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Abstract

Rate measurements are required for many purposes, e.g. for system analysis and mod-
elling or for live systems that react to measurements. For off-line measurement all data
is available in advance. Here, time delay between data collection and data analysis is not
an issue. On-line measurement, however, measures rates on the fly. Thus, measurement
algorithms that provide their output as timely as possible are required. We present three
well known algorithms for rate measurement: The Disjoint Intervals method, the Moving
Average, and the Exponentially Weighted Moving Average over Disjoint Intervals. We
analyze and compare their properties and find problems like heavy time delay or over-
reaction to random fluctuations. To address these problems, we derive a new algorithm
called Time Exponentially Weighted Moving Average as a continuous version of the Ex-
ponentially Weighted Moving Average. Finally, we compare this algorithm to the other
methods and show that it solves these problems.

Keywords: Measurement Methods

1 Introduction

System analysis and modelling often require the measurement of rates to obtain useful input
parameters. Live systems that correlate measured rates to other system parameters and react
to it accordingly are another example where rate measurements are necessary.

This motivates the distinction between on-line and off-line measurement. In the case of off-
line measurement, first data are collected, then analyzed, and the results are used afterwards.
In the case of on-line measurement, however, data collection, data analysis, and the usage of
the results are linked and take place at virtually the same time. The time gap between the
respective steps must remain as short as possible. On-line and off-line measurement have
different requirements regarding measurement methods.
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many (F̈orderkennzeichen 01AK045) and Siemens AG, Munich. The authors alone are responsible for the
content of the paper.



For off-line rate measurement, a common approach divides the time axis into fixed size
intervals and counts the number of possibly weighted events per interval. Then, the measured
rate is computed as the average number of events within each interval. This yields a timely
value for the respective interval. If the same method is applied for on-line measurement, the
rate value is obtained not before the interval is over. Hence, the measurements are delayed by
one value. This delay between the events and the update of the measured rate seriously affects
live systems and requires other measurement methods that exhibit better timeliness.

In this paper we briefly present methods designed for rate measurement based on Disjoint
Intervals (DI), Moving Average (MA), and Exponentially Weighted Moving Average based on
Disjoint Intervals (EWMA-DI) found for similar purposes in literature. We introduce a new
algorithm called Time Exponentially Weighted Moving Average (TEWMA) as a continuous
version of EWMA. It is designed to avoid problems that arise from the usage of the other
methods. It is specifically intended to improve the timeliness of the measured rate and to
allow for simple algorithmic implementation. We discuss the advantages and drawbacks of all
algorithms, compare them, and make suggestions under which circumstances their application
seems appropriate.

The work is structured as follows. Section 2 outlines fundamental concepts for rate mea-
surement, Section 3 presents the algorithms under study in detail, Section 4 compares them,
and Section 5 concludes this work.

2 Fundamental Rate Measurement Concepts

As mentioned above we distinguish two fundamentally different aspects of rate measurement,
off-line and on-line measurement.
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Figure 1: Off- and on-line measurement and their impact on timeliness.

In case of off-line measurement all data are available before they are analyzed. So as shown
in Figure 1, the rate during intervalI2 is 1 event during this interval divided by the interval
length of 2s. However, in case of on-line measurement, at timet ∈ I2 the number of events in
I2 is still unknown. So the most current measured rate is the old value of intervalI1.

Generally, when measuring off-line, the focus is laid upon long term characteristics of the
data. Average rate and coefficient of variation on the long run are more important than short



term variations. Measuring input parameters for analytical or simulation models like the aver-
age rate of an arrival process is an example.

Opposed to that, when measuring on-line, short term variations, the evolution of the rate
over time, are of specific interest. The measurements are required for live systems that cor-
relate measured rates to other system parameters and react to it on the fly. Experience Based
Admission Control (EBAC) [2] correlates admitted traffic volumes to measured traffic rates
on the links of a communication network and derives suitable overbooking factors. It serves
as an example for on-line measurement. The measurements should reflect the actual rate as
timely as possible.

