of the switch,

and P k
j indicates the power consumption of one of the m

network interfaces of nd p
k with regard to its operating speed

(Table V).

P (nd p
k , t) = state(nd p

k , t)× [P (∅ → ndp
k) +

m∑

j=1

P k
j ] (10)

D. Objectives and constraints

Assume that at the time t, a request Rj arrives in the edge
eij ∈ Ep, and it is expected that the SFC algorithm must
maximize the number of accepted SFCs:

maximize Z =
∑

i∈arg(Rj)

δ(rij → Gp) (11)

The process of mapping Rj into Gp that ensures maximum
number of accepted chain may result in multiple solutions as
follows:

f(Rj −→ Gp) = {x1, x2, ..., xn} = x (12)

where xi is an individual mapping solution, x is a vector
of solutions. The sub-objective is to find the mapping method
xi ∈ x that the power consumption equation P (xi, t) returns
minimum value:

find xi = argmin
xi

P (xi, t), xi ∈ x (13a)

with P (xi, t) =
∑

k∈arg(Ep)

P (epk, t)+

∑

k∈arg(Sp)

P (spk, t) +
∑

k∈arg(NDp)

P (ndp
k, t)

(13b)

The objective functions in Eq. (11) and (13) are subject to
the following constraints:

α(vnf i,s
j → epj ) = 1; α(vnf i,d

j → spk) = 1

if δ(rij) = 1,∀rij ∈ Rj

(14)

This constraint ensures that if an SFC rij is mapped to
the system, the first VNF vnf i,s

j (i.e., Decoding) must stay
at edge node while the last VNF vnf i,d

j (i.e., LOS decision)
must always stay at server node.

∑

j∈arg(Ep)

α(vnf i,v
j → epj ) ≤ 1;

∑

k∈arg(Sp)

α(vnf i,v
j → spk) ≤ 1

with ∀vnf i,v
j ∈ rij ,∀rij ∈ Rj

(15)
Constraint (15) ensures that every VNF must be regulated

such that only one instance of it is mapped to the system at
either edge or cloud.

∑

j∈arg(Ep)

∑

v∈arg(rij)
α(vnf i,v

j → epj )−

∑

v∈arg(rij)
α(vnf i,v

j → epj ) ≤ 0 with ∀rij ∈ Rj

(16)

Constraint (16) ensures that VNFs belonging to an SFC
must stay within an edge node, as mentioned earlier.

C(epj ) ≤ Ccap(e
p
j ); C(spk) ≤ Ccap(s

p
k)

with ∀epj ∈ Ep,∀spk ∈ Sp (17)

In Constraint (17), the CPU usage of edge nodes and server
nodes must be less than or equal to their designated CPU
capacity.

B(lpm) ≤ Bcap(l
p
m) with ∀lpm ∈ Lp (18)

Constraint (18) ensures that the total utilization of the
physical link must not exceed its capacity Bcap(l

p
m).

∀epk, e
p
k ∈ g(VNFi

j) : state(e
p
k, t) = 1,state(spk, t) = 1

(19)

∀ndp
k ∈ h(LVi

j ) : state(ndp
k, t) = 1 (20)

Constraint (19) and (20) require physical nodes that VNFs
have been mapped upon, and network device that physical
links are connected to must be turned on, respectively.

The introduced optimization problem is intractable because
it requires solving an NP-hard problem. Due to its high
complexity, it is not possible to solve the problem directly
in a timely manner given the large number of servers and
network nodes. Thus, in the next section, RE-SCE – a heuristic
SFC embedding strategy, is introduced. The system models in
this section are useful for the development of the embedding
algorithm, as well as the simulation in the following sections.

