(©1992 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this

material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other

The definitive version of this paper has been published in IEEE Transactions on Communications, 1992, 10.1109\/26.129195.

works.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 40. NO. 2, FEBRUARY 1992

337

Analysis of Polling Systems with General
Input Process and Finite Capacity

Phuoc Tran-Gia, Member, IEEE

Abstract—The class of polling systems, i.e., multiqueue systems
with cyclic service, plays an important role in the performance
evaluation of various computer and communication systems, e.g.,
switching systems with distributed control and token-passing
local-area networks. Although the behavior of users and the
corresponding incoming traffic characteristics in such systems are
increasingly complex, most analytical performance studies in the
literature are based on the assumption of Poisson input processes.
In this paper, an approximate discrete-time analysis of polling
systems with finite capacity of waiting places and nonexhaustive
service (or more precisely, limited service by one) is presented,
considering general renewal input traffic. The analysis method is
based on the use of efficient discrete convolution operations based
on fast convolution algorithms, e.g., the fast Fourier transform
(FFT). To illustrate the accuracy of the approximation and its
dependency on system parameters, numerical results are given.

[. INTRODUCTION

N modeling and performance evaluations of a broad spec-

trum of computer and communication systems, e.g., inves-
tigations of communication structures in switching systems
with distributed control and token-passing local-area networks,
etc. the class of polling models, i.e., multiqueue systems with
cyclic service is often employed. Owing to the architecture of
such systems and the respective new services, the traffic mix
of subscribers and users on telecommunication networks and
user behavior are of high complexity. There is therefore an
increasing tendency for the need of more complex processes
to describe traffic streams in such environments.

To include more realistic modeling elements in the class of
polling systems, two main objectives are taken into account in
this paper: i) the consideration of general renewal processes
as inputs, and ii) the modeling component in respect of finite
waiting capacity of devices or stations in polling systems.
From the analytic viewpoint, this study takes advantage of
discrete-time analysis methods, where efficient convolution
and transformation algorithms [e.g., the fast Fourier transform
(FFT)] are employed.

Polling systems have been the subject of numerous studies
in the literature [1]-[16]. A survey on the analysis of polling
systems can be found in Takagi [15]. Various polling mecha-
nisms, like cyclic or priority order (cf., [11]), and several
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service disciplines, e.g., exhaustive, nonexhaustive or gating,
have been considered. Some of these studies take into account
the switchover time, i.e., the time interval spent by the server in
switching over from one queue to the succeeding one. In most
of these studies, input processes are assumed to be Poisson,
and the queues of the polling system to have infinite capacity.

An approximation of polling systems under symmetrical
load conditions, constant switchover time and gating service
is given by Leibowitz [10]. Cooper and Murray have con-
sidered a system with gating or exhaustive service and zero
switchover time [4]. Their approach has been generalized
by Eisenberg [5] and Hashida [6] to nonzero switchover
time. The case of two queues with nonexhaustive service and
nonzero switchover time was taken into account by Boxma
[1] where an exact solution has been derived. An approximate
analysis technique for polling systems with nonexhaustive
service and general switchover time has been developed by
Kuehn [8], [9]. Approximate formulas for some general classes
of polling systems can be found in Boxma and Meister [2]
and Bux and Truong (3]. Morris and Wang [12] and Raith
[13] have provided analytical approaches to deal with polling
systems with multiple servers, while Raith and Tran-Gia [14]
considered the influence of the congention at the receiving part
of a polling system in a more general context. Polling systems
with finite capacity of waiting places and Poisson input traffic
have been analyzed approximately in Tran-Gia and Raith [16].

One of the main features of this study is the use of analysis
methods operating in the discrete-time domain. The discrete-
time approach is justified by the fact that the parameterization
of model components is often based on data measured in terms
of histograms. The discrete-time nature of model components
can be registered in a number of modeling processes, e.g.,
in performance investigations of packet-switching systems,
time-slotted systems, etc.