Other classifications of measurement types are possible as well and certainly no strict border
can be drawn between both classes. However, we see one major challenge to measurements
in stringent delay conditions and it is one criterion for which the TEWMA algorithm has been
derived. Therefore, we analyze advantages and drawbacks of the rate measurement algorithms
presented in this work in a general sense and at the same time we lay the focus of this work
on the measurement delay.

In the following we observe a stochastic processX(t), t ∈ R0 with inter-arrival timeA.
Arrivals happen at timesti ∈ R, i ∈ N. The variableX(ti) – shortXi – denotes the size of
the object, e.g. packet, arriving at timeti. If there is no arrival at timet, thenX(t) = 0. The
object sizes are stochastic themselves.Ai denotes the inter-arrival time between the objects
i− 1 andi, i.e. Ai = ti − ti−1. The random variablesXi andAi may be generally distributed.
Figure 2 shows an example of a packet arrival process to clarify the notation at one glance.

41 42 43 44 45
0

200

600

1000

1400

time [s]

p
ac

k
et

 s
iz

e 
[B

y
te

s]

t39 t42

X(t  ) = X39 39

A41

Figure 2: Packet arrival process.

A rateR is the (weighted) number of eventsΓ per time interval∆ and is constant or chang-
ing over time depending on the underlying process. In this workR stands for constant rates
andR(t) for rates that are a function of time. There is a difference between the generating rate
R, the theoretical rate of the underlying process, and the empirical rateM , the rate observed
by measurements. The generating rate of a process is usually unknown and the empirical rate
is the only information about the process.



If we are just interested in the number of arrivals over time, we set the sizes of the arriving
objectsXi = 1. Thus, we measure the pure arrival rate of a stochastic arrival process, i.e.
the number of arrivals per time. In the case of packet arrivals, this is the number of packets
arriving per time unit. Otherwise, if we take the size of the objects into account, the rate
describes the number of object size units over time. In the case of a packet arrival process,
this is the traffic volume, i.e. the number of bits per second. Assuming a constant rate for the
example in Figure 2, 5 packets arrive within the presented interval of 5 seconds, which yields
an empirical rateMP = 1

sec
. With the packet sizes being116, 1221, 397, 908, and1198 Bytes,

the traffic volume isMT = 768Bytes
sec

. Of course, calculating the rate like that serves only as a
simple example to point out the notation and concepts described in this section.

For the sake of simplicity, the figures in the following sections show only examples of arrival
rate measurements, i.e., the object sizes are not take into account. However, they clarify the
general case as well.

3 Rate Measurement Algorithms and their Characteristics

We present four distinct rate measurement algorithms that reveal different advantages and
drawbacks.
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Figure 3: DI and its impact on off-line and on-line measurement.

Rate Measurement Based on Disjoint Intervals (DI) The algorithm based on disjoint in-
tervals is a straightforward approach. The time axis is divided into disjoint (not necessarily
equidistant) intervalsIi = [ti, ti+1) as shown in Figure 3. Lettk, tk+1, . . . , tk+m be the arrival
times withinIi. ThenΓi =

∑k+m
j=k Xj is the sum of the sizes of the corresponding objects.

Given∆i = ti+1 − ti, DI meters the empirical rate

Mi =
Γi

∆i

. (1)



Thus, the rateMi is determined by metering the object sizes in time intervalIi. The DI
approach has several severe drawbacks.

P1 If ∆i aretoo short, the measured rateMi alternates between zero and large values, i.e.,
it becomes very jerky.

P2 If ∆i arerelatively short, random fluctuations are interpreted as rate changes although
the properties of the traffic are unchanged.

P3 The empirical rateMi relates to the traffic behavior duringIi and is the most recent value
during Ii+1 for on-line measurements. Hence, the rate measurements are significantly
delayed if∆i arerelatively long(cf. Figure 3).

P4 If ∆i aretoo long, rate changes on a scale smaller than∆i can not be observed.