VI. RESOURCE AND ENERGY-AWARE SERVICE CHAIN
EMBEDDING STRATEGY (RE-SCE)

A. Edge–cloud network topology

Fig. 5 shows the edge–cloud topology that is used to deploy
the proposed SFC embedding algorithm. The edge clusters are
connected to the centralized data center through the Internet.
At the data center, we use a k-ary Fat-Tree topology [83],
which consists of the same (5k2)/4 k-port switches and k3/4
servers. As shown in the figure, switches in the Fat-Tree
topology are arranged in three layers, namely the access,
aggregation, and core. Two servers are said to belong to a
near group, middle group, or far group if the traffic exchanged
between them should go through an access switch only, or
aggregation switches or core switch, respectively. The virtual
link interconnecting two VNFs in a near group, middle group,
and far group are called near link, middle link, and far link,
respectively. It was observed that a near link is shorter, its
bandwidth demand is easier to satisfy, and it is more energy-
efficient, as the link should traverse less network devices.

B. RE-SCE strategy

This section describes the Resource and Energy-aware
Service Chain Embedding (RE-SCE) strategy proposed in this
work that is suitable for the edge–cloud infrastructure. The
main objective of RE-SCE is to maximize the number of
accepted chains by balancing the resource usage between edge
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Fig. 5: Overall topology from Edge tier to Cloud tier

and cloud tier. Then the power consumption of the physical
substrate can be minimized by optimizing VNF-placement at
DC and the edge.

By combining offloading and mapping strategies (see Sec-
tion II-B), the SFC embedding is performed in three steps
expressed by three different procedures:

• Edge-Cloud VNF Offloader (E-Coff): This procedure de-
cides if a VNF can stay at edge or be offloaded to cloud
server based on the resource state of both tiers’ devices.

• VNFmapping (VNFm): After deciding which VNFs reside
in the edge or cloud, this procedure is responsible for
mapping VNFs to specific physical computing devices.
Since the VNFs of an SFC in this work could only be
mapped either on the edge device that the SFC originates,
or in the data center, this process mainly decided the VNF
placement to a specific server at the data center.

• Virtual Link mapping (VLm): Once the locations of the
VNFs in the SFC are decided, this procedure takes charge
of how virtual links among VNFs are mapped in the
physical links.

The entire RE-SCE is a joint resource–energy efficient em-
bedding described in Algorithm 1. The proposed embedding
algorithm relies on E-Coff, VNFm, and VLm that are presented
in Procedure 1, 2, and 3, respectively.

When a set Rj of SFC requests arrives, RE-SCE firstly uses
E-Coff to create an OffloadingSet list of feasible placements
for VNFs. Subsequently, each mapping feasibility in the list
is fetched into the VNFm and VLm procedure, which are
responsible for mapping VNFs and virtual links into physical
machines and physical links, respectively. The result of these

two procedures are added into ListPlacement, which includes
all placements that satisfy the constraints. If ListPlacement
is empty, meaning that there is no satisfied placement due
to resource shortage, the algorithm rejects one random rij in
the request set Rj in order to reduce the resource demand
(line 10 to line 12). Finally, RE-SCE calculates the power
consumption of each placement following equation 13b and
sorts all possible placements in the ascending order of power
consumption (line 17 - 18 in Algorithm 1). The first placement
with minimum power consumption is chosen as the final
solution. SFCmapping() (line 21) can do the actual mapping
on the system. The detail of the three procedures is illustrated
in the following sections.

Algorithm 1 RE-SCE algorithm

1: Input: GP , Rj

2: Initialization: Success = false; ListPlacement = ∅;
3: while Success = false; do
4: OffloadingSet = VNFOffloader(Rj);
5: for feasibility ∈ OffloadingSet do
6: VNFmResult = VNFmapping(Rj , feasibility);
7: VLmResult = VLmapping(Rj , VNFmResult);
8: ListPlacement ← VLmResult;
9: end for

10: if ListPlacement = ∅ then
11: rij = pickRandom(Rj)
12: Rj = Rj \ rij ;
13: continue;
14: else
15: Success = true;
16: end if
17: end while
18: calculatePower(ListPlacement);
19: sorting(ListPlacement, PowerAscendingOrder);
20: Solution = getFirstElement(ListPlacement);
21: GP = SFCmapping(Solution);
22: output: GP

