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Abstract

In this paper we present a hovel framework supporting thsteid network management
using a self-organizing peer-to-peer overlay network. derlay consists of severélis-
tributed Network Agentsvhich can perform distributed tests and distributed maimitpfor
fault and performance management. In that way, the consepitié to overcome disadvan-
tages that come along with a central management unit likalsiity and reliability.

The self-organization of the overlay is achieved by the igppibn of a Distributed Hash
Table (DHT) based on the Kademlia algorithm. The DHT mecdrarimplements a distrib-
uted index for the rapid localization of other agents or veses. The framework provides
a reliable and scalable basis for distributed tests, ligethe identification of performance
degradation in IP networks using throughput statisticse ffamework is not intended to
replace the central network manager, but rather to supporttésting and surveying the
status of the corresponding network.

1 Introduction

A peer-to-peer (P2P) system is a highly distributed application architectur@2P network
can be described as a group of entities, denotgaeass with a common interest, that build a
self-organizing overlay network on top of a mixture of already existing aekg: Unfortunately,
P2P technology has so far only received a doubtful reputation due tedtsdile sharing ap-
plications. P2P algorithms, however, might be highly helpful in implementinglmbstibuted,
self-structuring network management concepts. In this work we suggestpplication of a
current generation, structured P2P overlay network for fault arfdqmeance management with
the aim of enhancing conventional management functions.

In general the goal of Network Management is “to ensure that the o§arsetwork receive
the information technology services with the quality that they expect” [1]. &l@y moni-
toring and provisioning of that quality in an end-to-end manner as peaddiy a user [2] is
rarely achieved. The OSI-defined Network Management functionslt(Faonfiguration, Ac-
counting, Performance, and Security management, FCAPS, cf. [3ihasdy carried out by
rather centralized entities (Network Management Systems) and only in thosegp the net-
work a provider is responsible for. Coordination of the monitoring amorfgréifiit administra-
tive domains is rarely achieved, which also affects possibilities to locate faudtso evaluate
end-to-end QoS.



A central fault testing and QoS monitoring architecture typically results in additicomplex
entities at the provider. The operator has to ensure the reliability of the entitlessaess their
scalability. The systems have to scale withV?) due to theN (N — 1) potential relationships
among/N end systems. In addition, relaying monitoring data consumes bandwidthsdtday
availability, and might get lost in case of a network failure. A decentralize8 @onitoring,
as for example, located on the users end system, might avoid these disaggarThe use of a
distributed, self-organizing software will reduce capital and operdtiex@enditures (CAPEX
and OPEX) of the operator since fewer entities have to be installed anategeScalability can
be achieved by re-using resident resources in conjunction with locadides and transmission
of less data.

We propose a new, distributed, self-organizing, generic testing anchi@o8oring architec-
ture for IP networks. The architecture will complement todays solutionssfiatral configuration
and fault management such as HP OpenView [4], IBM Tivoli [5] or Bifan StableNet [6]. The
architecture is based on equal agents, denoted as Distributed NetwerksA@NA), which
form a management overlay for the service. In this context the \agehtis not to be un-
derstood as an agent as used by the Artificial Intelligence community, thetrras a piece of
software running on different peers, like, e.g., an SNMP-Agent. Effeosganization of the
overlay is achieved by a P2P-based Distributed Hash Table (DHT), auétademlia [7] or
Chord [8]. The DHT mechanism implements a distributed index for the rapidihgcaf other
agents or resources.

The suggested architecture facilitates the autonomic communication contéptlfgally
determining the perceived QoS of the user from distributed measuremelrity amploiting the
self-organization capabilities of the DHT for structuring the overlay. It bdllable to communi-
cate with standard-NMS via well-established interfaces. Thus, it candmeasea QoS-enabling
complement of existing Network Management solutions.

The remainder of the paper is structured as follows: Section 2 introdueeschitecture of
a DNA and shows how the framework can be used for local and distribestsl In Section 3
we give an overview of the current P2P generation and motivate whhagedKademlia as the
basis of the DNA overlay. Some details about the implementation of our protefjige given
in Section 4. The functionality of the DNA is validated by simulation in Section 51i@e6
finally concludes the paper and summarizes our future work.

