University of Wiirzburg
Institute of Computer Science
Research Report Series

Using Discrete—time Analysis in the
Performance Evaluation of Manufacturing
Systems

Mathias A. Diimmler! and Alexander K. Schomig?

Report No. 215 November 1998

! University of Wiirzburg
Department of Computer Science
Chair of Distributed Systems
Am Hubland, D-97074 Wiirzburg, Germany
E-Mail: duemmler@informatik.uni-wuerzburg.de

2 Siemens AG
HL MS PR
D-81617 Minchen, Germany
E-Mail: alexander.schoemig@siemens-scg.com

Published in: 1999 International Conference on Semiconductor Manufacturing Operational Modeling
and Simulation (SMOMS ’99), San Francisco, California, January 18-20, 1999.
The research for this paper was conducted while the second author was with the University of
Wiirzburg, Department of Computer Science.



Using Discrete—time Analysis in the Performance Evaluation of Manu-
facturing Systems

Mathias A. Diimmler
University of Wiirzburg, Department of Computer Science, Chair of Distributed Systems, Am
Hubland, D-97074 Wiirzburg, Germany, E-Mail: duemmler@informatik.uni-wuerzburg.de

Alexander K. Schomig
Siemens AG, HL MS PR, D-81617 Miinchen, Germany, E-Mail: alexander.schoemig@siemens-
scg.com

Abstract

Discrete-time analysis (DTA) is a modelling technique that is mainly applied
to the analysis of communication systems. In this paper, we show how DTA can
be adopted to the numerical analysis of manufacturing systems. The modelling
concepts of DTA are introduced and the advantages of DTA over other methods like
discrete—event simulation are indicated. We apply DTA to two sample applications,
namely the analysis of a simple batch server and a batch server with bounded idle
time.

1 INTRODUCTION

Discrete-time analysis (DTA) techniques were first used to analyze basic single server
systems. Ackroyd (1) shows how methods known from signal processing can be used
to compute the waiting time distribution for the GI/G/1 queue. The signal processing
algorithms used here apply, inherently, to discrete—time signals, and, hence, deal with
discrete probability and density functions. However, these discrete—time methods can
be used to model and analyze continuous time systems as well.

Tran-Gia (2) illustrates the use of DTA techniques for the performance evaluation and
parameter estimation of ATM (asynchronous transfer mode) communication systems.
For this type of queueing systems the discrete-time analysis technique is formidably
suited since they basically have a discrete-time nature. Moreover, since cell blocking
probabilities (which lie in the order of 107> to 10~%) are in this environment the major
performance measure of interest, discrete—event simulation requires excessive computing
time.

In an attempt to provide a simple and computationally efficient method for the
analysis of manufacturing systems, we have adopted the DTA approach to problems
arising out of manufacturing. The algorithms and operators used in DTA have been
implemented in a MATLAB toolkit, facilitating a simple realization of the analysis of
complex systems using DTA.

In this paper, we first give an introduction to the modelling concepts of DTA. The
discrete—time analysis approach is then applied to two sample applications, namely a
simple batch server and a batch server with bounded idle time. The derivation of the
analysis is provided in detail and numerical results are discussed. We conclude the paper
by discussing the advantages and disadvantages of the discrete-time approach.



2 NOTATION IN DISCRETE-TIME ANALYSIS

Random variables representing periods of time considered in the course of this paper
are of discrete—time nature, i.e., samples are multiples of A ¢, the unit length. In other
words, the time axis is divided into intervals of a fixed length A t. Given a discrete—time
random variable X, we denote its distribution (probability mass function) by

(k) =Pr{X = k-At}, k=...,-2,—-1,0,1,2,... . (1)

The mean of a random variable X is defined as
(o0}

BX] = Y i-x(i). (2)

1=—00

Given two independent random variables X; and Xy, their sum X = X; + X5 is
distributed according to the convolution of their individual distributions. Hence, the
distribution z(k) of X is

o0

p(k) = > m(l)-za(k—1) = (k) ®a(k). (3)

[=—

The symbol ‘®’ denotes the discrete convolution operation.
The operator m,,() is used to “sweep up” all elements z(k) of a distribution with
k < m and add their sum to the element z:(m). It is defined as

0 , k<m
m(a(k) = { % @) . k=m (4)
;Z(;)w , k>m.
Finally, we use the operator A,,() to shift the elements of a distribution down by m
elements:
Ap(z(k)) = z(k+m). (5)

3 SAMPLE APPLICATION I - A SIMPLE BATCH SERVER
MODEL

Batch service or bulk service facilities, i.e., servers that can process a number of lots si-
multaneously, can be found in many areas of manufacturing. Implementations of batch
servers also appear in transportation and distribution logistics. Examples of fabrication
processes in semiconductor chip fabrication that are performed on batch service ma-
chines (furnace tubes) include the growth of thermal oxides, drive-in of dopants, glass
reflow, and deposition of several types of material, e.g., polysilicon and silicon nitride
(3). Notably, in all these cases additional jobs cannot be added to the service facility
once service has been started, though there might be free capacity.