C. edge–cloud VNF Offloader (E-Coff)

When a set of requests Rj arrives in the system, E-Coff
finds a feasible placement for each VNF in Rj . It is to be noted
that this process solely decides if the VNF placement will take
place at the edge device epj and/or in the cloud, while the server
location in the cloud is decided by the VNFm procedure. The
following steps explain the procedure in detail.
• EdgeSet and CloudSet keep a possible combination

of VNF placements in the edge–cloud for each
trial. The algorithm first tries a combination of all
{vnf i,Cap

j , vnf i,Dec
j , vnf i,Des

j } in the edge, except
vnf i,DOS

j , which is in the cloud.
• It then tries to gradually move VNFs to the cloud. In

each trial, VNFOffloader() checks the CPU sufficiency
in the cloud. If the condition is satisfied, the procedure
moves one additional VNF to the cloud (line 5 to 11).

• All possible combinations are then added in Offload-
ingSet. The combinations are arranged in the order that
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the one with more VNFs in the edge has higher priority.
The VNFmapping() is then invoked to find the specific
locations of VNFs in the edge–cloud.

Note that this algorithm can be applied not only for the
smart traffic monitoring IP camera system but for any linear
service chain.

Procedure 1 VNFOffloader()

1: Input: GP , Rj

2: Initialization: OffloadingSet = ∅;
3: EdgeSet={vnf i,Cap

j , vnf i,Dec
j , vnf i,Des

j };
4: CloudSet={vnf i,LOS

j };
5: while EdgeSet \ vnf i,Cap

j 6= ∅; do
6: if

{
C[EdgeSet→ epj ] ≤ Ca(e

p
j )
}

∧
{
C[CloudSet→ Sp] ≤ Ca(S

p)
}

then
7: OffloadingSet← {EdgeSet ∪ CloudSet};
8: CloudSet ≡ CloudSet ∪ getLastElement(EdgeSet)
9: EdgeSet ≡ EdgeSet \ getLastElement(EdgeSet)

10: end if
11: end while
12: Output: OffloadingSet

D. VNF mapping (VNFm)

Considering the VNF placement feasibility in OffloadSet
from VNFOffloader(), the VNF mapping algorithm repre-
sented in Procedure 2 first finds possible servers that can host
VNFs by solving the bin-packing problem related to VNF
CPU demands. Like First Fit [43], serverMapping() used
in VNFm tries to group VNFs into a small number of servers
to reduce the power consumption. SFCs are mapped one by
one in the series of server from left to right in the Fat-Tree-
based data center. VNFs belonging to each SFC are allocated
into the first server that has enough available CPU (line 3).
However, this method may put VNFs belonging to a SFC at a
far distance (i.e., far link). Let us denote vnf i,Sj and vnf i,Dj

as two neighbor VNFs of an SFC, where traffic goes from
vnf i,Sj to vnf i,Dj . It is possible that the serverMapping()

does not place vnf i,Sj and vnf i,Dj in the same near group (line
5), which causes an increased bandwidth usage in the physical
links. In order to improve the network utilization, a migration
strategy is introduced (from line 5 to 17) as follows:

• If the server spk hosting vnf i,Sj has sufficient CPU to
serve vnf i,Dj , then vnf i,Dj is migrated to spk.

• Otherwise, let us call an independent VNF as an only
LOS VNF of an SFC that resides in the cloud side, while
the other VNFs are at the edge. The algorithm finds a
set indVNFset of independent vnfn,indm ∈ spk that can be
migrate to other locations to free up CPU capacity for
vnf i,Dj .

• Moving vnf n,ind
m by using serverMapping() (line 11

to 13), and vnf i,D
j is to be migrated to spk. Placing vnf i,ind

j

at low priority will not affect the link utilization of the
system as it does not have connection between VNFs
inside the data center.

Moreover, in order to improve the system resource utiliza-
tion, VNF consolidation for all active SFCs in the system Av

is performed whenever an SFC rij departs from the system.
To reduce the consequences of VNF-interference mentioned
in Section II-B2, the algorithm tries to consolidate VNFs
belonging to an SFC into one physical machine. This prac-
tically reduces the bandwidth consumption caused by traffic
between VNFs, and therefore also reduces the impact of VNF-
interference.