2 The DNA Framework

The DNA framework represents an independent distributed applicatiomdietieto support the
central network monitoring station. In general a central monitoring entityitras major disad-
vantages:

e It is a single point of failure. Once the single central monitoring unit fails,té®vork
will lose its control entity and will be without surveillance. The same probleuvid;e.g.,
be caused by a distributed denial of service attack. That is, the funlityooiethe entire
network management depends on the functionality of a single central unit.

e It does not scale. On the one hand the number of hosts that can be nmob@it@given
time is limited by the bandwidth and the processing power of the central monitamibg u



On the other hand there is a growing number of services that has to be radrotoeach
host due to the diversity of services that emerge during the evolution tritidwmet.

e It has a limited view of the network. While a central network manager is able tatonon
e.g., client A and Server B, it has no means of knowing the current stitius connection
between the two monitored devices themselves.

How the DNA application is able to solve all these problems is summarized in thisrsetttio
is also able to support the central unit in two ways. Firstly, the DNAs cotigtaronitor the
network in a distributed way and send a message back to the centralisaraee the condition
for some trigger event is met, similar to SNMP traps. Secondly the centrarsesm query
the current state of the DNA on demand. In case the central servertfal§NA will still be
functional and can store the gathered information until the central sgoesrback online again.
First ideas have been discussed briefly at [10].

In this paper we describe our distributed framework in detail (cf. Sectibhdhd present
examples for local as well as for distributed tests (cf. Sections 2.2 and 2d3provide the
different DNAs the possibility to communicate with each other, they build anayeetwork.
How this overlay is set up is described in Section 3.

2.1 The Basic Concept

The Distributed Network Agent (DNA) is based on a modular concept showigure 1. The
main component of the DNA, the so-called Mediator, runs as a daemon indckgrband and is
responsible for the communication between the user and the individual tdsieao The user
is able to connect to the Mediator using the graphical user interface @the command line.
He can manually start tests or read the results of tests that have alreadgdré®med. The
tests themselves are arranged in different modules that are not partiatic DNA architecture.
That s, test modules consist of several tests that are similar in resgletrdtinctionality. They
represent the functionality of the DNA and can be added or removed widmyuinfluence on
the operability of the DNA architecture. Figure 1 summarizes the design ofttAeflamework.
The Mediator either receives a test request from the user or autorilysici@edules a test itself.
It then performs the corresponding test using the provided InteréaeBnally sends the results
to the GUI upon request. The individual tests are executed by the Medkitay the Interface
component. Therefore, any test module that implements all features mbdpyitbe Interface
component can be added to the DNA framework.

A description of the two most important features required by the Interfaogonent and
their purpose is given in the following:

e Default Tests:Each test module has to provide a list including all tests that will be run

when the module is called by the Mediator without any parameters. This listfadltle
tests will be executed when the user did not specify any details. Advarsess, however,
are able to choose another subset of tests from the module that is adap&d $pebific

needs. The default test sequence offers the possibility to implement a tdstentbat,

e.g., includes tests dealing with different kinds of IP configuration. In tkésrple the

default test sequence could cover all properties of a static IP, whilgosufor DHCP

might be optional.
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Figure 1: The modular framework of the DNA

e Test Dependenciedf not specified otherwise all selected tests of a test module are per-

formed in parallel. However, the DNA offers the possibility to use test dégecies. That
is, a test module can provide a list containing the dependencies of its inalivehiis. The
Mediator does not start a test until all its dependencies were perfomeedssfully. The
following two tests provide a simple example for test dependencies: A testhbaks
the state of a network interface card (NIC) and a second test that pimgsiefined host
using the same NIC. Obviously the second test is dependent on the Brstionoe it can
only succeed if the NIC is up and running. The Mediator would therefatg execute
the second test if the first test already finished successfully.

Any test module that offers a list of Default Tests and Test Dependeweie be added to
a running DNA at any time. Since a great fraction of network problems exeally caused
by local errors like misconfiguration and software failures, we outlinetarteslule containing
local tests in the following section. Before a DNA takes part in the DNA oyeil@an run the
local test module to eliminate any possibility of local errors.

2.2 Local Tests

In this section we briefly describe a test module containing local tests, whichimherent part
of our prototype discussed in Section 4. First, we summarizes the setafliiets and give a
brief description of the remaining tests in the module afterwards. All local éstbound to a
specific network interface card, which can be selected by the user.

2.2.1 Default Test Sequence

The default test sequence contains eight tests, which can be dividéHarttware and TCP/IP”
and “Local configuration and network connectivity”. The five tests inlditer category all
depend on the three tests dealing with hardware and TCP/IP.