There is a number of studies [17]-[22] which deal with the
analysis of discrete-time models. In Hunter [18] and Kobayashi
[19] surveys can be found. Examples for the use of discrete-
time analysis methods can be seen in the case of G/G/1
queues where numerical solutions are given [17], [20], [21]
based on the discrete-time form of the Lindley's relation
[23], [24]. An interesting algorithm for calculation of the
waiting-time distribution function of the G/G/1 queue has
been presented by Ackroyd [17], where methods used in signal
processing theory (in both time and frequency domains) and
fast convolution algorithms are employed. In [21], calculation
algorithms can be found for the idle time and intcrdeparture
distributions of the class of G/G/1 queues with discrete-
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Fig. 1. The basic model.

time arrival and service processes. A solution for this class of
systems with general cyclic input processes was given in Tran-
Gia and Rathgeb [22], considering models of semidynamic
scheduling and routing mechanisms.

Methods of discrete-time analysis will be applied in this
paper to obtain an approximation algorithm for the class
of polling systems with renewal inputs. In Section II, the
model and its parameters will be described, while Sections III
and 1V give an outline of the analysis and calculation of
performance measures, respectively. Numerical results are
shown in Section V to illustrate the accuracy of the calculation
method and its dependency on system parameters.

II. MODEL DESCRIPTION

The basic structure and related parameters of the polling
model considered here are illustrated in Fig. 1. The model
consists of g finite capacity queues, served nonexhaustively
(or more precisely, limited service of one message per service)
in a cyclic order by a single server with a generally distributed
service time. After the service of a queue, the server will move
to the succeeding queue. This switchover time, which models
all overheads spent and procedures performed by the server to
move to and scan the succeeding queue, is assumed to have
a general distribution function. At the scanning epoch, i..,
at the end of the corresponding switchover time, the server
will process one message in the queue, if there is at least
one message waiting for service. If the queue is empty, the
interscan period observed will consist of just the switchover
time.

As previously mentioned, one of the main contributions of
this study is the consideration of general input processes and
their influence on the behavior of the polling system. Thus,
the arrival processes are assumed to be general.

In principle, the analysis method presented in this paper
can be applied to nonsymmetrical polling systems with queue-
individual interarrival, service and switchover-time distribu-
tion functions. Also, individual sizes of the queue capacities
can be chosen. The treatment of the nonsymmetrical case
leads to a higher computational complexity than in the case of
symmetrical systems discussed in this paper. To simplify the
description of the analysis algorithm, and to focus our attention
on the main objectives of the study. we shall restrict ourselves
in the following treatment to the case of symmectrical systems.

III. DISCRETE-TIME ANALYSIS

A. Discrete-Time Random Variables and Notation

In the context of this analysis, we consider the random
variables to be of discrete-time nature, i.e.. the time axis is
conceived to be divided into intervals of unit length At. As
a consequence, samples of these random variables are integer
multiples of At; the time discretization is equidistant. In real
systems, At is often given in discrete-time form, e.g., as
transmission time of a bit, byte or packet. The corresponding
distributions can be obtained by means of measurements, and
arranged in the form of histograms.

The following notation is used for functions belonging to a
discrete-time random variable (r.v.) X:

z(k) =Pr(X = k), —-x<k<+x

. distribution of X

X(k)y= > (). —x<k<+x
- st distribution function of X
zzr(2) = \ S x(k)z*
- Z-transform of z(k)
EX
mean of X
X

cocfficient of variation of X.

As indicated in Fig. 1, we use the following notation:

g number of queues in the polling system,

S queue capacity,

A r.v. for the interarrival time of the input process at a
queue, distribution a(k). Since «(0) can have a nonzero
value, batch arrival processes with geometrically dis-
tributed batch size can also be dealt with (cf., [21]),

B r.v. for the service time, distribution b(k),

O r.v. for the switchover time, distribution o(k).