Some of these processes are very time-consuming (4). Therefore, on the one hand it
may seem desirable always to load full batches. On the other hand, a furnace tube might
have to wait a long time for lots to form a full batch, leaving this piece of equipment
idle. This waiting time adds to the cycle time of a job and downstream stages face
starvation. To find a fair trade—off between capacity utilization and cycle time one must
study carefully the operating curves of a batch service facility running under different
scheduling rules.

Neuts (5) presented an analytical study of batch service systems that operate accord-
ing to a minimum batch size rule. In (6) bulk queueing models are discussed where jobs
arrive in groups or are served as batches. Reviewing numerous papers a variety of single
stage models is presented. Gold (7) investigates batch service systems in push and pull
manufacturing environments using embedded Markov chain techniques. In (8) and (9)
the problem of controlling batch processing systems in semiconductor wafer fabrication
is approached from an operation manager’s point of view.

3.1 Model description

In this section, we will consider the batch server model depicted in Figure 1. The model
consists of a queue with infinite capacity and a batch server. The server has a maximum
batch capacity of K lots. When a service period ends and there are less than L lots in
queue, where 1 < L < K is an arbitrary constant, the server remains idle until L lots
are accumulated in queue. Hence, the server is operated under a minimum batch size
strategy.
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Figure 1: Simple batch server

The service time for the n—th batch is of length B,,, where the B,, n = 1,2,...,
are random variables following an arbitrary discrete-time distribution with mean E[B].
Service times are independent of the batch size.

The interarrival times of lots follow a geometric distribution. To avoid batch arrivals,
i.e., interarrival times of length zero, we shift the geometric distribution by one unit to
the right. Hence, the random variable A,,, denoting the interarrival time between the
(n — 1)—th and the n—th lot follows the distribution

— (l_p)kilp 9’ k:1’2""
an(k) = {0 , else. (6)

where p is the probability of an arrival in one time unit. The mean interarrival time is
E[A] = 1/p. We define the system load p as the normalized offered traffic:
E[B
_ElB] )
K -E[A]



3.2 State distribution at departure instants

We now derive the steady state distribution of the number of lots in queue at depar-
ture instants using the embedded Markov chain technique. For an introduction to this
technique, see (10).

Let X, 1 be the number of lots in queue immediately after the (n — 1)—th batch has
left the server. If X,,_y < K, the queue will be empty after the next service starts, since
all lots waiting fit into a single batch. If there are more than K lots waiting, the number
of lots in queue will be reduced by K. We denote the number of customers in queue
immediately after the n—th service starts by Y;,. Hence we have

Y, = max(0,X,_1 — K). (8)
For the respective distribution y, (k) we get
yn(k) = mo(Ax(zn-1())). (9)

We will denote the number of arrivals during the n—th service as I',,. Since we
assume geometrically distributed interarrival times, the distribution of the number of
lots arriving during the n—th service period can be derived as

oo
m _
k) = 30 ()= pm ), (10)
m=k
where b, (m) is the distribution of the length of the n—th service period.
Taking into account the number of arrivals during the n—th service, the number X,
of lots in queue immediately after the n—th service period is

X, = Y,+TD,, (11)
and the respective distribution is
zn(k) = yn(k) ® (k). (12)
Using Equations 9 and 12, we obtain z, (k) from z,_1(k) as
zn(k) = mo(Ag(zn-1(k))) ® (k). (13)
We now iterate Equation 13 starting with an initial distribution zy(k), for example
wi) = {5 Fo0 (14)

which corresponds to an empty system. If the system is stable, i.e., p < 1, the series of
distributions z, (k) converges to the steady state distribution of the number of lots in
queue immediately after a service period ends:

z(k) = lim z, (k). (15)
n— o0
Note that by computing z, (k) for n = 1,2,..., we also obtain the transient behav-

ior of the queueing system. l.e., we are able to observe the system state at arbitrary
departure instants.