Hardware and TCP/IP

NICStatus:This test returns information about the network interface card and iterdurr
state, including a driver check and the like. It is mainly used to eliminate theébjildgs
of hardware failures or problems with the driver.

NetConnectionStatug:his test is used to check the current connection status of the NIC.
Causes for an error include a cable that is not plugged in, or a netwerkaice card still
running an authentication process.

PingLocalHost: The functionality of the TCP/IP stack is validated by sending a ping
request to the loopback address (127.0.0.1).

In case all three tests finish successfully, the Mediator will call the remafiviadgests of the
default test sequence.

Local configuration and network connectivity

IPConfiguration: This test verifies that a valid IP address is assigned to the NIC. It also
checks if the associated gateway is on the same subnet as the IP address.

DNSConfiguration:The test verifies that at least one DNS server is assigned and can be
reached by a ping request. If the ping message failed whereas the lvakiguccessful,

only a warning message is reported, as some DNS servers might nohdesptCMP
packets. Furthermore, the functionality of the DNS server is tested parfgra prede-
fined DNS lookup and optionally a reverse lookup.

DHCPLease:In case of using DHCP on a machine running Windows, the IP address is
checked to ensure that the network interface card is not set up to asakesl Autonomic
Private IP Address (APIPA). This might occur, if the server has noentapacities to
provide a new IP address or if the user participates in an encrypted sgrefeN (e.g.
WEP) using an invalid key.

PingOwnlIP:To exclude a communication problem between the operating system and the
NIC, the IP address assigned to the adapter is pinged.

PingWellKnownHostsThis tests sends a ping request to a list of predefined well known
hosts. If a specified number of hosts in this list does not respond in time,sthesterns
an error.

2.2.2 Additional Local Tests

In this section we give an example of additional tests that are not in theltefstuisequence of
the corresponding test module. The following three tests belong to ourtéstahodule but are
not part of the default test sequence, since they are specific to theWsrdS. Advanced users
can include the tests in case the DNA is running on a Windows based platform.



e EventViewer: The test searches in the "Event Viewer Log” for error events cabyed
TCP/IP or DHCP. If the Windows event viewer has recorded problems negpect to
TCP/IP or DHCP those errors will be forwarded to the GUI of the DNA.

e HostsAndLmHostsBefore Windows uses DNS or WINS it tries to resolve a domain
name using the HOSTS or LMHOSTS file. If one of these files contains agneatry
the resolution of the corresponding name fails. The test searchestaxssrrors in both
files and sends ping requests to valid entries.

e RoutingTable:The Windows routing table is divided into a dynamic and a persistent part.
This test pings the gateways of both tables and reports an error mei§sageof them is
not reachable.

2.3 Distributed Tests

In this section we describe how to use the DNA framework to implement distribbestanod-
ules. A distributed test is a test that is performed in conjunction with at le@sothrer DNA.
To be able to communicate with each other the DNAs build an overlay networkpoof tihe
monitored network. To perform a distributed test a DNA can then eithereminia a randomly
chosen DNA or to a specific DNA chosen by the user. Section 3 desc¢hibd22P based DNA
overlay in detail.

The following two distributed tests point out the possibilities of the distributed DisdAe-
work that arise by extending a simple local test to a distributed test:

e PingWellKnownHostsif a single DNA or a central network manager does not receive
a ping reply from a well known host, either the host or any link on the pathisohibst
could be down. Using the DNA framework, however, a DNA can ask ardiiNA to
ping the same host and evaluate the returned result. In case another Ebl& i® ping
this host, the possibility that this host is down can be ruled out and the catis=earror
can be narrowed down to a network problem between the DNA and the mailrkhost.

If the DNA has knowledge about the network topology, which could, eeggdined using
network tomography, the distributed ping test can also be used to pinpoimtaken link
or to locate a bottleneck by comparing the delay of the ping messages.

e DNSProxy:In general a DNA can use another DNA as a temporary proxy or relsty ho
case a DNA loses the connection to its DNS server and can thus no losgkerdomain
names, it can use another DNA as a DNS proxy. That is, the DNA foswtrel DNS
guery to another DNA, that in turn tries to resolve the domain name using its &@& D
server. This way the DNA is able to bridge the time its DNS server does nmmdso
DNS queries. In a similar way two DNAs with a broken direct connection cosklal
third DNA, that still has a connection to both DNAs, as a temporary relay host.

