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Abstract

Video streaming currently dominates global Internet traffic and will be of even
increasing importance in the future. In this paper we assess the impact of the
underlying transport protocol on the user perceived quality for video streaming
using YouTube as example. In particular, we investigate whether UDP or TCP
fits better for Video-on-Demand delivery from the end user’s perspective, when the
video is transmitted over a bottleneck link. For UDP based streaming, the bottleneck
link results in spatial and temporal video artifacts, decreasing the video quality. In
contrast, in the case of TCP based streaming, the displayed content itself is not
disturbed but playback suffers from stalling due to rebufferung.
Due to the lack of existing Quality of Experience (QoE) models for online video

services that are based on TCP-streaming, we propose a generic subjective QoE
assessment methodology for multimedia applications (like online video) that is based
on crowdsourcing - a highly cost-efficient, fast and flexible way of conducting user
experiments. We demonstrate how our approach successfully leverages the inherent
strengths of crowdsourcing while addressing critical aspects such as the reliability of
the experimental data obtained. As a result, we present a dedicated QoE model for
YouTube that takes into account the key influence factors (such as stalling events
caused by network bottlenecks) that shape quality perception of this service.
The results of subjective user studies for both scenarios (UDP based on related

work, TCP based on own studies) are analyzed in order to assess the transport
protocol influences on Quality of Experience of YouTube. To this end, application-
level measurements are conducted for YouTube streaming over a network bottleneck
in order to develop models for realistic stalling patterns. Furthermore, mapping
functions are derived that accurately describe the relationship between network-
level impairments and QoE for both protocols.

1 Introduction

Video streaming dominates global Internet traffic and is expected to account for 57%
of all consumer Internet traffic in 2014 generating over 23 exabytes per month [1]. It
can be distinguished between delivery of live video streaming with on-the-fly encoding,
like IPTV or Facetime, and delivery of pre-encoded video, so called Video-on-Demand
(VoD). The most prominent video streaming portal is Youtube which serves more than
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two billion videos daily [2]. YouTube videos are delivered over the Internet by means of
the HTTP protocol which is actually used for the majority of the residential broadband
Internet traffic [3] as illustrated in Figure 1.
However in practice, many users face volatile performance of the service, e.g. due to

bad network conditions or congested media streaming servers. Such adverse conditions
are the main causes for bad online video Quality of Experience (QoE). Network and
service providers need to be able to observe and react upon quality problems, at best
before the customer takes notice of them. Therefore, appropriate QoE models and
metrics are required, like those provided by this work on YouTube video streaming.

unclassified
10.6%

otherDPD
10.0%

BitTorrent  
8.5%

eDonkey
5.0%

NNTP 4.8%

well−known
3.6%

HTTP
57.6%

Figure 1: Application mix for Internet traffic [3]

The transport of video streams in the Internet is currently realized either with TCP or
UDP. However, due to the diverse features of these protocols their application has a huge
impact on the streaming behavior. In the domain of video streaming, traditional UDP-
based services like IPTV or Real Media streaming typically do not guarantee packet
delivery. Thus, congestion in the network or at the multimedia servers leads to lost
packets causing visual artifacts, jerky motion or jumps in the stream, forms of degraded
media quality which have been extensively studied in previous video quality research. In
contrast, delivery of YouTube video to the end user is realized as progressive download
using TCP as transport protocol. The usage of TCP guarantees the delivery of unal-
tered video content since the protocol itself cares for the retransmissions of corrupted
or lost packets. Further, it adapts the transport rate to network congestion, effectively
minimizing packet loss. However, if available bandwidth is lower than the video bit
rate, video transmission becomes too slow, gradually emptying the playback buffer until
underrun occurs. If rebuffering happens, the user notices interrupted video playback,
commonly referred to as stalling. In this respect, YouTube QoE is different from tra-
ditional UDP-based video streaming, since with TCP only the video playback itself is
disturbed while the transmitted audiovisual content remains unaltered.
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The question arises which transport protocol is more appropriate from the end user’s
point of view, i.e. the Quality of Experience. To answer this question we consider a
bottleneck scenario in which network capacity is limited. Thus, the available network
bandwidth may be lower than the required video bit rate and the user may suffer from
stalling and quality degradation for TCP and UDP, respectively. In order to compare
the impact of the transport protocols on the QoE, two subjective user studies are pre-
sented which allow quantifying the impact of the bottleneck link capacity on QoE. [4]
executed user surveys to evaluate QoE of video streaming with lost packets. However,
due to the current lack of QoE models that identify key influence factors for YouTube
(e.g. demographics of users, Internet application usage habits, content types, network
impairments) and explicitly address stalling effects in the context of TCP-based online
video, own subjective user studies need to be performed. For deriving a QoE model,
crowdsourcing therefore seems to be an appropriate alternative approach. With crowd-
sourcing, subjective user studies can be efficiently conducted at low costs with adequate
user numbers for obtaining statistically significant QoE scores [5]. However, reliability
of results cannot be assumed because of the anonymity and remoteness of participants
(cf. [6] and references therein): some subjects may submit incorrect results in order to
maximize their income by completing as many tasks as possible; others just may not
work correctly due to lack of supervision. Therefore, it is necessary to develop an appro-
priate methodology that addresses these issues and ensures consistent behavior of the
test subjects throughout a test session and thus obtain reliable QoE results.
The contribution of this technical report has different facets. (1) An intensive YouTube

