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Abstract

In this paper we present a novel framework supporting distributed network management
using a self-organizing peer-to-peer overlay network. Theoverlay consists of severalDis-
tributed Network Agentswhich can perform distributed tests and distributed monitoring for
fault and performance management. In that way, the concept is able to overcome disadvan-
tages that come along with a central management unit like scalability and reliability.

The self-organization of the overlay is achieved by the application of a Distributed Hash
Table (DHT) based on the Kademlia algorithm. The DHT mechanism implements a distrib-
uted index for the rapid localization of other agents or resources. The framework provides
a reliable and scalable basis for distributed tests, like e.g. the identification of performance
degradation in IP networks using throughput statistics. The framework is not intended to
replace the central network manager, but rather to support it in testing and surveying the
status of the corresponding network.

1 Introduction

A peer-to-peer (P2P) system is a highly distributed application architecture. A P2P network
can be described as a group of entities, denoted aspeers, with a common interest, that build a
self-organizing overlay network on top of a mixture of already existing networks. Unfortunately,
P2P technology has so far only received a doubtful reputation due to its use in file sharing ap-
plications. P2P algorithms, however, might be highly helpful in implementing novel distributed,
self-structuring network management concepts. In this work we suggestthe application of a
current generation, structured P2P overlay network for fault and performance management with
the aim of enhancing conventional management functions.

In general the goal of Network Management is “to ensure that the usersof a network receive
the information technology services with the quality that they expect” [1]. However, moni-
toring and provisioning of that quality in an end-to-end manner as perceived by a user [2] is
rarely achieved. The OSI-defined Network Management functions (Fault, Configuration, Ac-
counting, Performance, and Security management, FCAPS, cf. [3]) aremostly carried out by
rather centralized entities (Network Management Systems) and only in those parts of the net-
work a provider is responsible for. Coordination of the monitoring among different administra-
tive domains is rarely achieved, which also affects possibilities to locate faultsand to evaluate
end-to-end QoS.



A central fault testing and QoS monitoring architecture typically results in additional, complex
entities at the provider. The operator has to ensure the reliability of the entities and assess their
scalability. The systems have to scale withO(N2) due to theN(N − 1) potential relationships
amongN end systems. In addition, relaying monitoring data consumes bandwidth, delays its
availability, and might get lost in case of a network failure. A decentralized QoS monitoring,
as for example, located on the users end system, might avoid these disadvantages. The use of a
distributed, self-organizing software will reduce capital and operational expenditures (CAPEX
and OPEX) of the operator since fewer entities have to be installed and operated. Scalability can
be achieved by re-using resident resources in conjunction with local decisions and transmission
of less data.

We propose a new, distributed, self-organizing, generic testing and QoSmonitoring architec-
ture for IP networks. The architecture will complement todays solutions forcentral configuration
and fault management such as HP OpenView [4], IBM Tivoli [5] or InfoSim StableNet [6]. The
architecture is based on equal agents, denoted as Distributed Network Agents (DNA), which
form a management overlay for the service. In this context the wordagent is not to be un-
derstood as an agent as used by the Artificial Intelligence community, but rather as a piece of
software running on different peers, like, e.g., an SNMP-Agent. The self-organization of the
overlay is achieved by a P2P-based Distributed Hash Table (DHT), suchas Kademlia [7] or
Chord [8]. The DHT mechanism implements a distributed index for the rapid locating of other
agents or resources.

The suggested architecture facilitates the autonomic communication concept [9] by locally
determining the perceived QoS of the user from distributed measurements and by exploiting the
self-organization capabilities of the DHT for structuring the overlay. It willbe able to communi-
cate with standard-NMS via well-established interfaces. Thus, it can be seen as a QoS-enabling
complement of existing Network Management solutions.

The remainder of the paper is structured as follows: Section 2 introduces the architecture of
a DNA and shows how the framework can be used for local and distributedtests. In Section 3
we give an overview of the current P2P generation and motivate why we chose Kademlia as the
basis of the DNA overlay. Some details about the implementation of our prototypewill be given
in Section 4. The functionality of the DNA is validated by simulation in Section 5. Section 6
finally concludes the paper and summarizes our future work.