Procedure 2 VNFmapping()

1: Input: GP , Rj , OffloadingSet
2: Initialization: VNFmResult = ∅;
3: gp = serverMapping(OffloadingSet, Gp);
4: if getGroup(vnf i,S

j , vnf i,D
j ) 6= near then

5: if C(vnf i,D
j → spk) ≤ Ca(s

p
k) then

6: gp ← (vnf i,D
j → spk);

7: else
8: indVNFnumber =
9: ceil[C(vnf i,D

j → spk)/C(vnf n,ind
m → sph)];

10: if getNumberVNF(vnf n,ind
m ) ≥ indVNFnumber

then
11: indVNFset =
12: getSetVNF(vnf n,ind

m , indVNFnumber);
13: gp = serverMapping(indVNFset, gp);
14: gp ← (vnf i,D

j → spk);
15: end if
16: end if
17: end if
18: VNFmResult←− gp;
19: Output: VNFmResult

E. Virtual link mapping (VLm)

VLm takes charge of creating connections inside and outside
the data center. In our link-mapping algorithm, we call the
external traffic as the traffic from the edge to the cloud and
internal traffic as the traffic between VNFs inside the data
center.

In our work, the Elastic Tree [84] based on the Fat-Tree
topology is applied for energy efficiency in the data center.
The Elastic Tree maintains a minimal number of devices in
the ON_State. In a large-scaled data center, putting devices
into inactive state would save a significant amount of energy.
For the core network, the Breadth First Search [85] (BFS)
algorithm is used to find the shortest path between the edge
and the data center. The VLm procedure is described in the
following steps:
• Step 1: For each virtual link (line 4), lVi

j (u, v) connects
vnf i,uj with vnf i,vj that exists external traffic (line 5),
VLm() finds the path through the core network by using
BFS() (line 6), which prioritizes the shortest path; the
result returns true if a feasible path is found.

• Step 2: Subsequently, for the internal traffic, Vlm() iden-
tifies the list of ON_STATE switch according to VNFs
location VNFmResult (line 8). Then, the set of physical
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link to connect these switches is constructed, which
consumes the least available bandwidth and least power
(line 10–12).

• Step 3: Finally, VLm() checks if all elements in the list of
link have enough bandwidth for mapping (line 13–17). If
both external traffic and internal traffic are satisfied (line
22), the SFC is accepted (line 23).

Procedure 3 VLmapping()

1: Input: GP , VNFmResult
2: Initialization: VLmResult = ∅;
3: for rij ∈ Rj do
4: for lVi

j (u, v) ∈ LVi
j do

5: if ∃ ExternalLink then
6: ExLinkResult = BFS[lVi

j (u, v)];
7: end if
8: listSwitchIn = VLim[VNFmResult, lVi

j (u, v)];
9: //Construct link

10: ListLinkIn = constructLink(listSwitchIn);
11: ListLinkIn = sort(listSwitchIn, key = cap,
12: order = asc);
13: for sLink ∈ listLinkIn do
14: if sLink = satisfied then
15: result← map(link, sLink);
16: end if
17: end for
18: end for
19: if |result| = |LVi

j | then
20: InLinkResult = true;
21: end if
22: if ExLinkResult ∧ InLinkResult = true then
23: VLmResult ← result;
24: end if
25: end for
26: Output: VLmResult

VII. PERFORMANCE EVALUATION

A. Simulation scenarios

To evaluate the performance of the proposed algorithm on
a large IoT system, a simulation was conducted. In the field
of edge–cloud, there are several popular simulators such as
IFogSim [86] and FogTorch [87]. However, as IFogSim only
allows creating tree-based topology [88] and other tools are
deprecated, we developed BK-EdgeCloud, a flow level event-
based Java simulator that simulates the entire system from
the edge to the cloud environment. BK-EdgeCloud allows
evaluating different key performance indicators in detail, such
as energy consumption, acceptance ratio, and utilization.