A sample path of the state process development in a queue
chosen arbitrarily, say j, of the polling system is shown in
Fig. 2. We observe the cycle time seen from queue j, i.e.,
the time interval between two consecutive scanning instants at
queue j. Similar to the approach provided in (8], two types of
conditional cycle times can be distinguished, denoted by the
following random variables:

Co r.v. for the cycle time, conditioned on an emply queue
at the previous scanning instant (i.e.. without service of
queue j during the cycle considered),

C, r.v. for the cycle time, conditioned on a nonempty queue
at the previous scanning instant (i.e., with service of
queue j).

During a conditional cycle time, a number of messages may
arrive according to the arrival process. Depending on the type
of conditional cycle, we denote the arrival group as follows:

G rv. for the number of messages arriving during a cycle
of type j (Cj), j = 0. 1.
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Fig. 2. A sample path of the state process.

Since the process development is observed in the discrete-
time domain, several events (e.g., arrival or end-of-service
phase of messages, scanning events) can occur simultaneously.
In those cases, a convention is made for events to be thought of
as being processed in the following order: 1) end of service,
2) scanning, and 3) arrival.

B. Markov-Chain State Probabilities

The state process of an observed queue is affected by two
random processes: the arrival process of messages and the
scanning process of the server, as depicted in Fig. 2. Since
these processes can be correlated, an exact analysis seems
intractable.

To use the Markov chain analysis concept, we assume in the
following that these two processes are not correlated, €.g., the
scanning process driven by the server sees the arrival process
of a queue in the same way as an arbitrary outside observer.
An approximation can be made to analyze the state process.
In this approximation context we consider the regeneration
points of a Markov chain embedded immediately prior to the
scanning instants of a queue. The following random variables
are used as follows:

X, r.v. for the state of the queue observed (i.e., the number
of messages in the queue) immediately prior to the nth
scanning epoch,

X+ rv. for the state of the queue observed immediately
after the nth scanning epoch.

Analogous to the definition of conditional cycle times, we

definc the following conditional r.v. for the state of the queue
observed, depending on the previous value of X,,:

Xro=X N, =0 X=X X >0.
Xusro=Xun1lXu =0, Notir = XunlXu > 0.

0]
(2

Thus, the relationships between these random variables and
their distributions can be obtained.

)X, =0
X, =0 3)
at o (k) = o(k) @)
Xus10 = min(XF, + Go.S) = min(Gy. S) 5)
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ny1,0(k) = 7% (27 (k) * go(k)) ©6)
where
' 1 k=m
b(k —m) = { 0 otherwise ™
with the operator 7™ defined as
(k) k<m
OC
" (z(k)) = Z z(i) k=m 8)
b—m k>m
and the “x”-symbol denoting the discrete convolution
operation:
+oc
a3(k) = ay(k) *az(k) = D ai(k —j)-az(j). ()
j=—
i) X, >0
X =Xa-1 (10)
z,(k+1 zn(k+1)
= { Pr(X.>0) 1—:,.+(0) k=01---,5-1
0 otherwise
(11)
Xn+l‘l =min(X:1 +Gx,5) (12)
'7-'n+l.l(k) = ,n,S (r:l(k) * gl (k))' (]3)

By eliminating the condition based on X,, we arrive at

xn+1(k) = z,(0) - $n+l.0(k) +(1- In(o)) : In+1_1(k),
k=0.1,.-«,8. (14)
With (4), (6), (11), and (13), a set of state equations describing

the transition behavior of the Markov chain between two
consecutive scanning epochs can be derived as follows:

k+1
Zas1(k) = 2a(0) - golk) + Y an(d) - gk =i+ 1),
=1
k=0.---,5-1
o S oc
2ns1(S) = 2a(0) Y go(i) + D _wali) D ga(m),
=S =1 m=S-i+l
k=S. (15)
Under stationary conditions, i.e.,
X = lim X,,. (16)