2 The DNA Framework

The DNA framework represents an independent distributed application intended to support the
central network monitoring station. In general a central monitoring entity hasthree major disad-
vantages:

• It is a single point of failure. Once the single central monitoring unit fails, thenetwork
will lose its control entity and will be without surveillance. The same problem could, e.g.,
be caused by a distributed denial of service attack. That is, the functionality of the entire
network management depends on the functionality of a single central unit.

• It does not scale. On the one hand the number of hosts that can be monitored at a given
time is limited by the bandwidth and the processing power of the central monitoring unit.



On the other hand there is a growing number of services that has to be monitored on each
host due to the diversity of services that emerge during the evolution of theInternet.

• It has a limited view of the network. While a central network manager is able to monitor,
e.g., client A and Server B, it has no means of knowing the current status of the connection
between the two monitored devices themselves.

How the DNA application is able to solve all these problems is summarized in this section. It
is also able to support the central unit in two ways. Firstly, the DNAs constantly monitor the
network in a distributed way and send a message back to the central serverin case the condition
for some trigger event is met, similar to SNMP traps. Secondly the central server can query
the current state of the DNA on demand. In case the central server fails,the DNA will still be
functional and can store the gathered information until the central servergoes back online again.
First ideas have been discussed briefly at [10].

In this paper we describe our distributed framework in detail (cf. Section 2.1) and present
examples for local as well as for distributed tests (cf. Sections 2.2 and 2.3). To provide the
different DNAs the possibility to communicate with each other, they build an overlay network.
How this overlay is set up is described in Section 3.

2.1 The Basic Concept

The Distributed Network Agent (DNA) is based on a modular concept shown in Figure 1. The
main component of the DNA, the so-called Mediator, runs as a daemon in the background and is
responsible for the communication between the user and the individual test modules. The user
is able to connect to the Mediator using the graphical user interface (GUI)or the command line.
He can manually start tests or read the results of tests that have already been performed. The
tests themselves are arranged in different modules that are not part of the basic DNA architecture.
That is, test modules consist of several tests that are similar in respect oftheir functionality. They
represent the functionality of the DNA and can be added or removed without any influence on
the operability of the DNA architecture. Figure 1 summarizes the design of the DNA framework.
The Mediator either receives a test request from the user or autonomically schedules a test itself.
It then performs the corresponding test using the provided Interfacesand finally sends the results
to the GUI upon request. The individual tests are executed by the Mediatorusing the Interface
component. Therefore, any test module that implements all features required by the Interface
component can be added to the DNA framework.

A description of the two most important features required by the Interface component and
their purpose is given in the following:

• Default Tests:Each test module has to provide a list including all tests that will be run
when the module is called by the Mediator without any parameters. This list of default
tests will be executed when the user did not specify any details. Advancedusers, however,
are able to choose another subset of tests from the module that is adapted to their specific
needs. The default test sequence offers the possibility to implement a test module that,
e.g., includes tests dealing with different kinds of IP configuration. In this example the
default test sequence could cover all properties of a static IP, while support for DHCP
might be optional.
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Figure 1: The modular framework of the DNA

• Test Dependencies:If not specified otherwise all selected tests of a test module are per-
formed in parallel. However, the DNA offers the possibility to use test dependencies. That
is, a test module can provide a list containing the dependencies of its individual tests. The
Mediator does not start a test until all its dependencies were performed successfully. The
following two tests provide a simple example for test dependencies: A test thatchecks
the state of a network interface card (NIC) and a second test that pings apredefined host
using the same NIC. Obviously the second test is dependent on the first one, since it can
only succeed if the NIC is up and running. The Mediator would therefore only execute
the second test if the first test already finished successfully.

Any test module that offers a list of Default Tests and Test Dependencies can be added to
a running DNA at any time. Since a great fraction of network problems are actually caused
by local errors like misconfiguration and software failures, we outline a test module containing
local tests in the following section. Before a DNA takes part in the DNA overlay, it can run the
local test module to eliminate any possibility of local errors.

2.2 Local Tests

In this section we briefly describe a test module containing local tests, which isan inherent part
of our prototype discussed in Section 4. First, we summarizes the set of default tests and give a
brief description of the remaining tests in the module afterwards. All local testsare bound to a
specific network interface card, which can be selected by the user.

2.2.1 Default Test Sequence

The default test sequence contains eight tests, which can be divided into“Hardware and TCP/IP”
and “Local configuration and network connectivity”. The five tests in thelatter category all
depend on the three tests dealing with hardware and TCP/IP.