1) Topology: We selected the topology of Atlanta city pro-
vided by IBM Watson Research, New York, shown in Fig. 6,
as the core network. All nodes from N1 to N15 represent
the backbone switches. The data center was connected to
node N1, four edge clusters EDGE1, EDGE2, EDGE3,
EDGE4 are connected to N14, N13, N5, N3, respectively.
At the data center, a k-ary Fat-tree topology with k = 10,
which can serve 250 servers, was used. We assumed the

Fig. 6: Atlanta city network [89]

Fig. 7: Vehicle unit distribution recorded in a weekday, UK,
2018 [90]

bandwidth capacity of physical link from an edge node to the
edge gateway to be 100 Mbps, 20 Gbps of the core network,
and 1 Gbps inside DC. The power profile of switches is taken
from [80], as shown in Table V, while the power profile of the
servers is modeled as previously described (see Sec. V-C1).
EDGE1 and EDGE2 have 100 Rpis each, while EDGE3
and EDGE4 have 50 Rpis each. Therefore, the number of
edge computers account for 300 units. At each edge node, the
Pis are connected by a star topology to a central gateway, as
previously shown in Fig. 5.

2) Camera requests: In simulation scenarios, it is assumed
that each Rpi can host up to 7 cameras, which means that a
total number of 2100 cameras are deployed massively in the
streets of the city. They are activated depending on the current
traffic situation. As shown in Fig. 7, we considered a one-day
average traffic density in the UK in 2018 as reported by the
British government [90]. The traffic index is the normalized
traffic volume in terms of the number of vehicles relative to
the mean value of 100. It is further assumed that the number of
active cameras is proportional to the road traffic density and
follows Poisson distribution, that is, the number of camera
activation requests, or the equivalent number of SFC requests
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is Poisson-distributed and in proportion with the traffic density.
The maximum arrival rate (λ) is 2100, while the minimum λ
is 120. The average duration of an SFC request is 2 hours and
exponentially distributed.

3) Performance criteria: The three following criteria are
used to evaluate the performance of the proposed approach:
• Resource efficiency, which shows how limited resources

are utilized to serve a maximized number of SFC re-
quests.

• Energy efficiency, which expresses how much energy is
consumed to serve a number of SFCs. The less energy
is consumed for an SFC, the more energy efficient the
system is.

• Complexity, which is the cost when performing measures
to improve the resource and energy efficiency, such as
VNF offloading or migration.

TABLE VI: Algorithms selected for comparison with RE-SCE

Offloading
Mapping Least-Loaded

[45] First-Fit [43] VNFm

Baseline [39] BL-LL BL-FF BL-VNFm

SFCCM [40] SFCCM-LL SFCCM-FF SFCCM-
VNFm

E-Coff ECoff-LL ECoff-FF RE-SCE

As addressed in Section VI, in order to meet the require-
ments on resource and energy efficiency, the proposed RE-SCE
combines an offloading strategy that balances resource utiliza-
tion in the edge–cloud (E-Coff) with the resource and energy
efficient VNF mapping (VNFm) and Virtual Link mapping
(VLm) algorithms. The performance of RE-SCE, including E-
Coff and VNFm, is compared with two existing offloading
algorithms, namely SFCCM [40] and Baseline [39], and two
existing mapping algorithms, namely Least-Loaded [45] and
First-Fit [43], as shown in Table VI.

B. Simulation setups

A simulation was performed from scratch in Java. All
entities of the network topology in Figure 6 include edge
devices, servers, network switches, and physical links that
were covered in the simulation. The simulation was performed
on the SFC-level so that factors such as packets collision and
packet drop rate were neglected. A discrete event, that is, an
SFC request, arrived in the system containing several attributes
of its demands, such as CPU and bandwidth. Incoming SFC
requests were handled in a first-in-first-out manner. The sim-
ulations were repeated in several runs and the average over
the simulation runs have been reported in the figures and
tables in accordance with the replicate-delete method [91]. An
implementation of the simulator can be found at our GitHub
repository [92].

C. Simulation results

This section shows results of the proposed RE-SCE in
comparison with the aforementioned mapping and offloading
strategies.

Fig. 8: Acceptance ratio.

Fig. 9: System utilization under varied load situation.