Now we consider equidistant intervals∆. The interval size∆ serves as a memory to re-
member the state of the process. The algorithm knows the number of arrivals since the start
of the current interval, but nothing about earlier arrivals. To compare the DI algorithm to the
other methods presented in the following paragraphs, we define its equivalent memory

L = ∆. (2)

We defineM(t, j) as the contribution to the measured rateM(t) by a single objectj of size
Xj with arrival timetj in the case of on-line measurement. Assume that objectj arrives in the
intervalI = [tI , tI + ∆], i.e. tj ∈ I. The arrivalj contributes to the rate measured by DI the
value Xj

∆
in the interval[tI + ∆, tI + 2∆] – shortI + ∆ – due to the delay of∆ induced by

on-line measurement here. Therefore, the measured rate at timet applied to the objectj is

M(t, j) =

{
Xj

∆
: t ∈ I + ∆

0 : t /∈ I + ∆
(3)

The rate integral over time applied to a single event yields
∫ +∞

0

M(τ, j)dτ = Xj. (4)

Hence, the full object size is reflected by the rate.

Exponentially Weighted Moving Average Based on Disjoint Intervals (EWMA-DI) The
empirical ratesΓi

∆i
are similarly determined based on disjoint intervals like in the preceding

paragraph. To mitigate the effect of short-term rate fluctuations seen in measurements by the
empirical rate, an exponentially weighted moving average (EWMA) takes the past to a certain
degree into account.

In case of a uniform measurement interval length∆, this can be written as

M0 = 0 (5)
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Figure 4: EWMA-DI and its impact on off-line and on-line measurement.

and

Mi+1 = β ·Mi + (1− β) · Γi+1

∆
(6)

with β ∈ (0; 1). An example is shown in Figure 4. The devaluation parameterβ controls the
influence of older measurement intervals on the current value. The impact of older measure-
ments decays exponentially withβ. Thus, the memory is controlled by the parametersβ and
∆.

Solving Equation 6 recursively, we obtain

Mi =
i−1∑
j=0

βj · (1− β) · Γi−j

∆
+ βi ·M0 =

=
i−1∑
j=0

βj · (1− β) · Γi−j

∆
(7)

From Equation 7 we conclude that EWMA considers the values from the current interval
Ii with weight (1 − β). It further considers the values from the intervalIi−j with weight
βj · (1 − β) and therefore looks(j+1) · ∆ back into the past. Fori → ∞ this leads to the
following definition of the equivalent memory

L =
∞∑

j=0

(1− β) · βj · (j+1) ·∆ =

=
∆

1− β
(8)

For the fair comparison with other measurement methods,β and∆ must be chosen to fulfill
β = 1− ∆

L
that the same equivalent memoryL is achieved.



Here, the contributionM(t, j) to the measured rateM(t) by a single objectj in case of on-
line measurement can be derived as follows. With EWMA-DI the objectj of sizeXj arrived
at tj ∈ I = [tI , tI + ∆] contributes to the measured rate the value

(1− β) · βk · Xj

∆

if t ∈ [tI +(k+1)∆, tI +(k+2)∆]. This is due to the weights of the formβk ·(1−β) explained
above (cf. Equations 7 and 8) and the time delay of∆ induced by on-line measurements.

M(t, j) =





(1− β) · βk · Xj

∆

if t ∈ I + (k+1)∆, k ∈ N
0 otherwise

(9)

The rate integral over time applied to a single event also yields
∫ ∞

0

M(τ, j)dτ = Xj (10)

The EWMA-DI was introduced by [3] and this mechanism has been studied quite inten-
sively especially in the field of economics for chart analysis [4, 5, 6, 7, 8, 9]. The EWMA
is also used in many technical documents of the IETF [10, 11], the most prominent one is
probably the obsolete estimation of the round trip time for TCP in [12].