Hardware and TCP/IP

• NICStatus:This test returns information about the network interface card and its current
state, including a driver check and the like. It is mainly used to eliminate the possibility
of hardware failures or problems with the driver.

• NetConnectionStatus:This test is used to check the current connection status of the NIC.
Causes for an error include a cable that is not plugged in, or a network interface card still
running an authentication process.

• PingLocalHost: The functionality of the TCP/IP stack is validated by sending a ping
request to the loopback address (127.0.0.1).

In case all three tests finish successfully, the Mediator will call the remainingfive tests of the
default test sequence.

Local configuration and network connectivity

• IPConfiguration:This test verifies that a valid IP address is assigned to the NIC. It also
checks if the associated gateway is on the same subnet as the IP address.

• DNSConfiguration:The test verifies that at least one DNS server is assigned and can be
reached by a ping request. If the ping message failed whereas the lookupwas successful,
only a warning message is reported, as some DNS servers might not respond to ICMP
packets. Furthermore, the functionality of the DNS server is tested performing a prede-
fined DNS lookup and optionally a reverse lookup.

• DHCPLease:In case of using DHCP on a machine running Windows, the IP address is
checked to ensure that the network interface card is not set up to use a so called Autonomic
Private IP Address (APIPA). This might occur, if the server has no more capacities to
provide a new IP address or if the user participates in an encrypted wireless LAN (e.g.
WEP) using an invalid key.

• PingOwnIP:To exclude a communication problem between the operating system and the
NIC, the IP address assigned to the adapter is pinged.

• PingWellKnownHosts:This tests sends a ping request to a list of predefined well known
hosts. If a specified number of hosts in this list does not respond in time, the test returns
an error.

2.2.2 Additional Local Tests

In this section we give an example of additional tests that are not in the default test sequence of
the corresponding test module. The following three tests belong to our localtest module but are
not part of the default test sequence, since they are specific to the Windows OS. Advanced users
can include the tests in case the DNA is running on a Windows based platform.



• EventViewer:The test searches in the ”Event Viewer Log” for error events causedby
TCP/IP or DHCP. If the Windows event viewer has recorded problems withrespect to
TCP/IP or DHCP those errors will be forwarded to the GUI of the DNA.

• HostsAndLmHosts:Before Windows uses DNS or WINS it tries to resolve a domain
name using the HOSTS or LMHOSTS file. If one of these files contains a wrong entry
the resolution of the corresponding name fails. The test searches for syntax errors in both
files and sends ping requests to valid entries.

• RoutingTable:The Windows routing table is divided into a dynamic and a persistent part.
This test pings the gateways of both tables and reports an error message,if one of them is
not reachable.

2.3 Distributed Tests

In this section we describe how to use the DNA framework to implement distributedtest mod-
ules. A distributed test is a test that is performed in conjunction with at least one other DNA.
To be able to communicate with each other the DNAs build an overlay network on top of the
monitored network. To perform a distributed test a DNA can then either connect to a randomly
chosen DNA or to a specific DNA chosen by the user. Section 3 describesthe P2P based DNA
overlay in detail.

The following two distributed tests point out the possibilities of the distributed DNAframe-
work that arise by extending a simple local test to a distributed test:

• PingWellKnownHosts:If a single DNA or a central network manager does not receive
a ping reply from a well known host, either the host or any link on the path to this host
could be down. Using the DNA framework, however, a DNA can ask another DNA to
ping the same host and evaluate the returned result. In case another DNA isable to ping
this host, the possibility that this host is down can be ruled out and the cause of the error
can be narrowed down to a network problem between the DNA and the well known host.
If the DNA has knowledge about the network topology, which could, e.g., be gained using
network tomography, the distributed ping test can also be used to pinpoint thebroken link
or to locate a bottleneck by comparing the delay of the ping messages.

• DNSProxy:In general a DNA can use another DNA as a temporary proxy or relay host. In
case a DNA loses the connection to its DNS server and can thus no longer resolve domain
names, it can use another DNA as a DNS proxy. That is, the DNA forwards the DNS
query to another DNA, that in turn tries to resolve the domain name using its own DNS
server. This way the DNA is able to bridge the time its DNS server does not respond to
DNS queries. In a similar way two DNAs with a broken direct connection could use a
third DNA, that still has a connection to both DNAs, as a temporary relay host.