As stated above the DNAs build an overlay network to be able to communicateagiiho¢her.
They are able to communicate with a random DNA in the overlay or to search $pecific
DNA. The following two tests provide examples of how to build distributed apiiioa based
on this aspects of the DNA framework:



e PortScan:lf a DNA peer is running a webserver or offers some other servica¢gaires
an open port it usually is probed by a central network manager to eastwatinuous
service. On the one hand this method does not scale with the number ofesetivic
central network manager has to monitor, on the other hand the peer ruheisgrvice
has no influence on the time of the next check. Using the DNA frameworkever, the
peer is able to ask a random DNA to see if it can reach the offered servites is also
a scalable way to monitor a large number of services. The DNAs monitor thieesr
running on their peers in a distributed way and only send a message baekderitnal
network manager in case of an error.

e Throughput: Usually it is not easy for a user to verify a service level agreement or to
measure the bandwidth to another point in the network. The possibility tohséarc
a specific DNA enables a peer taking part in the DNA overlay network tachdar a
specific communication partner and ask for a throughput test. A very simpjeavdo
so is to constantly send traffic to the other DNA for a certain period of time andysimp
measure the average throughput. However, there are more sophistiegtedvhich we
intend to integrate in future work.

The above tests are just some examples of how to use the DNA framewditkuta work we
intend to present some more advanced test modules for the DNA in detail.clior&6 we
summarize our ideas for a new, distributed passive QoS monitoring condepinext section
discusses general security issues and a way of how to deploy new tdstesmido the DNA
overlay network.

2.4 Deployment of New Tests

Considering a running DNA overlay network, one can not assume th&8NAs are always
having the same test modules. An obvious way to deploy new test modules isddhse
modules on demand. That is, if A asks B to perform a distributed test buteB dot have
this specific test, A simply sends the test module to B. However, this implies that B iigplic
trusts A. A security risk that is obviously not negligible. In fact a framewitiat allows other
machines to run arbitrary code would be the perfect tool for distributebef service attacks.

One way to solve this problem is to only download new test modules from aaténtst
server. Thatis, all DNAs trust a central entity and only run code thagieesd by this central au-
thority. While this solution is sufficient for small networks it does not scalertgelanetworks. A
scalable implementation of the DNA framework therefore needs a distributdriadel. Since
there is an independent research area dealing with security and thissagnly intended to
be a proof-of-concept for a P2P based framework for network mamgowe will refrain from
addressing security issues. There exist, however, different apipes to build distributed trust
models for P2P systems. In [11], e.g., Josephson proposes a scaldbbel foe P2P authen-
tication with a distributed single sign-on service, that could be used as thertoae! for our
DNA.



3 P2P-based Overlays

A P2P overlay network is a virtual network consisting of peers and logmahections that is
built on top of an existing network. One of the main features of such arayeetwork is
the ability of each peer to find any other participating peer in reasonable timpandent of
the current IP-address or network provider of the searched péet is, to search a peer one
does not need to know the IP-address of the searched peer, babjusthing that uniquely
identifies this peer. Older P2P algorithms had to rely on a central serveoftiteded too
much overhead when searching for other peers [13]. The curesmrgtion of structured P2P
networks, however, is able to locate other peers using Olgg(n)) messages while keeping
connections to only)(log(n)) other peers in an overlay network of sizg¢14]. In this section
we give a short overview of existing structured P2P algorithms and explaichoice for one
of them.

3.1 Distributed Hash Tables and Kademlia

P2P systems like Chord [8], CAN [15], Pastry [16] and Kademlia [7] implemsercalled Dis-
tributed Hash Tables (DHT) to organize their overlay network. A DHT asséch peer wanting
to participate in the overlay an-bit identifier using a hash function such as SHA-1[17] or MD5
[18]. Additionally each document that is to be stored in the peer-to-pdenonieis assigned an
m-bit identifier using the same hash function. Based on tiessthe underlying P2P mecha-
nism decides where to store the documents. That is, the P2P algorithm detemhich peers
are going to be responsible for which documents. Peers searchingrfmutar documents will
then use the same algorithm to retrieve the searched information from thev@2#®/metwork.
Chord, e.g., places the participating peers on a ring structure, while eaclegeps pointers to
its direct neighbors on the ring. CAN uses a virtdalimensional Cartesian coordinate space on
a d-torus and a zone based routing algorithm. In Pastry each peer bghborhood set and a
leaf set. Routing is based on prefix matching. In this section we presenatienidia algorithm

in more detail.