As this algorithm is designed not to react to random fluctuations by controlling the memory
with the help of the additional parameterβ, an appropriate value alleviates problem P2. The
concerns P1, P3, and P4 are still valid.

Rate Measurement Based on Moving Average (MA) The measurement delay imposes se-
vere problems on systems that depend on on-line measurements and must react to rate changes
within a relatively small time gap. The following approach [13] reduces this delay.

Let tk, tk+1, . . . , tk+m be the arrival times within the interval[t−∆, t]. ThenΓ(t−∆, t) =∑k+m
j=k Xj is the sum of the sizes of the objects arriving within this interval. The measured

rateM(t) is determined by

M(t) =
Γ(t−∆, t)

∆
.

This algorithm moves a window over time and measures the average of the object sizes within
this window. Ift < ∆, M(t) is either undefined orM(t) = Γ(0,t)

t
. Figure 5 shows the example

from above using the MA method. This algorithm only considers the values within the current
window of length∆ and therefore clearly has the equivalent memoryL = ∆.

As the MA method does not delay the impact of objectj on the rate, its contributionM(t, j)
to the measured rateM(t) is

M(t, j) =

{
Xj

∆
: t ∈ [tj, tj + ∆]

0 : t /∈ [tj, tj + ∆].
(11)



The rate integral over time applied to a single event similarly results in
∫ +∞

0

M(τ, j)dτ = Xj. (12)

Even though this algorithm reduces problem P3, the concerns P1, P2, and P4 are still valid.
In addition, another problem emerges.

P5 All events within the current position of the window must be recorded together with
their arrival times. Hence, a history is required, which complicates the measurement
apparatus.
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Figure 5: Rate measurement based on moving average with∆ = 2.

Time Exponentially Weighted Moving Average (TEWMA) We finally derive a new al-
gorithm called Time Exponentially Weighted Moving Average. We design this measurement
approach to combine the insensitivity to random fluctuations of the EWMA-DI method with
the timeliness of the MA method without the need to keep a history.

With the moving average all values in the history have the same importance. Values outside
its window horizon are not considered at all. With the EWMA-DI the relevance of the values
decays continuously with their age.

If we combine Equation 9 for the EWMA-DI algorithm

M(t, j) = (1− β) · βk ·+Xj

∆

for t ∈ I + (k+ 1)∆ with tj ∈ [tI , tI + ∆], k ∈ N with the condition on the parameterβ for
EWMA - DI β = 1− ∆

L
, we obtain the following result:

M(t, j) = (1− (1− ∆

L
)) · (1− ∆

L
)k

· Xj

∆
=

Xj

L
· (1− ∆

L
)k (13)



wherek and∆ reflect the proceeding time.
Definef(k ·∆) :=

Xj

L
· (1− ∆

L
)k for fixed∆. The functionf(k ·∆) reveals an exponential

decay ink. The differential quotient

f(k ·∆)− f((k + 1) ·∆)

∆
=

Xj

L
· (1− ∆

L
)k

∆
=

1

L
f(k ·∆)

motivates the substitution off(k ·∆) for ∆ → 0 by the continuous function

f(t) =
Xj

L
· e− 1

L
·t,

which leads to a new measurement algorithm without measurement interval:

M(t, j) =

{
Xj

L
· e− 1

L
·(t−tj) : t ≥ tj

0 : else.
(14)

This continuous function finally yields our new algorithm TEWMA. Let

n(t) = max{j : j ∈ N, tj ≤ t}
be the number of arrivals before timet. Then the rate measured by TEWMA is

M(t) = γ

n(t)∑
i=0

Xi · e−γ·(t−tj) (15)

with the devaluation factorγ = 1
L
∈ (0; 1). The TEWMA rate functione−γ·(t−tj) =: w(t, tj)

is an aging function that leads to an exponential decay of older values. A similar function has
been applied for the estimation of the intensity of a doubly stochastic Poisson process in [14].

The property of the exponential function

e−γ·(t−x) = e−γ·(t−y) · e−γ(̇y−x)

for y ∈ R leads to a simple algorithmic formulation.