Fig. 10: Comparison of resource utilization in the edge and
among algorithms.
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1) Resource efficiency: Fig. 8 shows the acceptance ratio of
the SFC embedding algorithms, which is the ratio between the
number of accepted incoming SFCs and the total SFC requests.
Fig. 9 presents the system utilization. These two metrics
were investigated under varied offered load. The two figures
show that as the offered load increase, the acceptance ratio
decreased and the system utilization increased accordingly but
not linearly with the offered load. This implies that physical
resources cannot be fully utilized. SFC requests were rejected
even if some resources are available (i.e., utilization is less
than 100%) in the physical substrate due to the imperfection
of the SFC embedding algorithms.

Overall, RE-SCE utilized the edge and cloud resources
better than the other two BL and SFCCM algorithms owing to
its offloading strategy. The results show that a higher number
of requests are accepted in RE-SCE when the offered load
increases following more demands for turning on cameras
in rush hour. On the other hand, SFCCM did not perform
well, regardless of the mapping algorithms used. Even though
BL and SFFCM were combined with VNFm, their results
could not match those of RE-SCE due to the strategy of
preferring ”low” cost resources, putting the edge resources into
exhaustion, as well as the lack of migration process between
the edge–cloud. As shown in Figure 9, the system utilization
under RE-SCE can reach up to 80%, while that of SFCCM and
Baseline with Least-Loaded can only be around 40% and 70%,
respectively. In Fig. 10, the edge and cloud utilization of these
algorithms are shown separately. It is to be noted that BL and
SFCCM are combined with VNFm to have a fair comparison
with RE-SCE in this scenario. Thanks to the balance between
the edge–cloud resources as well as the migration strategy, RE-
SCE has a higher utilization in the cloud, resulting in higher
overall utilization and higher acceptance ratio. As can be seen,
the utilization of RE-SCE in the cloud can be as high as 55%,
while utilization of BL and SFCCM in the cloud is remarkably
lower, which accounts for 30% and 20%, respectively. One
important observation here is that the offloading strategies have
an impact on the resource efficiency of the physical edge–
cloud system.

2) Energy efficiency: Fig. 11 shows the total system power
consumption for different SFC embedding strategies under
various utilization scenarios. The results show that mapping
strategies have an impact on the system power consumption,
that is, applying different mapping algorithms with the same
offloading strategy could produce a different energy consump-
tion profile. For instance, as can be seen in Fig. 11, Baseline
is the most power-consuming algorithm when combined with
Least Loaded (i.e., up to 72kW ), while its power consumption
is only a half when combined with First Fit or VNFm (40kW ).
Since the Least Loaded algorithm maps VNF requests in least
loaded servers, the load tends to be distributed evenly among
all servers in the cloud, leading to a high number of active
servers in the data center with the consequence of high power
consumption. In contrast, First Fit and VNFm try to map VNF
requests in a minimum number of active servers, so that idle
servers can be put in standby mode. Thus, the strategy applied
in VNFm and First Fit is clearly more energy efficient.

The above argument is further elaborated when calculating

Fig. 11: System power consumption.

Fig. 12: Average power consumption of an SFC.

Fig. 13: System power consumption varied with traffic inten-
sity
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Fig. 14: Average number of migrations per VNF.

the power consumption per SFC, as shown in Fig. 12. The
results presented in the figure indicate that under the same
offloading strategy (i.e., BL, SFCCM or RE-SCE), VNFm is
the most energy efficient mapping algorithm. For instance,
under the same utilization of 47%, the average power con-
sumption of an SFC with SFCCM-LL can be up to 66W , while
that of SFCCM-VNFm is only 22W . It is also observed that
the power consumption of an SFC in low-loaded situation is
higher than that of higher loaded. As the utilization increases,
the SFC power consumption gradually decreases, especially
in case of BL-LL and SFCCM-LL. In contrast, the SFC
power consumption of RE-SCE remains nearly the same as the
system utilization is higher than 25%, which implies that when
deploying RE-SCE the power consumption of the physical
edge–cloud substrate stays nearly linear with the number of
accepted SFCs, following the energy proportional property.
On the other hand, when utilization reaches 55% and above,
the power consumption slightly increases. In highly loaded
situation, in order to maintain high utilization, VNFs are
gradually offloaded from the edge to cloud, resulting in higher
power consumption as more VNFs are located in the cloud.