n—0oC

the equilibrium-state equations of the Markov chain can be
derived from (15):

k+1
(k) = 2(0) - go(k) + D _ (i) - gr(k =i+ 1).
=1
k=0.---,5-1
o S oC
x(S) = (V) Zgo(i) + Zz:(i) . Z g1(m).
i=S i=1 m=S—-i+1l
k=S 17)
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To evaluate the equation system given in (17), it remains to
determine the group-size distributions of G, j = 0. 1. Keeping
in mind the assumption of no correlation between the scanning
and arrival processcs at a queue, we observe a cycle of type
J and the arrival group G; of messages arriving in this cycle.
The time F(*) between the previous scanning epoch and the
arrival epoch of the Ath message in this group is distributed
according to

f(k)('i) =a"(z) * a(i)[(k—l)-] a8)

where a(i)"'") denotes the m-fold convolution of the distri-
bution a(z) with itself, and «* (i) denotes the recurrence-time
distribution of the interarrival process in the discrete-time
domain

u'(-i)=Elz(l—ia(n)), 1=0,1---. (19)

n=0

Assuming a cycle C; of length m, the conditional arrival-
group size distribution can be given as follows:

g;(k|m) = Pr(group size is k|cycle Cj is of length m)
= Pr(F(k) <m< F(kH))

= Pr(F“') < m) - Pr(F“'"’” < m) (20)
or
9,(k10) = &(k)
uwm=§f@mm—w“w& m=12.-.
- @1

Finally, the distribution of an arrival group G; during a cycle
C;j [distribution ¢j(m), m > 0] can be obtained:

oc m=1
93 (k) = c;(0) - (k) + 3 ¢;(m) Y
m=1 =0

. (f“")(i) _ f(k“)(i))-.

k=0.1.---.j=0.1. (22)

C. Cycle-Time Analysis

Define ('s to be the r.v. for the cycle-time segment (cf.
[16]). i.e., the time interval between the scanning instants of
two consecutive queues. In a symmetrical polling system under
stationary conditions with the state probabilities obtained from
(17). we obtain

cs(k) = (0) - o(k) + (1 = (0)) - (o(k) = b(k))

(23)
or in Z-transform domain:
cs.z1(2) = oz (2) - ((0) + (1 = (0)) - bzr(2)).  (24)

Under the assumption of independency between cycle-time
segments, the Z-transforms of the conditional cycle times can
be given as

crzr(z) = 0z1(2) bzr(z) - 4 p(2). (20)
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Finally, we obtain the Z-transform of the cycle-time distribu-
tion:

czr(2) = ¢§ z1(2)
2(0) e zr(2) + (1 = 0(0))er,zr(2).

27)

Equations (25)—(27) can be evaluated efficiently using algo-
rithms belonging to the class of the fast Fourier transform
(FFT) algorithms (based on the discrete Fourier transform
(DFT), cf. [21], [22], [25)).

D. Discrete-Time Calculation Algorithm

The logical interrelation of the analysis steps in Sections III-
B and -C above is as follows. Assuming that the conditional
cycle-time distributions are known, the Markov-chain state
probabilities can be calculated according to (17)-(22). On
the other hand, to calculate the conditional cycle times, as
formulated in (23), (25), and (26), we need to know the
component x(0) of the Markov-chain state-probability vector.
This fact leads to a numerical calculation algorithm based on
an alternating evaluation of the cycle-time distributions and
the state-probability vector. The approximation algorithm is
similar to the continuous-time algorithm presented in [16].
However, by taking advantage of fast convolution algorithms
and the efficient evaluation of Z-transform using FFT algo-
rithms, the analysis in the discrete-time domain allows the
calculation of all the entire distributions (e.g., those of cycle
times). This is in contrast, e.g., to algorithms which use a
number of moments to characterize distribution functions (e.g.,
the two-moment matching method).