M(t0) = 0

M(tj) = M(tj−1) · e−γ·(t−tj) + γ ·Xj (16)

M(t) = M(tn) · e−γ·(t−tn)

with n = n(t).
Obviously, no history is required and for each time instant a current valueM(t) can be

determined. The derivation of the TEWMA measured rate functionM(t) as a continuous
version of the EWMA rate function indicates the desired properties timeliness and insensitivity
to random fluctuations of the observed process. The equivalent memory isL = 1

γ
as can be

seen from the above equations.
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Figure 6: Rate measurement based on TEWMA withγ = 0.5.

A large devaluation parameterγ corresponds to a small memory. Therefore, the correspond-
ing TEWMA is expected to produce jerky curves that ride closely on the current events of the
process. Small devaluation factorsγ yield a slow decay and, therefore, they are expected to
produce smooth curves due to a long memory.

Figure 6 repeats the above example with TEWMA to give an impression of the algorithm
beyond the formulas. Note that similar to MA the rate can be measured at all time instants. An
object arrival increases the empirical rate. This is justified in the light of on-line measurement.
We are interested in values as timely as possible without sensitivity to random fluctuations.
Thus, arrivals give evidence of higher rates and the absence of arrivals gives evidence of lower
rates. The increase due to arrivals and the exponential decay between arrivals is governed by
γ.

After all, if γ is chosen inappropriately, this method reveals problems corresponding to
P1 and P4. But those problems are inherent to measurements and reasonable parameters
clearly avoid them without loosing any of the positive aspects of this algorithm. Especially,
the drawbacks P2 and P3 of the DI method are no issue as shown in the next section and no
history is required (P5).

The rate integral over time applied to a single event
∫ ∞

0

M(τ, j)dτ =

∫ ∞

tj

γ ·Xj · e−γ·(τ−tj)dτ

= Xj · [−e−γ·(t−tj)]∞tj
= Xj (17)

eventually proves that the TEWMA measurement method also respects the full object sizeXj

in the contributionM(t, j) to the measured rateM(t).

The relationship between DI, EWMA-DI, and TEWMA In the above paragraph we de-
rived TEWMA as the continuous limit of EWMA - DI for∆ → 0. On the other hand, the DI
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Figure 7: DI and EWMA-DI in comparison.

method is a special case of EWMA - DI with∆ = L andβ = 0. This relationship between the
algorithms shows that the respective methods have the same equivalent memoryL, however,
TEWMA yields the best time accuracy, i.e. timeliness.

4 Comparison of Rate Measurement Algorithms

The new TEWMA algorithm is designed to improve the timeliness of rate measurements with-
out overreaction to random fluctuations. To demonstrate these properties in contrast to the
other algorithms, we choose for the inter-arrival times an hyperexponential distribution with
two phases and symmetry condition and relatively high coefficient of variationc = 1.5. Fur-
thermore, we introduce sudden changes of the generating rate. This can be considered a worst
case scenario.

We first set the parameters of the hyperexponential distribution to obtain an inter-arrival
time with meanm = 1s for the first25 seconds, change the mean tom = 0.25s for the next
25 seconds, and finally drop it tom = 1s again for the last25 seconds. This relates to a
generating rate of11

s
and41

s
, respectively. The generating rate is indicated by a dotted line in

all figures as can be seen in Figure 7. The arrivals appear in the graphs as vertical lines at the
bottom.

Figure 7 shows the scenario for DI and EWMA-DI with equivalent memoryL = 5s, i.e.
parameters∆ = 5s for DI and∆ = 2s andβ = 0.6 for EWMA-DI. We plot the empirical
ratesMi delayed as in the case of on-line measurement. SoMi is the freshest measured value
during the next time intervalIi+1.