Like most other DHTs Kademlia uses 160-bit identifiers as péer The distance between
two peers is determined by the XOR metric, that is two peers with identifeendy have a
distance ofi(z,y) = = @ y. For each) < i < 160, every peer keeps a list &fother peers that
are at a distance betweeéhand2*! away from itself. Those lists are callédbuckets. We a
default value oft = 5. Figure 2 shows exemplabuckets for a peer wittd = 00000 and
k = 2. Note that peef0000 knows all peers in its direct neighborhood but only a few peers
in more distant regions. When searching for other peers or documesgey aimply sends out
search requests to the(default = 3) closest peers it can find in ksbuckets. In turn, all of the
a queried peers respond with thelosest peers they can find in théibuckets. The searching
peer then recursively queriesof the new peers it learned of. A search finally terminates when
the searched peer or document is found or if the last recursion steptdietarn any new peers.

Thek-buckets are initially filled by searching for a randadin the range of the correspond-
ing bucket. The buckets are then refreshed whenever there is incomifig firom other peers.
Thus, as long as the network produces enough search traffic to lap’s buckets up to date,
there is no need for periodic updates. If, however, a bucket hasawsut refreshed within one



00111 || 00010
00110 || 00001

Figure 2: 3-buckets for a peer witd = 0000

hour the peer will manually refresh this bucket. See [7] for a more detadsdrigbtion of the
Kademlia algorithm. In the following section we summarize the main reasons whyawe h
chosen a modified Kademlia to form the DNA overlay network.

3.2 The DNA Overlay

To be able to search for other peers, the individual DNAs build an ovedéwork. The main
purpose of this overlay is to keep the DNAs connected in one logical nketavat to enable a
single DNA to find another DNA in reasonable time. In principle, we could nyeéthe above
mentioned DHT algorithms, however, there are a number of reasons wtlyogse the Kademlia
algorithm as the basis of the DNA overlay. Kademlia offers a set of feathad are certainly
not unique to it, but that are so far not offered by another single DHatalhce. In detail those
features are:

1. Symmetry:Due to the symmetry of the XOR metrifz, y) = d(y, z), the DNA over-
lay network is symmetric as well. Thus there is no difference between sarsesnd
predecessors, and we can concentrate on a peers neighborsrial.gene

2. Unidirectionality: Like Chord, the Kademlia overlay network is unidirectional. That is,
for any identifierz and an arbitrary distance> 0 there is exactly one point such that
d(xz,y) = s. Thus, independent of the originating peer, lookups for the same pikailw
converge along the same path.

3. Parallel queries: One of the most advantageous features is the possibility to send out
parallel queries for the same key to different peers. This way, timeouts@path do not
necessarily delay the search process, guaranteeing faster ancetiainie searches under
high churrt rates.

1The rate at which peers join and leave the overlay network



4. Bucket entriesThe freedom to choose arbitrary peers that fall into the range ofkeebuc
as entries of this bucket creates a greater flexibility for the user. In thmalrpaper [7]
peers were chosen by the time of last contact to obtain more reliable butikeseBucket
entries, however, can be chosen by any criterion like trustability or reliabilihe best
known approach is to chose peers according to their ping times to gualantkgency
paths when searching.

5. Low periodic traffic: In contrast to most other DHTs Kademlia uses almost no periodic
overhead traffic but exploits the search traffic to stabilize the overlayankwonnections.
Bucket refreshes are not done until the search traffic drops to a minirf@onfiguration
information spreads automatically as a side-effect of key lookups.

6. Security: As a result of its decentralized nature Kademlia is resistant against ceetain d
nial of service attacks. This security against attackers can even beviedpby banning
misbehaving peers from the peers buckets.

At present there exist numerous extensions for most other DHTs thstiprthe features men-
tioned above or even introduce new features not yet offered byrEleChord, e.g., has been
extended to support symmetric searches [19] and to consider physigahfty when choosing
neighbors [20]. Our choice of Kademlia was basically motivated by thetfedtall needed
advantages already come with the simple basic version.