measurement study is conducted in order to quantify the relevant application-level QoS
parameters for YouTube over a bottleneck. In particular, the observed stalling patterns
are modeled in terms of stalling frequency and stalling length. (2) Then, we provide
a YouTube QoE model taking into account stalling as key influence factor based on
subjective user studies. (3) To this end, we develop a generic subjective QoE testing
methodology for Internet applications like YouTube based on crowdsourcing for effi-
ciently obtaining highly valid and reliable results. (4) Finally, YouTube video streaming
via TCP and via UDP is compared from the end-user perspective by means of subjec-
tive user studies (cf. Section 3 and [4]). The comparison is realized by transforming the
results of the subjective tests to the common denominator in the considered scenario,
that is the network bandwidth limitation due to the bottleneck. Since we provide first
a YouTube QoE model for realistic stalling pattern, the work presented here is the first
comparing QoE – and in particular YouTube QoE – for different transport protocols.
The remainder of this paper is structured as follows. Section 2 shows the application-

level measurements for YouTube over a bottleneck. This includes the video character-
istics in terms of duration and video bit rate as well as the observed stalling patterns
which is required to later map the bottleneck bandwidth to QoE. The subjective user
study on QoE for YouTube video streaming in the presence of stalling, which means via
TCP, is reviewed in Section 3. Section 3.1 gives a background on crowdsourcing and the
platform used in this work. The subjective test methodology is presented in Section 3.2
aiming at an appropriate test design to detect unreliable user ratings. In Section 3.3, the
test results are statistically analyzed. In particular, we apply different results filtering
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levels and assess the reliability of the data set. The YouTube QoE is then quantified
in Section 3.4 for a realistic impairment scenario, where the YouTube video is streamed
over a bottleneck link. The QoE model for UDP based transmission of YouTube videos
is presented in Section 4 which also comapres the results of the subjective tests. Finally,
Section 5 concludes this work and discusses further research issues.

2 Measurement of YouTube Stalling Patterns on

Application Level

In the considered bottleneck scenario for TCP, the available network bandwidth B is
limited. When downloading a video which is encoded at a video bit rate V > B, stalling
may occur. The number N of stallings during the video playout as well as the length
L of a single stalling event will both affect the QoE. However, the stalling pattern even
in the bottleneck scenario with constant network capacity may be quite complex, since
several factors interact and influence the observed stalling pattern, (a) YouTube’s imple-
mentation of flow control on application layer [7], (b) TCP’s flow control on transport
layer, (c) variabe bit rate due to the used video encoding, (d) implementation of the
video player and its video buffer.
Therefore, we derive in the following a simple model for the observed stalling patterns

based on an application-level measurement study. In Section 2.1, the measurement setup
is explained. Section 2.2 takes a closer look at the characteristics of YouTube videos in
terms of video bit rate V and the duration D of the video clips. The observed stalling
patterns over the dedicated bottleneck are analyzed in Section 2.3. The notation and
variables frequently used throughout this paper are summarized in Table 1.

2.1 Setup of Application-Level Measurements

Our YouTube TCP measurement campaign took place from July to August, 2011 during
which more than 37 000 YouTube videos were requested, about 35GByte of data traffic
was captured, and more than 1 000 videos were analyzed frame by frame in detail.
In addition, 266 245 video descriptions were downloaded from YouTube containing the
duration of the videos.
For measuring YouTube video streaming over a bottleneck, the measurement setup

included three different components. (1) Bandwidth shaper. A network emulation soft-
ware was used to limit the upload and download bandwidth. In our experiments, the
“NetLimiter” bandwidth shaper was applied. (2) YouTube user simulation. This com-
ponent simulated a user watching YouTube videos in his browser. Therefore, a local
Apache web server was configured and web pages were dynamically generated, which
call the YouTubi API for embedding and playing the YouTube video. The embedding
of the YouTube videos in an own web page is necessary for monitoring the appliction-
level QoS. In order to obtain a random snapshot on YouTube, we randomly searched for
videos via the YouTube API and used a public dictionary of english words as keyword
for the YouTube search request. (3) QoS monitor. The video player status (“playing”,
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Variables
V total bit rate of video in (kbps)
D duration of video in (s)
B bandwidth limitation in (kbps)
N number of stalling events
L duration of a single stalling event
F stalling frequency F = N/D in (1/s)
R packet loss ratio
ρ throughput normalized by video bitrate, i.e. ρ = B/V