The main steps of the algorithm are as follows.

i) Initialize the Markov-chain state-probability vector and
the conditional cycle-time distributions.

ii) Calculate the conditional cycle-time distributions ac-
cording to (23), (25), and (26).

iii) Calculate the arrival-group size distributions according
to (18), (19), and (22).

iv) Calculate the Markov-chain state-probability vector ac-
cording to (17).

v) Repeat steps ii), iii), and iv) until a convergence cri-
terion is fulfilled. In the analysis here, the difference
between two consecutive means of the state-probability
vector is used as convergence criterion.

IV. SYSTEM CHARACTERISTICS

Using the equilibrium Markov-chain state probabilities ob-
tained by the algorithm presented above. a number of per-
formance measurements of interest can be derived, which are
discussed in this section.

A. Message Blocking Probability

Again, the assumption is made that the scanning and arrival
processes are uncorrelated. We first consider the following
conditional blocking probability defined by

B(k) = Pr(message is blocked | X = k)

Probability for a message in an arrival group to
be rejected, conditioned on a number X = A of
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messages waiting in the queue observed at the
previous scanning epoch.

Two cases have to be distinguished, X = 0 and X > 0.
Derivation of the conditional blocking probability for case
X > 0. will be described in detail.

For X > 0, i.e., the current cycle time is of type G, we
observe an arbitrarily chosen test message in the group arriving
during the cycle. The probability of the test message being in
an arrival group of size i is i - 1(/)/EG). Assuming further
the group size 4, blocking will occur for k — 1+ > S where
a fraction of k — 1 + i — S of messages will be rejected.
Accordingly, the probability of the test message being in the
rejected fraction is (k — 1 + i — S)/i. Finally, for case X > 0
we obtain the following conditional blocking probability of
messages:

. k-14i-8 i-gi1(4)
Bk)= Y . .
i=S—k+2 ' EG,
=L S k-1+4i-9-a()
lios_k+2
k=1,---,8 (28)

The case of an empty queue at the previous scanning instant
(X =0) can be analyzed analogously:

x-S i goli
Boy= Y == E-"é(‘)
i=S+1 0
1 = .
= %G > (i = 8)- god)- (29)

i=S+1

By climinating the condition, we arrive at the blocking proba-
bility for messages arriving at a queue of the polling system

s
B, = Zy:(k) - B(k)

k=0

= EG“ E(O)'gl 7“5) qO( )
1 < =
+ — (k) (k=-14+i-S5)
EG LZ=1 i=SZ—:k+2
< 91(7). (30

B. Arbitrary-Time State Probabilities

From the Markov-chain state-probability vector, which de-
scribes the state process at regencration points chosen imme-
diately prior to the scanning epochs, the state process seen
by an arbitrary outside observer, which will be characterized
by means of an arbitrary-time state-probability vector. can be
derived. Using this probability vector, further system char-
acteristics, e.g., the mean waiting time for messages, can be
obtaincd.

The state process will now be observed at an instant #*
chosen arbitrarily. Since we are operating in the discrete-time
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Fig. 3. Observation of statc process at an arbitrary instant.

domain, t* is conceived to be immediately prior to a discrete-
time epoch (cf., Fig. 3). The probability P} (j = 0.1) that the
observation instant ¢* lies in a conditional cycle of type C; can
be given as follows, using results of semi-Markov processes:

. _ ECO
Py = ()220 G1)
Pp=1-P5 = (1-z(0) 2. 32)

We further consider the distribution of the recurrence cycle
time with r.v. C;, which represents the discrete-time interval
from the prev:ous scanmng instant up to the observation point

t‘
1 b
F(,( 5 «J(i)). k=015

=0

j(k) = =0.1.