3.3 State distribution at arrival instants

We will now derive the steady state distribution z*(k) of the number of lots in queue
observed at an arbitrary lot arrival instant. To this end, we consider the number of
arrivals between two consecutive departures. The mean number of arrivals during an
idle period is
L1
E@iq] = Y (L—i)(i), (16)
i=0
and the mean number of arrivals during a busy period is
E[B]

E[®pysy] = BlA] p- K. (17)

Hence, the mean number of arrivals between two consecutive departure instants is
E[®] = E[®ige] + E[®pusy] - (18)

Assume that the arrival instant occurs during a service period in steady state. It
can be shown that the distribution xzusy(k) of the number of lots in queue that a lot
arriving during a service period observes is

k+K
Thusy(k) = Y x(j)/E[®]. (19)
j=k+1
We now assume that the lot arrival instant occurs during an idle period of the server.
Assume further that there were j lots in queue at the previous departure instant, where
0 < j < L. In this case, a lot arriving during an idle period will find 5,7 +1,..., L — 1
lots in queue with equal probability. Hence, the distribution of the number of lots in
queue that a lot arriving during an idle period will encounter is

wip (k) = Zx(j)/E[(I)], k=0,1,...,L—1. (20)

k
Jj=0

By combining x;‘usy and z7,,, we obtain the distribution of the number of lots in

queue at an arbitrary arrival instant:

ZE*(]{I) = ‘II;Zusy(k)—i_xfdle(k)' (21)

3.4 System characteristics

Using the steady state distributions at departure instants and at arrival instants, z(k)
and z*(k), we are able to derive a number of system characteristics of interest. The
mean queue length is

EQ] = Y i-z*(i), (22)
i=1



and the mean waiting time of lots before experiencing service is, according to Little’s
Law (cf. (10, p. 17)),

E[W] = E[Q]-E[A]. (23)
Using Little’s Law, we also obtain the mean number of lots in the server:
ElLi] = BIBJ/EA] = K-p. (24)

The second equality follows from Equation 7. Note that E[L;s] is a linear function of p
and does not depend on the starting threshold L.
Finally, the mean number of lots per service is

L K 00
E[Ly] = > L-z@)+ Y i-z()+ > K-x(i). (25)
=0 i=L+1 i=K+1

Note that in general E[L;s] < E[L,], since the mean number of lots in server is averaged
over both idle and busy periods, while the mean number of lots per start is averaged
over busy periods only.

3.5 Numerical results

We consider a batch service system with maximum batch size K = 4 and deterministic
service time of 30 time units. We vary the minimum batch size from L = 1, which
corresponds to a greedy rule, to L = 4, corresponding to a full batch rule, in steps of 1.
System load is p =0.1,...,0.9.
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Figure 2: Mean queue length
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Figure 3: Mean waiting time

Due to lack of space we restrict the results to two system characteristics. When
considering the mean queue length in Figure 2, we note that the starting threshold L
has an influence on the queue length only if the load is relatively low. Obviously, the
mean queue length can be reduced by choosing a lower starting threshold for a low
system load p.

The mean waiting time depicted in Figure 3 is also smaller for low starting thresholds.
As with the queue length, the influence of the starting threshold decreases when system
load is increased. Note the bath tub-like shape of the waiting time curve, which is
characteristic for batch service systems.

In Table 1, the mean waiting times gained from continuous—time discrete—event sim-
ulation are given. We compare them to the values derived with our proposed method.
To show how decreasing the unit length At improves the accuracy of the results, we give
the numerical results for values of At =1/2 and At =1/10.

Table 1: Simulation vs. discrete—time analysis: E[IV]

Simulation Analysis
At=1/2 At=1/10
p E[W] E[W] error | E[W] error

0.1 || 37.695 £ 0.508 | 38.003 | 0.82% | 38.022 | 0.87%
0.2 || 20.499 £ 0.176 | 20.520 | 0.10% | 20.578 | 0.38%
0.3 || 16.050 £ 0.098 | 15.988 | 0.39% | 16.093 | 0.27%
0.4 || 15.017 £ 0.066 | 14.832 | 1.23% | 14.992 | 0.17%
0.5 || 15.392 £+ 0.076 | 15.145 | 1.61% | 15.373 | 0.12%
0.6 || 16.845 £ 0.107 | 16.484 | 2.15% | 16.814 | 0.19%
0.7 || 19.915 £ 0.242 | 19.157 | 3.81% | 19.656 | 1.30%
0.8 || 26.264 £ 0.833 | 24.802 | 5.57% | 25.637 | 2.39%
0.9 || 45.579 + 4.015 | 42.122 | 7.58% | 43.962 | 3.55%




For the simulation, the mean waiting time and the half width of the 95%—confidence
interval are given. For the analytic results, the mean and the relative error are provided.
An improvement in the accuracy of the results can be noted by decreasing At from 1/2
to 1/10. The computation times for this results were 373 seconds for the simulation
and 19 seconds for the analysis on a Pentium II-266 processor, for both At = 1/2 and
At =1/10.