Functions
fL(N) mapping function between number N of stalling events and MOS values

for stalling events of length L via TCP
gv(R) mapping function between packet loss ratio R and MOS values for videos

with resolution v (CIF, 4CIF) via UDP
ΥL(ρ) mapping function between normalized throughput ρ and MOS values for

stalling events of length L via TCP
Υv(ρ) mapping function between normalized throughput ρ and MOS values for

videos with resolution v (CIF, 4CIF) via UDP
µX average value of measurements X
σX standard deviation of measurements X

Table 1: Notation and variables frequently used

“buffering”, “ended”) and the used buffer size (in terms of number of bytes loaded for
the current video) were monitored within the generated web page using Javascript. At
the end of the simulation (i.e. when the simulated user completely watched the video,
after a certain timeout, or in case of any player errors), the stalling monitoring infor-
mation and the buffer status were written to a logfile. In addition, the network packet
traces were captured using wireshark and tshark. As a result, both network-level QoS
parameters (from the packet traces) and application-level QoS parameters (the stalling
patterns) were captured.
The QoS monitor component provided the data for analyzing the stalling pattern on

application level. The YouTube API specifies an event called “onStateChange” which
is fired whenever the state of the player changes. For each event, e.g. when the video
player switches between buffering of data and playing the video, the current timestamp,
the number of bytes loaded, as well as an identifier for the event itself are recorded by
the QoS monitor. However, it has to be noted that the timer resolution depends on the
actual JavaScript implementation within the used browser. In our experiments, we used
the Internet explorer within Windows 7 which shows a timer resolution of about 16ms.
For analyzing the video files, the video contents were extracted from the packet traces.

The YouTube API specifies a set of calls for requesting videos via HTTP. Via pattern
matching, these HTTP requests and corresponding HTTP objects were identified. Fur-
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thermore, YouTube uses DNS translation and URL redirection, as the actual video
contents are located on various caching servers, see [8, 9, 10]. The video contents were
then reassembled from the corresponding TCP stream.
The video file itself was parsed by implementing a perl module which analyzed the

video frames and extracted meta-information from the video file. As a result, video
information like video bit rate, video resolution, used audio and video codecs, or video
size and duration were extracted. Furthermore, for each video frame in the video stream,
information about the video playback times of frames, the size of the video frames, as
well as the type of frames (key frame or interframe) were extracted.

2.2 Video Characteristics

The characteristics of YouTube videos were analyzed in terms of bit rate V and duration
D, which both influence the actual stalling pattern. There are already several works
considering the YouTube video durations. [11] showed that 97.9% of the videos are
shorter than 10min and 99.1% are shorter than 700 s. The coefficient of variation of the
video length was found to be about 1, while the mean duration was about 4.15min, see
[12]. In previous work [13], we measured a mean duration of 5.65min and a coefficient
of variation about 1,24. In 2010, however, YouTube increased the upload limit of the
video duration to 15min. Therefore, it is worth take a closer look on the impact of these
changes.
The statistical analysis of the video durations D showed that 3.12% of the videos

were longer than 15min. About 0.04% of the videos were empty and had a length of 0 s.
From the regular videos, i.e. shorter than 15min, the average duration is 5.54min and
the coefficient of variation is about 1,65. Thus, the average duration is quite close, while
the variance slighthly increased compared to our previous measurements in 2008 [13]. In
addition, we found that the video duration can be well fitted by a Weibull distribution
with parameters a = 288.52 and b = 1.52.
Next, the bit rates of the videos are analyzed. Figure 2 shows the cumulative distri-

bution function (CDF) of the bit rate of the YouTube videos. Since a video typcially
consists of an audio stream as well as a video stream, it is differentiated between the
audio bit rate, the video bit rate and the total data rate. However, the audio stream
typically only takes a fraction of the entire data rate which lies between 10% and 20%.
The audio bit rate A also shows only small variances across the different YouTube videos
with a standard deviation of σA = 29.58 kbps. In contrast, the video bit rate shows larger
variances (209.95 kbps) and the video stream clearly determines the total data rate. The
correlation between the total data rate and the video bit rate is about 0,99, while the
audio data rate and total data rate is uncorrelated (with a Pearson linear correlation
coefficient of 0,36). We also found that the different bit rates (audio, video, total) can
be well approximated by a Weibull distribution. The corresponding CDFs are depicted
as solid lines in Figure 2; the CDFs of the measured bit rates are plotted as dashed lines.
The parameters a and b of the Weibull distribution as well as the mean and standard
deviation of the measured data are given in Table 2.
In the following, we only consider the total data rate, since the video playout will stall,
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Figure 2: Measured audio, video, and total data rates as well as their corresponding
Weibull distributions with parameters obtained by minimizing least square
errors

type mean (kbps) std. (kpbs) a b

total 478.88 216.88 541.62 2.37

video 385.99 209.95 434.82 1.91

audio 86.73 29.58 96.30 3.22

Table 2: Measured audio and video bit rates and parameters a and b of the fitted Weibull
distribution

if either the audio or the video data is not delivered on time. For the sake of readability,
we will refer to the total data rate V as video bit rate in order to avoid confusions with
the network data rate limit B.