(33)
Denoting G7(j = 0.1) to be the r.v. of the group of messages
arriving dunng a recurrence cycle time of type C;, we obtain
a similar expression for the group-size distribution as in (22)
as follows: -
m-—1

§(0)-500+ 3 5(m) > (106 - f‘*“’u))

m=1

k=0.1.-

g;(k) =

Ly = (). 1. (34)

As shown in Fig. 3, the following r.v. for the state process in
the queue being observed are introduced.
X~ r.v. for the state of the queue bemg observed at t*
X. X1 rv. for the state of the qucuc observed immediately
prior to and after the previous scanning epoch.
respectively,
and. similar to the Markov-chain analysis [(cf., (1) and (2)] the
random variables conditioned on the state prior to the previous
scanning instant:

-+
Xg

X*N =0. Xf=X*X>o
XY =0 X{=XlX>o0.

(3%)
(36)

AV
To calculate the probability vector for X'*, the following set of
equations describing the interrelations between state random
variables and corresponding distributions is required.
)X, =0
Xf=0
Lo g (k) = (k)

(€Y
(38)
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Xy = min(Xg + G, S) = min(Gy, S) 39)
xg(k) = % (23 (k) * g5 (k). (40)
i) X, >0

Xt=X-1 (41)

_ r(k+1) _ x(k+1 L
;lfr(k)z{l"r(,\'>0)_l_(—%(0% A—O].S—l (42)

0 otherwise

Xi = min(,\'l+ +G1,S) (43)
i(k) = 7° (2 (k) * 91 (k). (44)

Hence, the arbitrary-time state probabilities can be given as
x*(k) = Py - xro(k)+ Py - z3(k). k=0,1,---,S. (45)

Using (31)-(33) and (37)-(44), we obtain the final set of
equations to determine the arbitrary-time state probabilities:

e ECo. . EC, &
wt(k) = 5=2(0)-g5(k) + EEIZ:T?(Z)

gi(k—i+1), k=0,---,5-1
. EC, S o ECI N
2"(8)= Sg(0)Y_g5(i) + & 2 (i)

=S =1
Z gi(m), k=S (46)
m=S—-i+1

C. Waiting Time of Accepted Messages

Having the state probabilities of a queue seen by an arbitrary
outside observer, we can use Little’s theorem to determine the
mean waiting time of accepted messages

EX*-FA

Wi =
EWa 1-B,

(47)

V. RESULTS AND APPROXIMATION ACCURACY

Taking as example a symmetrical polling system with g = 5
queues having finite capacities S = 5, numerical results
are presented in this section to discuss the application of
the calculation algorithm and the approximation accuracy.
The switchover time is assumed to be deterministic equal
to 0.5 EB, and the discrete-time axis is scaled to At = 1.
Time variables are normalized to the mean service time
EB = 10 - At. The offered traffic intensity is denoted by
p = EBJ/EA. )

To validate the approximate analysis, computer simulations
are provided. The simulation results will be depicted with their
95% confidence intervals, calculated using the Student-¢ test
technique.

It should be noted here that the results presented below focus
on the influence of the characteristics of input processes, which
are the main new modeling components of this study.

To obtain a parametric representation of various random-
process types, we consider here the interarrival and service
times having distributions given by their two parameters, e.g.,

.1
L g=5 EO =5 0" o
= S=5 EB =10 0.5
] p =0.6
©
o
.g 107" -
2
3]
>
o
g
G 074
(]
10734
¢ ~ v
° 10 20 3
time t/EB
Fig. 4. Influence of arrival process on waiting time.

the mean and the coefficient of variation. For this purpose,
we employ the negative binomial distribution. Thus, for an
r.v. X with mean EX and coefficient of variation cy:, the
distribution is

z(k) = (y-}-:— l)p"(l—p)k, 0<p<1l,yreal (48)

where

1 EX

s 2
S S S ‘&>l
PEEX & VTEX & -1 PXex>

As mentioned above, all the entire distributions of the random
variables of interest can be obtained, using discrete-time
analysis methods. An example is given in Fig. 4 where the
complementary cycle-time distribution function is depicted for
different values of the service-time coefficient of variation ¢g.
Two main effects can be seen clearly, here: i) the step-wise
functions, and ii) the geometric caudal characteristics of the
discrete-time distribution functions obtained.