As stated above the DNAs build an overlay network to be able to communicate with each other.
They are able to communicate with a random DNA in the overlay or to search fora specific
DNA. The following two tests provide examples of how to build distributed applications based
on this aspects of the DNA framework:



• PortScan:If a DNA peer is running a webserver or offers some other service thatrequires
an open port it usually is probed by a central network manager to ensurea continuous
service. On the one hand this method does not scale with the number of services the
central network manager has to monitor, on the other hand the peer runningthe service
has no influence on the time of the next check. Using the DNA framework, however, the
peer is able to ask a random DNA to see if it can reach the offered services. This is also
a scalable way to monitor a large number of services. The DNAs monitor the services
running on their peers in a distributed way and only send a message back to the central
network manager in case of an error.

• Throughput: Usually it is not easy for a user to verify a service level agreement or to
measure the bandwidth to another point in the network. The possibility to search for
a specific DNA enables a peer taking part in the DNA overlay network to search for a
specific communication partner and ask for a throughput test. A very simple way to do
so is to constantly send traffic to the other DNA for a certain period of time and simply
measure the average throughput. However, there are more sophisticatedways, which we
intend to integrate in future work.

The above tests are just some examples of how to use the DNA framework. Infuture work we
intend to present some more advanced test modules for the DNA in detail. In Section 6 we
summarize our ideas for a new, distributed passive QoS monitoring concept.The next section
discusses general security issues and a way of how to deploy new test modules to the DNA
overlay network.

2.4 Deployment of New Tests

Considering a running DNA overlay network, one can not assume that allDNAs are always
having the same test modules. An obvious way to deploy new test modules is to send the
modules on demand. That is, if A asks B to perform a distributed test but B does not have
this specific test, A simply sends the test module to B. However, this implies that B implicitly
trusts A. A security risk that is obviously not negligible. In fact a framework that allows other
machines to run arbitrary code would be the perfect tool for distributed denial of service attacks.

One way to solve this problem is to only download new test modules from a central trust
server. That is, all DNAs trust a central entity and only run code that is signed by this central au-
thority. While this solution is sufficient for small networks it does not scale to larger networks. A
scalable implementation of the DNA framework therefore needs a distributed trust model. Since
there is an independent research area dealing with security and this paper is mainly intended to
be a proof-of-concept for a P2P based framework for network monitoring, we will refrain from
addressing security issues. There exist, however, different approaches to build distributed trust
models for P2P systems. In [11], e.g., Josephson proposes a scalable method for P2P authen-
tication with a distributed single sign-on service, that could be used as the trust model for our
DNA.



3 P2P-based Overlays

A P2P overlay network is a virtual network consisting of peers and logicalconnections that is
built on top of an existing network. One of the main features of such an overlay network is
the ability of each peer to find any other participating peer in reasonable time independent of
the current IP-address or network provider of the searched peer.That is, to search a peer one
does not need to know the IP-address of the searched peer, but justsomething that uniquely
identifies this peer. Older P2P algorithms had to rely on a central server [12] or needed too
much overhead when searching for other peers [13]. The current generation of structured P2P
networks, however, is able to locate other peers using onlyO(log(n)) messages while keeping
connections to onlyO(log(n)) other peers in an overlay network of sizen [14]. In this section
we give a short overview of existing structured P2P algorithms and explainour choice for one
of them.

3.1 Distributed Hash Tables and Kademlia

P2P systems like Chord [8], CAN [15], Pastry [16] and Kademlia [7] implement so called Dis-
tributed Hash Tables (DHT) to organize their overlay network. A DHT assigns each peer wanting
to participate in the overlay anm-bit identifier using a hash function such as SHA-1 [17] or MD5
[18]. Additionally each document that is to be stored in the peer-to-peer network is assigned an
m-bit identifier using the same hash function. Based on theseids the underlying P2P mecha-
nism decides where to store the documents. That is, the P2P algorithm determines which peers
are going to be responsible for which documents. Peers searching for particular documents will
then use the same algorithm to retrieve the searched information from the P2P overlay network.
Chord, e.g., places the participating peers on a ring structure, while each peer keeps pointers to
its direct neighbors on the ring. CAN uses a virtuald-dimensional Cartesian coordinate space on
a d-torus and a zone based routing algorithm. In Pastry each peer has a neighborhood set and a
leaf set. Routing is based on prefix matching. In this section we present the Kademlia algorithm
in more detail.