2.3 Observed Stalling Patterns over Bottleneck

The aim of this section is to model the observed stalling patterns when the YouTube
video is streamed over a bottleneck. The subjective user studies in Section 3 quantify
QoE depending on the number N of stalling events and the length L of a single stalling
event. Thus, a mapping function fL(N) between the stalling parameters as application-
level QoS and the QoE in terms of mean opinion score (MOS) values is provided. Thus,
we derive the influence of the bottleneck capacity B on the observed stalling pattern in
the following. In particular, we depict two exemplary bandwidth limitations, that are
B = 384 kbps as typical bandwidth of UMTS cell phones and B = 450 kbps which is
roughly the median of the video bit rate V .
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2.3.1 Influence of Video Bit Rates

Figure 3 shows again the CDF of the video bit rate, based on two experiments run at
384 kbps and 450 kbps. However, we also distinguish whether stalling occurs or not dur-
ing the video playout. In the experiment with B = 384 kbps, 300 videos were completely
downloaded and analyzed. No stalling occured for 116 videos corresponding to 38.67%
of all videos. In this case, the video bit rate is mostly smaller than bottleneck capacity,
i.e. V < B. However, there were two videos without stalling, although the video bit rate
was significantly larger than B. In that case, the video durations of these two videos
were quite short with D = 10.8 s and D = 9.8 s, respectively. Since the video player
has implemented a video playout buffer, sufficient data is downloaded before the video
playout starts and no stalling occurs.

0 100 200 300 400 500 600 700 800 900 1000
0
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0.2

0.3

0.4

0.5

0.6
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0.8

0.9

1
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D

F

bandwith limit

B = 384kbps

bandwith limit

B = 450kbps

no stalling 

stalling occurs
for B=384 kbps

stalling occurs
for B=450 kbps

Figure 3: Stalling occurrence depending on video bit rate for two different bottleneck
capacities

Figure 3 shows another interesting phenomenon. For some videos with video bit rate
V < B, stalling still occurs although the network capacity is sufficient to download the
entire video data during the playout time of the video. In that case, stalling is caused
by the variability of the video bit rate. It has to be noted that in Figure 3 the results
for the bandwidth limitation of B = 450 kbps do not show this feature, since the videos
were already filtered according to their bit rate V so that V > B. This filtering was
done in order to decrease number of experimental runs where no stalling, occurs as we
are primarily interested in modeling the actual stalling patterns.
So far, we have investigated under which conditions stalling occurs or not. For quan-

tifying the impact of stalling on QoE in case of TCP based video delivery, however, the
stalling pattern (and correlations between different factors) has to be described statisti-
cally. In particular, the number N of stalling events per video clip as well as the duration
L of the stalling events is of interest.
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2.3.2 Stalling Frequency

Next, the stalling frequency F is analyzed which is defined as the ratio of the number of
stalling events and the duration D of the video, i.e. F = N/D. First, the correlation of
F with several influence factors was investigated. In particular, the following variables
were considered with Pearson’s linear correlation coefficient given in brackets: 1. frame
rate (-0.03), 2. video duration (-0.35), 3. median of stalling length (0.37), 4. number of
stallings (0.47), 5. mean stalling length (-0.58), 6. video bit rate (0.87). Thus, there is
no significant correlation between stalling frequency and frame rate, number of stalling,
the video duration or the stalling length. The stalling frequency is strongly correlated
only with the video bit rate.
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Figure 4: Measured and fitted stalling frequency F depending on the normalized video
demand x as ratio of video bit rate V and bottleneck capacity B

Figure 4 depicts the stalling frequency depending on the normalized video demand
x for two different bandwidth limitations. The normalized video demand is defined as
the ratio of the video bit rate V and the bottleneck capacity B, i.e. x = V/B. The
measurement results for each video clip are plotted with “⋄” marker and “+” marker for
B = 384 kbps and B = 450 kbps, respectively. As a result, we see that the measurement
results – for both bottleneck capacities – lie in the same area. In particular, the measured
frequencies with the corresponding measured video demands can be well fitted by an
exponential function which we found by minimizing the least square errors,

F (x) = −1.09e−1.18x + 0.36 . (1)

The resulting coefficient of determination of the fitting function F and the measurement
data is D = 0.943. However, there are several outliers which lie above the dashed line
in Figure 4. About 15.22% of the video clips are assumed to be outliers. We found no
statistical correlation between these values of F and any other variables. An in-depth
analysis of the packet traces as well as of the video contents did not reveal a clear reason
for this. However, we assume that these outliers are caused by the implementation of
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the video player itself. Considering the correlation coefficients of F and the video bitrate
V without the outliers leads to 0,955 and 0,958 for B = 384 kbps and B = 450 kbps,
respectively.
Thus, when the bottleneck capacity is equal to the video bit rate, i.e. x = 1, the

stalling frequency is F (1) = 0.021. In that case, a one minute video clip will already
stall once due to the variable video bit rate, see Section 2.3.1. According to the curve
fitting function, the stalling frequency will converge and it is limx→∞ F (x) = 0.357.
Hence, a one minute clip will stall at most 21 times. However, from QoS perspective,
this is not relevant, such high video demands may cause the player to crash anyway.
From QoE perspective this is either not relevant, since the user is already annoyed when
a few stalling events happen (see Section 3).