4 SAMPLE APPLICATION II - A BATCH SERVER WITH
BOUNDED IDLE TIME

The batch server model considered in this section is very similar to the one in the previous
section. In this model, however, we have added a timer. If the server becomes idle after
a service period ends, the timer is started. If the idle time exceeds the maximum idle
time t,, service will be started with the lots waiting in queue, even if the number of lots
waiting is smaller than the minimum batch size L. In case that the queue is empty at
expiration of the maximum idle time, service will be initiated with the first lot arriving.

4.1 State distribution at departure instants

Extending the batch server model by the maximum idle time does not affect the deriva-
tion of the state distribution at departure instants presented in the previous section.
To understand this, note that Equations 8 and 11 are still valid for the bounded idle
time case. Hence, to compute the distribution z(k) of the number of lots in queue at
departure instants, we can apply Equation 13.

4.2 State distribution at arrival instants

The mean number of arrivals during an idle period is

L—-1 00
E®iqe] = > a(i)- Y min(j, L —1i)-7(j) + z(0) - 7(0), (26)
i=0 j=1

where 7(k) is the distribution of the number of arrivals during the timeout interval.
The mean number of arrivals during a busy period is the same as in Equation 17 of
the previous model. The mean number of arrivals between two consecutive departure
instants is E[®] = E[®ige] + E[Ppusy)-

Since the distribution of the number of lots during busy periods is not affected by
the timeout period, the distribution z;, Sy(k) of the number of lots in queue at an arrival
instant falling into a service period can be gained as in Equation 19.

The computation of the distribution of the number of lots that an arrival will see
during an idle period is best displayed in the form of an algorithm:



1 for alli=0,...,L—1do

2 zdle( ) =0

3 forallj=1,...,00do

4 forallk=1,...,5 do

5 i (i + min(j, L — i) — 1) :=

6 aig,(i+min(,L—i)— 1) +2() - 7(j)/E[]
7 end for

8 end for

9 end for

10 @,(0) 1= 5y, (0) + @(0) - 7(0) /B[]

We combine zj, . (k) and z7;, (k) as in Equation 21 to obtain the distribution of the
number of lots in queue at an arbitrary arrival instant z*(k).

4.3 System characteristics

The mean queue length E[Q], the mean waiting time of lots E[IW], and the mean number
of lots in server E[L;5] can be derived according to Equations 22, 23, and 24, respectively.
The mean number of lots per start is computed differently for this system:

L L—i—1 K 00
Y max(i44,1) () 2@ + > i-w@)+ D> K-m(i)(27)
i=0 45=0 1=L+1 1=K+1

4.4 Numerical results

In Figures 4 and 5, the analytical results for a batch server with maximum idle time
are displayed. The system parameters are as follows: Maximum batch capacity K = 4,
starting threshold L = 1,...,4, deterministic service time B = 30 and maximum idle
time of ¢, = 30.
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Figure 4: Mean queue length
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Figure 5: Mean waiting time

As we can see in Figure 4, the mean queue length varies less than in the simple
batch server model for different values of L. More importantly, the mean waiting time
in Figure 5 has an upper bound of about 25 for low values of p.

5 CONCLUSION

In this paper, we presented the discrete-time analysis (DTA) technique. The modelling
concept of DTA and some operators were introduced. We applied DTA to the numerical
analysis of two queueing systems, namely a batch service system operated under the
minimum batch size rule and a batch service system with bounded idle time. We have
implemented the analysis using a toolkit for MATLAB which provides all operators and
algorithms necessary for DTA. The proposed method of analysis proved to be correct
and computationally efficient. Using DTA in the area of semiconductor manufacturing
allows to generate operating curves for a given machine or workstation with little effort.
This facilitates the comparison of different operating strategies.

Comparing DTA to continuous—time discrete—event simulation, we note that the
computation time for the analysis is much smaller than for the simulation. However, the
applicability of DTA is restricted to a small part of a typical manufacturing system, for
example a single workcell. This is due to the fact that the state space of the analytical
model becomes very large when considering more complex systems. The advantages
of DTA like little run time and memory usage can no longer be maintained for larger
systems.

When modelling rare events like machine downtimes, excessive simulation times are
necessary in discrete—event simulation to get meaningful results, whereas the compu-
tation time of the discrete-time analysis is hardly affected. To apply DTA, a certain
amount of knowledge of probability and random processes is necessary. But this is also
the case for simulation, since the simulation results are usually in the form of confidence
intervals that require expert interpretation.
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