We still applied some minor modifications to adapt the original algorithm to meetemdsn
The biggest difference is that we entirely do without documents. Thasispapared to the
original Kademlia, the DNA overlay does not store any kind of documenthkile/document
management can easily be included at a later point in time without losing any abthe
advantages, there was simply no need to support documents in the @ix&mirototype. This
decision is further motivated by the fact that the DNAs only need to be ableatolséor other
DNAs and not for documents. We introduce an easier way of searcbhingttier peers. In
general, a peer can be searched using its hdésbisually a peer obtains thig by hashing its
IP-address. However, this is just one way of generating a peersaundgaudom identifier. In
fact in the original Kademlia publication it is left to the reader how to choosatififers for
the participating peers. To enable searches for other peers, weotlgesehply hash a unique
property of the peer, e.g. the email-address, a unique nickname or eviei\-address. Other
peers are then able to search for a specific peer using the hash véhie wiique property of
the searched peer as a search criterion.

We applied another minor change to enable a fast search for random cocatian partners.
Usually a search stops when the searched peer is found. Whenisgamha random peer,
however, we simply start a search for a randomly chaddrom the identifier space and take
the closest peer returned by the search. Obviously the DNA cannatiktioe next search step
is going to return some even closer peers. The only way to complete this kieduath is to wait
for the answer of all actively queried peers, which could slow downehech. A peer therefore
calculates the distance to its own neighbors using its cléskstket and stops the search for a
random peer as soon as the returned peers have approximately théstamzedo the randomly
chosenid. This way the search for a random peer converges more quickly.

In Section 5 we discuss the results obtained from our simulator in detail.



4 The DNA Prototype

As a proof of concept and practicability of our work, we implemented a pyp&oof the DNA.
The general concept is platform independent. Most clients, howasesrunning MS Windows
as an operating system. We therefore decided to implement a Windows basatgpge. The
implementation was done iNET, as the WMI Interface offers the opportunity to access all kind
of information about the local system state as well as the state of the netwakyifew lines of
code. Thus, we were able to include all local tests described in Sectiow@less a distributed
ping test, a simple bandwidth measurement tool and a temporary DNS proxthefmore,
using the NET Remotindunctionality we are also able to exchange test modules in the form of
signed assemblies and to run tests on distant DNAs.

The DNA prototype was implemented within the scope of an industrial cooperafiih
Datev, one of the largest information service providers and softwans fir Germany as well as
Europe. This provided us the opportunity to proof the functionality of thecept by success-
fully running the DNA in a realistic testbed with over 50 machines. One of the nuvargages
besides those mentioned in the previous sections turned out to be the plptagraharacter
of the DNA framework. Due to the DHT based overlay network the DNA fraor& is self-
configuring. To include a new DNA into the existing overlay, the user justbatart the client
and it will automatically find its position in the overlay network. On the other hdralclient
fails, the overlay network proved to be self-healing by automatically updatiagheighbor-
pointers needed to keep the overlay network stable. However, to prevec#iability of the
prototype and to analyze the influence of high churn rates on its stabilitylsweénaplemented
a simulator inNET, which is based on the code of the prototype. The results of the simulations
are presented in the next section.

5 Simulation Results

In this section we want to prove the functionality and the scalability of our DN#Aqgtype by
simulation. The simulator is written ilNET, based on the code used for the prototype. The
peers in the simulation build a Kademlia-based overlay network as descrilsetiion 3. The
network transmission time for one hop was chosen according to an exdukstribution with

a mean of 50 ms. The bucket size was set tee 5. The simulation contains joins, searches
and the modified Kademlia protocol. A running system will further improve thkilgtaof
the overlay by exploiting the overhead, that is produced performing tegtexchanging test
results. If not stated otherwise, we let a number of nodes join the oveelayork and begin

a churn phase once the overlay has initially stabilized. To generate cleunmogel the online
time of a peer by means of an exponentially distributed random variable. Tigerl@ peer
stays online on average, the less churn there is in the overlay networkake the simulation
results credible [21], we produced several simulation runs and calduleenean as well as the
corresponding confidence intervals.

To show the scalability of the DNA we regard the time needed to complete a $eanther
peers in dependence of the overlay size. First, we regard a systenutatiochurn to validate
the claim that the search time in Kademlia based overlays indeed scales., Tiatet: DNAs
join the system, wait until the overlay network stabilizes and then let a numbandém DNAs
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Figure 3: Duration of a search in dependence of the size of the overlay

search for other peers. The concave curves in Figure 3 show thae#neh in our prototype
does indeed scale. In a network of 1000 peers a search for andiifetaRes less than 200 ms.
To see the influence of churn on the search time, we repeated the same simsidatioset the
average online time of a peer to 60 minutes. To keep the size of the overlstanbon average,
we chose a corresponding Poisson arrival process to let new DNAshpnetwork. The results
are also shown in Figure 3. Due to timeouts and wrong bucket entriesdclydiee churn in the
system, searches take longer than in the scenario without churn. Howysearch algorithm
does still scale to larger system and enables fast searches for othgr pe