2.3.3 Stalling Length

Next, we take a closer look at the length L of single stalling events. For each video
clip, we measured the durations of each stalling event. Then, we computed several
statistical measures per video clip, including mean and median of the stalling length
over the stalling events of an individual clip. However, we found no correlation between
the statistical measures of the stalling time and any other variable, i.e. video frame rate,
stalling frequency, video bit rate, video duration, number of stallings.
Figure 5 shows the CDF of the median and the mean stalling length for the two

different network capacities B. It can be seen that the curves for the mean stalling
length differ with B. Nevertheless, the minimum of the average stalling length is about
2 s and for most videos the mean stalling length is below 6 s. However, there are several
videos which show an even larger mean stalling length. A closer look at the individual
application level stalling traces revealed that this large average stalling length was mostly
caused by one large single stalling event during the playout of the individual video clip.
These video clips correspond to the outliers as identified for the stalling frequency in
Figure 4.
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Figure 5: Median and mean of the stalling length for two different bottleneck capacities
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We therefore take a closer look at the median of the stalling length to attenuate the
impact of large single stalling events. In that case, the CDFs of the median of the
stalling length for the two different network capacities are very close together and no
impact of the bottleneck capacity on the median can be observed. In particular, the
observed stalling lengths are mainly between 2 s and 5 s. Because of this observation and
no correlations with other variables, we conclude that the implementation of the video
playout buffer determines mainly the stalling length.
For the two bottleneck capacities, only small variances of the stalling length are ob-

served. The coefficient of variation C can be fitted by a lognormal distribution with pa-
rameters µC = 0.786 and σC = 0.417; and µC = 0.642 and σC = 0.402 for B = 384 kbps
and B = 450 kbps, respectively.
Summarizing this section, the stalling pattern of a video can be described by stalling

frequency F and stalling length L. The stalling frequency is determined by the ratio of
video bit rate and bottleneck capacity. The length of a single stalling event is in the
order of a few seconds and lies between 2 s and 6 s mainly.

3 Subjective User Study on YouTube Video Delivery via

Transmission Control Protocol

Due to the current lack of QoE models that identify key influence factors for YouTube
(e.g. demographics of users, Internet application usage habits, content types, network
impairments) and explicitly address stalling effects in the context of TCP-based online
video, subjective user studies need to be performed. Such studies are typically carried
out by a test panel of real users in a laboratory environment. While many and possibly
even diverging views on the quality of the media consumption can be taken into account –
entailing accurate results and a good understanding of the QoE and its relationship with
QoS – lab-based user studies can be time-consuming and costly, since the tests have to
be conducted by a large number of users to obtain statistically relevant results. Because
of the costs and time demands posed by laboratory tests, only a limited set of influence
factors can be tested per test session. In related work [14], the correlation between
network QoS in terms of delay, packet loss and throughput, application QoS in term of
stalling, and QoE was evaluated for HTTP video streaming in a lab test. However, only
a single video clip was used and for each test condition only ten subjects rated their
experienced quality. Therefore, [14] is quite limited with respect to reliability and QoE
influence factors, e.g. video content type, resolution, etc., under investigation. Costs
and time demands further increase if the design and the execution of the tests as well as
the analysis of the user ratings are performed in an iterative way. This means that the
YouTube QoE model is developed through repeated cycles of design, implementation,
and statistical analysis of the tests. This iterative approach is unavoidable when touching
new QoE aspects like stalling effects.
Crowdsourcing therefore seems to be an appropriate alternative approach for deriving

a QoE model. Crowdsourcing means to outsource a task (like video quality testing)
to a large, anonymous crowd of users in the form of an open call. Crowdsourcing
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platforms in the Internet, like Amazon Mechanical Turk or Microworkers, offer access
to a large number of internationally widespread users in the Internet and distribute
the work submitted by an employer among the users. The work is typically organized
at a finer granularity and large jobs (like a QoE test campaign) are split into cheap
(micro-)tasks that can be rapidly performed by the crowd.
With crowdsourcing, subjective user studies can be efficiently conducted at low costs