In Figs. 5 and 6, the mean and the coefficient of variation
of the cycle time are depicted as functions of the offered
traffic intensity p for different types of interarrival and service
processes. The choice of parameters in these figures is based
on detailed studies showing that the mcan cycle time EC is
affected mainly by the type of arrival processes, while the
cycle-time coefficient of variation c¢¢ is primarily influenced
by the type of service processes. It should be noted here that
the coefficients of variation of these discrete-time processes
are chosen to be equivalent to the deterministic (c4.c¢g = 0),
the Erlangian of fourth order (¢4.cp = 0.5), the Markovian
(ca,cp = 1), and the hyperexponential (c4,¢cp = 1.5, cf.
[16]) distributions. With respect to the traffic level, the two
lower and upper bounds of the mean cycle time can be
observed (cf., Fig. S): i) the empty cvcle at disappearing
traffic intensitics (sum of just switchover times), and ii) the
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maximal cycle at very high traffic levels (service at each queue
during the polling cycle). For arrival processes with higher
coefficients of variation, the blocking effect will become
noticeable, which leads to smaller cycle lengths. As depicted in
Fig. 6, the cycle-time coefficient of variation has a maximum
value which increases with increasing service-time coefficient
of variation.

The blocking probability of arriving messages and the mean
waiting time of accepted messages are depicted in Figs. 8 and
7, respectively, where attention is again devoted to the influ-
cnce of the arrival process. The mean waiting time is drawn in
Fig. 7 for accepted messages. Hence. a crossover phenomenon
can be recognized. which can be verified on considering the

L0
S

9

S:=95

Mean waiting time EW,/EB

0.2 04 0'.6 Q'. 1
Offered traffic intensity p

Fig. 7. Influence of service process on cycle-time coefficient of variation.

-
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Blocking probability B,

10-34

107¢ . v v
0.2 04 06 03 1

Offered traffic intensity p -

Fig. 8. Influence of arrival process on blocking probability.

higher blocking probability, i.e., smaller number of accepted
messages, for larger values of ¢ 4. The cross point of the curves
in Fig. 7 corresponds to the value of the traffic intensity, where
the blocking probability becomes significant (cf., Fig. 8). For
the case of disappearing traffic intensities, the waiting time of
messages consists of just the recurrence time of empty cycles.

As seen in the diagrams. with the exception of block-
ing probabilities at higher ¢4 values, the overall approxi-
mation accuracy for the system parameters given (g = 5,
S = 5, EO = 0.5 EB) is sufficient for system-engineering
purposes. However, two main restriction factors for use of the
approximation should be mentioned here: i) the accuracy of
the approximate analysis is of decreasing tendency for smaller
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values of switchover time and higher values of c4,cp, and
ii) the computing efforts increase overproportionally with the
values of g and S, according to the lengths of probability
vectors involved in convolution operations.

Although the computational scheme is complex, for the
parameter range discussed in this section, the convergence
behavior of the algorithm is good. For the parameters shown
above in the figures, convergence has been typically reached
after less than 50 iteration cycles.

VI. CONCLUSION

In this paper, an approximate algorithm for polling systems
with finite capacity of waiting places and nonexhaustive ser-
vice (or more precisely, limited service of one message per

service) is presented. The analysis is made in the discrete- .

time domain, based on the evaluation of discrete convolution
operations taking advantage of fast convolution algorithms,
e.g., the fast Fourier transform. Attention is devoted to two
- essential modeling aspects: i) consideration of general renewal
input traffic, and ii) assumption of finite capacity of waiting
places in the system. Numerical examples are shown to
illustrate the approximation accuracy of the analysis. The
approximation is validated by means of computer simulations.
The class of polling models considered here can be used in
the performance investigation of a broad spectrum of models
in computer and communication systems.
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