The DI method produces very jerky results. The 2nd and the 13th values go down to 0
because the measurement does not perceive any arrivals within the corresponding interval due
to the variance of the underlying process. However, the generating rate is still1 1

sec
. The

memory introduced by the parameterβ of EWMA-DI relieves the problem. The result is
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less jerky and could be even improved with respect to this criterion by increasingβ. But
measurements should still distinguish between processes with a deterministic inter-arrival time
of 1s and an inter-arrival time of1s and a high variation. The first leads to exactly one arrival
within a time window of1 second, the latter leads to a random number of arrivals with mean 1
within the same interval. Thus, the result should not look to smooth by choosing a high value
for β. Thus, on the one handβ improves rate measurement in contrast to DI by reducing the
jerky course. On the other hand,β is a control parameter to adjust the sensitivity to variations.

Both methods, DI and EWMA-DI, are interval based methods and therefore their timeliness
is inherently limited. Looking at sudden rate changes, the intervalsI5 to I7 andI10 to I12 show
that EWMA-DI reacts with delay in controst to DI. This is due to the additional memory
introduced byβ, but it is tolerable considering the worst case character here.

Finally, EWMA-DI is already a good choice for off-line measurement, where the time gap
is not so important. However, on-line measurement suffers from the delay introduced by the
techniques based on intervals and the concerns mentioned in the previous section with regard
to the proper selection of the time intervals are still valid.

Figure 8 shows the same scenario for MA with∆ = 5s and TEWMA with its corresponding
parameterγ = 0.21

s
, i.e. L = 5s. The values for EWMA-DI are plotted here as well for the

sake of comparison.
The results produced by both algorithms improve the timeliness significantly. The curves

reflect the current state of the random process considering its high variance on a much finer
granularity. However, MA produces jerky results and overreacts to random fluctuations. For
example similar to the DI method, the empirical rate measured with MA decreases to0 due
to the lack of arrivals within an interval around20 and80 seconds. But as the generating rate
is R = 1, this behavior is clearly too extreme. Opposed to that TEWMA reacts less severe
to random fluctuations. Its output around the points of the sudden rate change is not severely
delayed.

In comparison to the MA algorithm, the TEWMA algorithm produces smoother results.
Particularly, having in mind that no history is needed, TEWMA clearly produces better results
with a less complicated measurement apparatus.

In comparison to all the other algorithms, the TEWMA algorithm provides the most current
values, does not overreact to random fluctuations, and allows for the easiest implementation.
For each arrival at timeti, the knowledge of the old value and the size of the arrivalXi is suffi-
cient to update the value. Thus, TEWMA is certainly most suitable for on-line measurement.

To end with, Figure 9 shows the effect of different values for the devaluation parameter
γ on TEWMA. As mentioned in the previous section, low values increase the memory and
make the curve appear smoother. However, at the same time the sensitivity to the rate changes
rises. So similar to the∆ andγ parameters of the other algorithms, a reasonable choice of this
parameter is important.
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5 Conclusion

The different time delay requirements of on-line and off-line measurements show the need for
timely measurement methods. This work presented three rate measurement algorithms based
on Disjoint Intervals (DI), on Moving Average (MA), and on Exponentially Weighted Moving
Average over Disjoint Intervals (EWMA-DI) that can be found in literature. We introduced
the notion of the equivalent memory to allow for a fair comparison of their properties with
respect to timeliness and sensitivity to random fluctuations of the generating rate. While the
timeliness of DI and EWMA-DI is inherently limited due to the usage of time intervals, MA
overreacts to random fluctuations.

This led to the derivation of a new algorithm called Time Weighted Exponential Moving
Average (TEWMA) as a continuous version of EWMA-DI. Keeping the equivalent memory of
the EWMA-DI fixed, the DI method is obtained if the measurement interval size∆ approaches
L, and for∆ → 0 the TEWMA method is obtained. The results illustrate that the TEWMA has
the best timeliness without overreacting to random fluctuations and gives the best image of a
continuous rate. Additionally, it allows for a simple algorithmic implementation as no history
is required. Thus, it is the best choice for on-line rate measurement among the investigated
methods.
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