with adequate user numbers for obtaining statistically significant QoE scores [5]. In ad-
dition, the desktop-PC based setting of crowdsourcing provides a highly realistic context
for usage scenarios like online video consumption. However, reliability of results cannot
be assumed because of the anonymity and remoteness of participants (cf. [6] and refer-
ences therein): some subjects may submit incorrect results in order to maximize their
income by completing as many tasks as possible; others just may not work correctly
due to lack of supervision. Therefore, it is necessary to develop an appropriate method-
ology that addresses these issues and ensures consistent behavior of the test subjects
throughout a test session and thus obtain reliable QoE results.
In order to derive the YouTube model, three steps are proposed. (1) Subjective user

studies are designed which take into account the features of crowdsourcing. (2) The user
studies are conducted in which several influence factors on the user perceived quality
are varied. The network conditions are emulated such that the users experience a prede-
fined stalling pattern. (3) The test results are statistically analzed in order to quantify
YouTube QoE in a statistical robust way.
In the following, Section 3.1 gives a background on crowdsourcing and the platform

used in this work. The subjective test methodology is presented in Section 3.2 aiming
at an appropriate test design to detect unreliable user ratings. In Section 3.3, the
test results are statistically analyzed. In particular, we apply different results filtering
levels and assess the reliability of the data set. The YouTube QoE is then quantified
in Section 3.4 for a realistic impairment scenario, where the YouTube video is streamed
over a bottleneck link.

3.1 Crowdsourcing and Microworkers Platform

Crowdsourcing can be understood as a further development of the outsourcing principle
by changing the granularity of work [15] and the size of the outsourced tasks, as well as
the administrative overhead. A microtask can be accomplished within a few minutes to
a few hours and thus does not need a long term employment. Further, it is irrelevant
to the employer who actually accomplishes the task and usually the task has to be
repeated several times. The repetitive tasks are combined in a campaign, which the
employer submits to the crowdsourcing platform. The workforce in the crowdsourcing
approach is not a designated worker but a large, anonymous human crowd of workers.
The crowdsourcing platform acts as a mediator between the employer and the crowd.
In this work, we use the Microworkers1 crowdsourcing platform, since Microworkers

allows to conduct online user surveys like our YouTube QoE tests. Microworkers supports

1http://www.microworkers.com
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workers internationally in a controlled fashion, resulting in a realistic user diversity well-
suited for QoE assessment. The Microworkers platform had about 80,000 registered
users end of 2010 (see [16] providing also a detailed analysis of the platform and its
users).
The life cycle of a campaign in the Microworkers platform comprises the following

steps. (1) First, the employer submits a campaign to the crowdsourcing platform. This
includes a description of the task, the payment per task, how the workers have to proof
a completed task, and how many tasks n are needed. (2) Then an employer of Mi-
croworkers reviews the campaign and approves it, if it corresponds to their guidelines.
(3) Afterwards, the workers start working on the campaign and submit their finished
tasks. (4) As soon as the desired n tasks are completed, the campaign is paused. The
employer has to review the submitted tasks within 7 days, if they are valid. If m tasks
are not valid, the campaign resumes until m new tasks are submitted. (5) If the em-
ployer rated n tasks valid, the campaign is completed. The most critical part of using
crowdsourcing for subjective user tests is step (4), since it is non-trivial to decide for a
subjective test, whether the task result is valid or not.
In general, every crowdsourcing task suffers from bad quality results. Therefore, dif-

ferent task design strategies have been proposed to improve the quality of the output.
Using the example of an image labeling task, Huang et al. [17] demonstrated that the
results quality of a task can be influenced by its design. They varied the payment per
task, the number of requested tags per image, the number of images per task and the
tasks per campaign in order to maximize the number of unique labels or the number of
labels corresponding with their gold standard.
However, even if the task is designed effectively, workers might still submit incorrect

work. Thus, tasks can be equipped with verification questions [18] to increase the quality,
the workers input can be rechecked by others as e.g. in [19, 20], or iterative approaches
can be used [21, 22]. If the workers input is not wrong but only biased, there also exist
methods to eliminate these biases [23]. Based on these insights and suggestions, we
developed a new, improved QoE assessment method for crowdsourcing.

3.2 Subjective Crowd Test Methodology

The test methodology developed throughout this work allows experimenters to con-
duct subjective user tests about the user perceived quality of Internet applications like
YouTube by means of crowdsourcing and to evaluate the impact of network impairments
on QoE. For the necessary quality assurance of the QoE test results themselves including
the identification of unreliable user ratings, we apply different task design methods (cf.
Section 3.2.1), before the subjective uers tests are conducted by the crowd (cf. Sec-
tion 3.2.2). Different user study campaigns are designed (cf. Section 3.2.3) according to
the influence factors under investigation.
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3.2.1 Task Design Based Methods

The task design methods described in the following paragraphs can be used for differ-
ent crowdsourcing tasks. Nonetheless, we describe their applicability in the context of
evaluating the QoE for YouTube videostreaming.