Like most other DHTs Kademlia uses 160-bit identifiers as peerids. The distance between
two peers is determined by the XOR metric, that is two peers with identifierx andy have a
distance ofd(x, y) = x ⊕ y. For each0 ≤ i ≤ 160, every peer keeps a list ofk other peers that
are at a distance between2i and2i+1 away from itself. Those lists are calledk-buckets. We a
default value ofk = 5. Figure 2 shows exemplaryk-buckets for a peer withid = 00000 and
k = 2. Note that peer00000 knows all peers in its direct neighborhood but only a few peers
in more distant regions. When searching for other peers or documents, apeer simply sends out
search requests to theα (default = 3) closest peers it can find in itsk-buckets. In turn, all of the
α queried peers respond with thek closest peers they can find in theirk-buckets. The searching
peer then recursively queriesα of the new peers it learned of. A search finally terminates when
the searched peer or document is found or if the last recursion step did not return any new peers.

Thek-buckets are initially filled by searching for a randomid in the range of the correspond-
ing bucket. The buckets are then refreshed whenever there is incoming traffic from other peers.
Thus, as long as the network produces enough search traffic to keep apeer’s buckets up to date,
there is no need for periodic updates. If, however, a bucket has notbeen refreshed within one
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Figure 2: 3-buckets for a peer withid = 0000

hour the peer will manually refresh this bucket. See [7] for a more detailed description of the
Kademlia algorithm. In the following section we summarize the main reasons why we have
chosen a modified Kademlia to form the DNA overlay network.

3.2 The DNA Overlay

To be able to search for other peers, the individual DNAs build an overlay network. The main
purpose of this overlay is to keep the DNAs connected in one logical network and to enable a
single DNA to find another DNA in reasonable time. In principle, we could use any of the above
mentioned DHT algorithms, however, there are a number of reasons why wechose the Kademlia
algorithm as the basis of the DNA overlay. Kademlia offers a set of features that are certainly
not unique to it, but that are so far not offered by another single DHT allat once. In detail those
features are:

1. Symmetry:Due to the symmetry of the XOR metricd(x, y) = d(y, x), the DNA over-
lay network is symmetric as well. Thus there is no difference between successors and
predecessors, and we can concentrate on a peers neighbors in general.

2. Unidirectionality: Like Chord, the Kademlia overlay network is unidirectional. That is,
for any identifierx and an arbitrary distances > 0 there is exactly one pointy such that
d(x, y) = s. Thus, independent of the originating peer, lookups for the same peer will all
converge along the same path.

3. Parallel queries: One of the most advantageous features is the possibility to send out
parallel queries for the same key to different peers. This way, timeouts on one path do not
necessarily delay the search process, guaranteeing faster and more reliable searches under
high churn1 rates.

1The rate at which peers join and leave the overlay network



4. Bucket entries: The freedom to choose arbitrary peers that fall into the range of a bucket
as entries of this bucket creates a greater flexibility for the user. In the original paper [7]
peers were chosen by the time of last contact to obtain more reliable bucket entries. Bucket
entries, however, can be chosen by any criterion like trustability or reliability. The best
known approach is to chose peers according to their ping times to guaranteelow latency
paths when searching.

5. Low periodic traffic: In contrast to most other DHTs Kademlia uses almost no periodic
overhead traffic but exploits the search traffic to stabilize the overlay network connections.
Bucket refreshes are not done until the search traffic drops to a minimum.Configuration
information spreads automatically as a side-effect of key lookups.

6. Security:As a result of its decentralized nature Kademlia is resistant against certain de-
nial of service attacks. This security against attackers can even be improved by banning
misbehaving peers from the peers buckets.

At present there exist numerous extensions for most other DHTs that provide the features men-
tioned above or even introduce new features not yet offered by Kademlia. Chord, e.g., has been
extended to support symmetric searches [19] and to consider physical proximity when choosing
neighbors [20]. Our choice of Kademlia was basically motivated by the factthat all needed
advantages already come with the simple basic version.