We further investigated the dependency of power consump-
tion on the road traffic intensity under different mapping
strategies, namely VNFm, First Fit, and Least Loaded, where
First Fit and Least Loaded make use of the newly proposed
offloading E-Coff algorithm. The green curve in Fig. 13
presents the traffic density in the UK in one day (also shown in
Fig. 7). As can be seen, the system power consumption varies
with traffic density, which also reflects the energy proportional
property of the mapping algorithms. RE-SCE is the most
energy efficient strategy, as it consumes the least power under
any load situation. Also, the power consumption can adapt
very well to the actual traffic situation. In contrast, Least
Loaded is the worst energy efficient strategy.

3) Complexity: We further investigated the complexity of
RE-SCE. As addressed in [37], as requests continuously join
and leave the system, resource fragmentation may occur,
which consequently leads to temporary degradation of re-
source efficiency. In order to cope with this resource dynamic
problem, consolidations of VNF’s containers are regularly
performed by RE-SCE to transfer accepted VNFs to new, more

efficient locations. This mechanism helps rearrange available
resources in physical machines to increase the acceptance ratio
and system utilization. However, re-location of VNFs also
increases the system complexity. Fig. 14 shows the average
number of required migrations per VNF of an SFC request
depending on offered load. In low load situation, each VNF
is moved to a new location 0.1 times on the average. As the
load increases, it is more difficult to find an appropriate place
to map a new VNF request, thus more migrations are required
to optimize available resource.

D. Discussions

The aforementioned evaluation shows that RE-SCE is the
most efficient strategy. RE-SCE performs very well in terms
of energy efficiency, as shown in Fig. 11 and 12. While some
other strategies such as BL-VNFm or SFCCM-VNFm might
be a little better in terms of energy performance, RE-SCE
outperforms the others in terms of resource efficiency (Fig. 8
and 9) owing to the trade-off between offloading and mapping
methods deployed in E-Coff and VNFm. In general, RE-SCE
is the best strategy that can accept a maximum number of SFC
requests while keeping the power consumption low. In other
words, it can balance energy efficiency and system utilization
very well, in the sense that the energy consumption is one
of the lowest, while the system utilization is the highest. On
the other hand, RE-SCE increases the system complexity by
performing VM migration as the cost to improve resource and
energy efficiency (Fig. 14).

In general, it is observed that the offloading algorithms are
important to balance resource utilization between the edge
and the cloud and improve resource utilization. VNF mapping
algorithms, on the other hand, are considered as a fine grained
algorithm to decide the precise location of the VNF in a
server. The mapping policy has an impact on energy efficiency
as well as the resource utilization. By combining offloading
and mapping, a good trade-off between resource and energy
efficiency can be reached.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have firstly addressed some issues in
modeling resource and energy utilization for IoT applications
in edge–cloud paradigms. A smart traffic monitoring IP camera
system was deployed as a use case for a realistic modeling
of a service chain. The system was implemented in our
testbed, which was designed and developed specifically to
model and investigate the resource and energy utilization
of SFC embedding strategies. A dynamic energy-aware SFC
strategy in edge–cloud paradigm for IoT applications was then
proposed. Results showed that our strategy outperforms some
of the existing approaches in terms of resource and energy
efficiency.

The evaluation in this work is applicable to homogeneous,
linear SFCs. As the current and future work, it would be
interesting to develop flexible and cost-efficient SFC em-
bedding strategies for dynamic, general SFC requests with
any topology to support a wide range of IoT services and
applications. Under this circumstance, it is required that the
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SFC embedding algorithm be more adaptive to the edge–
cloud system condition and have a higher level of automation
to better accommodate the current and upcoming demands.
For IoT applications with predictable load patterns in a time
period, machine learning approaches may provide load and
resource prediction. Then, the SFC embedding algorithm can
benefit from such a prediction. Appropriate machine learning
(ML) approaches are a good solution to reduce complexity
and improve efficiency of the ML-based SFC embedding al-
gorithm. A comparison of our proposed solution in conjunction
with machine learning for load prediction can be considered
for future research work.
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