Gold Standard Data The most common mechanism to detect unreliable workers
and to estimate the quality of the results is to use questions whereof the correct results
are already known. These gold standard questions are interspersed among the normal
tasks the worker has to process. After results submission by the worker, the answers
are compared to gold standard data. If the worker did not process the gold standard
questions correctly, the non-gold standard results should be assumed to be incorrect too.
Since for subjective quality testing personal opinions are asked for, the gold standard

data approach has to be applied with care since user opinions must be allowed to diverge.
Still, in our tests we included videos without any stalling and additionally asked partic-
ipants: “Did you notice any stops to the video you just watched”. If a user then noticed
stops, we disregarded his ratings for quantification of QoE. We additionally monitored
the stalling events on application layer to exclude any unwanted stops, see Section 3.2.2.

Consistency Tests In this approach, the worker is asked the same question multiple
times in a sightly different manner. For example, at the beginning of the survey the
worker is asked how often she visits the YouTube web page, at the end of the survey
she is asked how often she watches videos on YouTube. The answers can slightly differ
but should be lie within the same order of magnitude. Another example is to ask the
user about his origin country in the beginning and about his origin continent at the end.
The ratings of the participant are disregarded, if not all answers of the test questions
are consistent.

Content Questions After watching a video, the users were asked to answer simple
questions about the video clip. For example, “Which sport was shown in the clip? A)
Tennis. B) Soccer. C) Skiing.” or “The scene was from the TV series... A) Star Trek
Enterprise. B) Sex and the City. C) The Simpsons.” Only correct answers allow the
user’s ratings to be considered in the QoE analysis.

Mixed Answers This method is an extension to consistency tests to detect workers
using fixed click schemes in surveys. Usually, the rating scales on surveys are always
structured in the same way, e.g. from good to bad. Consequently, workers using fixed
click scheme might bypass automated consistency tests, as always selecting the first or
the middle answer results in a consistent survey. An easy way to avoid this is to vary
the structure of the rating scales. For example the options of the first quality question
”Did you notice any stops while the video was playing?” has the order “No”, “Yes”,
whereas in the following question “Did you experience these stops as annoying?” the
order is “Extremely”,“Fairly”,..., “Not at all”. Now, following a fixed clicking scheme
results causes inconsistencies and identifies unreliable participants.
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Application Usage Monitoring Monitoring users during the tasks completion can
also be used to detect cheating workers. The most common approach here is measuring
the time the worker spends on the task. If the worker completes a task very quickly, this
might indicate that she did the work sloppy.
In this work, we monitored browser events in order to measure the focus time, which is

the time interval during which the browser focus is on the website belonging to the user
test. In order to increase the number of valid results from crowdsourcing, we displayed
a warning message if the worker did not watch more than 70% of the video. The users
could decide to watch the video again or to continue the test. When workers became
aware of this control mechanism, the percentage of completely watched videos doubled
and almost three times more workers could be considered reliable than without the
system warning.
For the subjective crowd tests, we recommend to combine all above mentioned task

designs, i.e. gold standard data, consistency checks, content questions, mixed questions
and application monitoring.

3.2.2 Implementation and Execution of Experiments

The aim of the experiments is to quantify the impact of network impairments on QoE.
For YouTube video streaming, network impairments result into related stalling patterns.
As the video experience should be as similar as possible to a visit of the real YouTube
website, the application should run on the users’ default web browser. In order to provide
dynamic web content the application was based on JavaServer Pages (JSP). The JSPs
are compiled into servlets that are able to receive and respond to HTTP requests. These
servlets ran on an Apache Tomcat server set up on Debian GNU/Linux. This server
included a MySQL relational database for logging test settings, user events and answers.
To this end, an instance of the YouTube Chromeless Player was embedded into dy-

namically generated web pages. With JavaScript commands the video stream can be
paused, a feature we used to simulate stalling. In addition, the JavaScript API allows to
monitor the player and the buffer status, i.e. to monitor stalling on application layer. In
order to avoid additional stalling caused by the test users’ Internet connection, the videos
had to be downloaded completely to the browser cache before playing. This enables us
to specify fixed unique stalling patterns which are evaluated by several users.
During the initial download of the videos, a personal data questionnaire was completed

by the participant which also includes consistency questions from above. The user then
sequentially viewed three different YouTube video clips with a predefined stalling pat-
tern. After the streaming of the video, the user was asked to give his current personal
satisfaction rating during the video streaming. In addition, we included gold standard,
consistency, content and mixed questions to identify reliable subjective ratings. The
workers were not aware of these checks and were not informed about the results of their
reliability evaluation. Users had to rate the impact of stalling during video playback on
a 5-point absolute category rating (ACR) scale [24] with the following values: (1) bad;
(2) poor; (3) fair; (4) good; (5) excellent.