We still applied some minor modifications to adapt the original algorithm to meet our needs.
The biggest difference is that we entirely do without documents. That is, as compared to the
original Kademlia, the DNA overlay does not store any kind of documents. While document
management can easily be included at a later point in time without losing any of theabove
advantages, there was simply no need to support documents in the currentDNA prototype. This
decision is further motivated by the fact that the DNAs only need to be able to search for other
DNAs and not for documents. We introduce an easier way of searching for other peers. In
general, a peer can be searched using its hashid. Usually a peer obtains thisid by hashing its
IP-address. However, this is just one way of generating a peers unique random identifier. In
fact in the original Kademlia publication it is left to the reader how to choose identifiers for
the participating peers. To enable searches for other peers, we therefore simply hash a unique
property of the peer, e.g. the email-address, a unique nickname or even the MAC-address. Other
peers are then able to search for a specific peer using the hash value ofthis unique property of
the searched peer as a search criterion.

We applied another minor change to enable a fast search for random communication partners.
Usually a search stops when the searched peer is found. When searching for a random peer,
however, we simply start a search for a randomly chosenid from the identifier space and take
the closest peer returned by the search. Obviously the DNA cannot know if the next search step
is going to return some even closer peers. The only way to complete this kind ofsearch is to wait
for the answer of all actively queried peers, which could slow down the search. A peer therefore
calculates the distance to its own neighbors using its closestk-bucket and stops the search for a
random peer as soon as the returned peers have approximately the same distance to the randomly
chosenid. This way the search for a random peer converges more quickly.

In Section 5 we discuss the results obtained from our simulator in detail.



4 The DNA Prototype

As a proof of concept and practicability of our work, we implemented a prototype of the DNA.
The general concept is platform independent. Most clients, however,are running MS Windows
as an operating system. We therefore decided to implement a Windows based prototype. The
implementation was done in.NET, as the WMI Interface offers the opportunity to access all kind
of information about the local system state as well as the state of the network invery few lines of
code. Thus, we were able to include all local tests described in Section 2 aswell as a distributed
ping test, a simple bandwidth measurement tool and a temporary DNS proxy. Furthermore,
using the.NET Remotingfunctionality we are also able to exchange test modules in the form of
signed assemblies and to run tests on distant DNAs.

The DNA prototype was implemented within the scope of an industrial cooperation with
Datev, one of the largest information service providers and software firms in Germany as well as
Europe. This provided us the opportunity to proof the functionality of the concept by success-
fully running the DNA in a realistic testbed with over 50 machines. One of the main advantages
besides those mentioned in the previous sections turned out to be the plug andplay character
of the DNA framework. Due to the DHT based overlay network the DNA framework is self-
configuring. To include a new DNA into the existing overlay, the user just has to start the client
and it will automatically find its position in the overlay network. On the other hand,if a client
fails, the overlay network proved to be self-healing by automatically updatingthe neighbor-
pointers needed to keep the overlay network stable. However, to prove the scalability of the
prototype and to analyze the influence of high churn rates on its stability, we also implemented
a simulator in.NET, which is based on the code of the prototype. The results of the simulations
are presented in the next section.

5 Simulation Results

In this section we want to prove the functionality and the scalability of our DNA prototype by
simulation. The simulator is written in.NET, based on the code used for the prototype. The
peers in the simulation build a Kademlia-based overlay network as described inSection 3. The
network transmission time for one hop was chosen according to an exponential distribution with
a mean of 50 ms. The bucket size was set tok = 5. The simulation contains joins, searches
and the modified Kademlia protocol. A running system will further improve the stability of
the overlay by exploiting the overhead, that is produced performing tests and exchanging test
results. If not stated otherwise, we let a number of nodes join the overlay network and begin
a churn phase once the overlay has initially stabilized. To generate churn we model the online
time of a peer by means of an exponentially distributed random variable. The longer a peer
stays online on average, the less churn there is in the overlay network. Tomake the simulation
results credible [21], we produced several simulation runs and calculated the mean as well as the
corresponding confidence intervals.

To show the scalability of the DNA we regard the time needed to complete a searchfor other
peers in dependence of the overlay size. First, we regard a system without any churn to validate
the claim that the search time in Kademlia based overlays indeed scales. That is, we letn DNAs
join the system, wait until the overlay network stabilizes and then let a number ofrandom DNAs
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search for other peers. The concave curves in Figure 3 show that thesearch in our prototype
does indeed scale. In a network of 1000 peers a search for another DNA takes less than 200 ms.
To see the influence of churn on the search time, we repeated the same simulations and set the
average online time of a peer to 60 minutes. To keep the size of the overlay constant on average,
we chose a corresponding Poisson arrival process to let new DNAs join the network. The results
are also shown in Figure 3. Due to timeouts and wrong bucket entries caused by the churn in the
system, searches take longer than in the scenario without churn. However, the search algorithm
does still scale to larger system and enables fast searches for other peers.