In previous studies [22, 23] we showed that the size of the network itsalitithe crucial
factor in terms of scalability and overlay stability. In fact the robustnesseoDHT is mainly
influenced by the current churn rate. A good way to prove the stabilityeobterlay network is
therefore to look at the correctness of the entries in a gebugkets under churn. In general the
functionality of a DHT can be guaranteed, as long as the information alpagra neighborhood
is not lost. In case the information about more distant peers is lost, themarioe of the overlay
might get slightly worse, but the underlying algorithms will still be functionalKademlia the
neighbors of a peer are the entries of its clogdsticket. We therefore study the correctness of
the closesk-bucket to evaluate the stability of the DNA overlay. We generate a chuasepdind
create a snapshot within this phase. The actual neighbors of a péginézbform the global
view offered by the simulation) are compared to the current bucket eofreepeer. In Figure 4
we show how many of ité = 5 direct neighbors a peer actually knows in dependence of the
churn rate in the system. On average a peer knows more than 4.5 of itstheigdtbors even if
the average peer stays online for only 30 minutes. Note that the correcfireepeer’s neighbors
does not depend on the size of the network at all. The curve prognéssatmost identical for
500 and 100 peers. That is, the stability of the overlay network doesepeind on the size but
on the current churn rate of the system.
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Figure 4: Average number of missing direct neighbors

The above results show that the DNA overlay offers scalable searchdimdds robust against
churn. The remaining question is how much bandwidth the DNAs need to maingaavéhlay
network. In Figures 5 and 6 we show the average amount of Bytes peméda DNA produces
while online. Figure 5 plots the average maintenance traffic of a single geersa the total
number of peers in the overlay network. Again the lower curve reptesesystem without any
churn. The larger the overlay network gets, the more buckets are mathtaidehe more traffic
is needed to keep these buckets up-to-date. As can be seen in the figewashimed bandwidth
scales very well to the size of the system. The upper curve summarizesriaesults for an
average online time of 60 minutes. It has a similar progression, but illustratea fieer uses
more maintenance traffic during a churn phase.

To study the influence of churn on the bandwidth needed for maintenanceéndetail, we
did a parameter study for the churn rate in Figure 6. The average online timpe®r varies
between 30 and 120 minutes. The shorter a peer stays online on averaglee more churn
there is in the system, the more maintenance traffic is produced by the DNA clibat.is,
the DNA adapts automatically to the current churn rate. The more churnighieréhe system,
the more maintenance bandwidth a DNA client uses to guarantee the functi@malistability
of the overlay network. As stated above, the DNA needs more maintenaiiie itr a larger
network, as there are more buckets that have to be kept up-to-date.

6 Conclusions and Future Work

In this paper we presented a novel technique for distributed fault aforp@nce management.
The proposed DNA framework is based on a self-organizing DHT oyerdéwork (Kademlia)
and offers plug and play functionality when integrating new DNA clients. 3ystem is able
to perform local tests on the client and distributed network tests in conjunsttbrother DNA
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Figure 5: Average maintenance traffic in dependence of the system size

clients. As a proof-of-concept, we built a running prototype and in addgroved its scalability
by simulation. We investigated the robustness and reliability of the DNA in term$iwic
behavior, i.e. the fluctuation of the size of the overlay network. A localrtestule, as well
as examples for distributed tests were described in detail. The proposedutksi end-to-
end architecture facilitates the provisioning and monitoring of new servited by service
providers.

Future work will be devoted to the integration of a new passive end-tdza® monitoring
concept featuring performance management from the user point of vibig concept relies
upon comparisons of bit rate statistics on sender and receiver side{Rdhich bottleneck in-
dicators are built. Measuring those statistics on transport layer granteaajapplicability for
any kind of IP-based communication. In the DNA framework, bottleneck atdrs can be de-
termined through distributed tests. The results of such test will be availakiEntdesd-network
management systems via well-established interfaces, like SNMP traps oravidbles. Thus,
it can be seen as a QoS-enabling complement of existing network perfoemsamagement so-
lutions. The integration of distributed passive bottleneck indicators into thé& &dvicept will
be a matter of future work.
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