In previous studies [22, 23] we showed that the size of the network itself isnot the crucial
factor in terms of scalability and overlay stability. In fact the robustness of the DHT is mainly
influenced by the current churn rate. A good way to prove the stability of the overlay network is
therefore to look at the correctness of the entries in a peersk-buckets under churn. In general the
functionality of a DHT can be guaranteed, as long as the information about apeers neighborhood
is not lost. In case the information about more distant peers is lost, the performance of the overlay
might get slightly worse, but the underlying algorithms will still be functional. InKademlia the
neighbors of a peer are the entries of its closestk-bucket. We therefore study the correctness of
the closestk-bucket to evaluate the stability of the DNA overlay. We generate a churn phase and
create a snapshot within this phase. The actual neighbors of a peer (obtained form the global
view offered by the simulation) are compared to the current bucket entriesof a peer. In Figure 4
we show how many of itsk = 5 direct neighbors a peer actually knows in dependence of the
churn rate in the system. On average a peer knows more than 4.5 of its 5 direct neighbors even if
the average peer stays online for only 30 minutes. Note that the correctness of a peer’s neighbors
does not depend on the size of the network at all. The curve progression is almost identical for
500 and 100 peers. That is, the stability of the overlay network does not depend on the size but
on the current churn rate of the system.
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Figure 4: Average number of missing direct neighbors

The above results show that the DNA overlay offers scalable search timesand is robust against
churn. The remaining question is how much bandwidth the DNAs need to maintain the overlay
network. In Figures 5 and 6 we show the average amount of Bytes per second a DNA produces
while online. Figure 5 plots the average maintenance traffic of a single peer against the total
number of peers in the overlay network. Again the lower curve represents a system without any
churn. The larger the overlay network gets, the more buckets are maintained and the more traffic
is needed to keep these buckets up-to-date. As can be seen in the figure the consumed bandwidth
scales very well to the size of the system. The upper curve summarizes the same results for an
average online time of 60 minutes. It has a similar progression, but illustrates that a peer uses
more maintenance traffic during a churn phase.

To study the influence of churn on the bandwidth needed for maintenance in more detail, we
did a parameter study for the churn rate in Figure 6. The average online time of a peer varies
between 30 and 120 minutes. The shorter a peer stays online on average,i.e. the more churn
there is in the system, the more maintenance traffic is produced by the DNA client.That is,
the DNA adapts automatically to the current churn rate. The more churn thereis in the system,
the more maintenance bandwidth a DNA client uses to guarantee the functionalityand stability
of the overlay network. As stated above, the DNA needs more maintenance traffic in a larger
network, as there are more buckets that have to be kept up-to-date.

6 Conclusions and Future Work

In this paper we presented a novel technique for distributed fault and performance management.
The proposed DNA framework is based on a self-organizing DHT overlay network (Kademlia)
and offers plug and play functionality when integrating new DNA clients. Thesystem is able
to perform local tests on the client and distributed network tests in conjunctionwith other DNA
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Figure 5: Average maintenance traffic in dependence of the system size

clients. As a proof-of-concept, we built a running prototype and in addition proved its scalability
by simulation. We investigated the robustness and reliability of the DNA in terms of churn
behavior, i.e. the fluctuation of the size of the overlay network. A local testmodule, as well
as examples for distributed tests were described in detail. The proposed distributed end-to-
end architecture facilitates the provisioning and monitoring of new services offered by service
providers.

Future work will be devoted to the integration of a new passive end-to-endQoS monitoring
concept featuring performance management from the user point of view. This concept relies
upon comparisons of bit rate statistics on sender and receiver side [24], on which bottleneck in-
dicators are built. Measuring those statistics on transport layer grants a general applicability for
any kind of IP-based communication. In the DNA framework, bottleneck indicators can be de-
termined through distributed tests. The results of such test will be available to standard-network
management systems via well-established interfaces, like SNMP traps or MIB variables. Thus,
it can be seen as a QoS-enabling complement of existing network performance management so-
lutions. The integration of distributed passive bottleneck indicators into the DNA concept will
be a matter of future work.
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