15



3.2.3 Design of Campaigns with Respect to Influence Factors

For deriving the impact of various influence factors, we conducted individual crowd-
sourcing campaigns in which only a single parameter is varied, while the others are kept
constant. This strict separation helps for a proper QoE analysis and deriving adequate
QoE models. In this work, we focus on the quantification of network impairments on
YouTube QoE. Since YouTube videos are delivered via TCP, any network impairments
appear as stalling to the end user.
For obtaining realistic stalling patterns we first studied the relationship between net-

work QoS and stalling events. To this end, several YouTube videos were requested
with a downlink bandwidth limitation of the used browser. On network layer, packet
traces were captured, while on application layer, the YouTube player status (i.e. playing
or stalling) was monitored by using the YouTube Javascript API. In case of a bot-
tleneck, i.e if the available bandwidth is lower than the video bandwidth, the video
play back stalls several times. For example, we requested a 30 s Avatar trailer with
an average video bitrate of 817.6 kbps or 102.2 kBps. We varied the bottleneck band-
width b between 20 kBps and 102.2 kBps. As a result, we found that the stalling events
occur periodically. For the example trailer, the number N of stallings can be approx-
imated by N(b) = max{−0.467 · b + 27.616, 0}, while the total stalling time T follows
as T (b) = max{1 237e2.323/x − 1 286, 0}. The average length L of a single stalling event
follows as L(b) = T (b)/N(b). We found that for our videos, a bandwidth of about 60 kBps
was sufficient to play out the video without any interruptions, since an initial buffering
process prevents stalling in this case. Details can be found in the technical report [25].
As a result of this analysis, we parametrized our crowdsourcing campaigns C1 − C7

as outlined in Table 3, varying either length or number of stalling events while keeping
the other parameter constant.

id number N of stallings length L of stalling event

C1 0, 1, 2, 3, 4, 5, 6 4 s

C2 1 2, 4, 8, 16, 32, 64 s

C3 0, 1, 2, 3, 4, 5, 6 1 s

C4 0, 1, 2, 3, 4, 5, 6 2 s

C5 2 1, 2, 4, 8, 16, 32 s

C6 3 1, 2, 4, 8, 16 s

C7 0, 1, 2, 3, 4, 5, 6 3 s

Table 3: Parametrization of the seven crowdsourcing campaigns

3.3 Statistical Analysis of Test Results

Throughout our measurement campaign, 1 349 users from 61 countries participated in
the YouTube stalling test and rated the quality of 4 047 video transmissions suffering
from stalling. Statistical analysis of the demographics of the users can be found in [25].
We first identify unreliable users and filter the data from the user studies accordingly.
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Then, we show that the (inter-rater and intra-rater) reliability of the filtered data is
improved significantly.

3.3.1 Unreliable Users and Filtering of Data

The task design based methods as defined in Section 3.2.1 allow a three level filtering
of the users. Based on the answers of the users to the consistency, content and mixed
questions as well as on the application monitoring, we applied a three level filtering in
order to detect the reliable workers. For all steps of the filtering process the application
assisted by indicating possible cheaters. However, all these suggested cheaters data were
revised manually.
The first level identifies crowdsourcing users that gave wrong answers to content ques-

tions, that provided different answers to the same rephrased consistency questions, or
that often selected the same option during the test. Thus, the first level applies consis-
tency tests, content questions and mixed answers. The second level checks additionally
whether participants who watched a video with stops noticed the stalling and vice versa,
i.e., gold standard data is included in the test. The third level extends the previous filter
level by additionally monitoring the application usage. All users are removed that did
not watch all three videos completely.
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Figure 6: Percentage of remaining participants per filter level

Figure 6 shows the percentage of users passing the three filter levels for the different
crowdsourcing campaigns C1, . . . , C7 we performed. In each of the user study campaigns
we only varied a single test condition (either the number of stallings or the duration of a
single stalling event), while the remaining test conditions like video contents were kept
equal. Level 0 refers to the unfiltered data from all users.
Interestingly, each filter technique reduces the number of valid crowdsourcing workers

by approx. 25% on average over all campaigns. This indicates that the consistency tests
are quite useful for identifying spammers clicking random answers as well as video content
questions and monitoring task specific parameters (like the focus time) for identifying
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sloppy workers who do not watch the video carefully enough. Monitoring task specific
parameters like the focus time on the video, also helps to identify unreliable users.
However, in our case, the monitoring is implemented via Javascript, i.e. monitoring
of window.onBlur and window.onFocus events, which do not seem to work correctly
across all browsers2. Therefore, our three level filtering may be even too pessimistic,
but leads to valid test data suitable for quantifying YouTube QoE. In contrast to the
consistency checks and content questions, monitoring task specific parameters are much
more complicate to develop and to implement, as they differ for each crowdsourcing
task. Due to our restrictive filtering, only about one fourth of the subjective ratings
were finally considered for the analysis.

3.3.2 Reliability of Filtered Data

We consider two different types of reliability of the user studies: intra-rater and inter-
rater reliability. Firstly, intra-rater reliability determines to which extent the ratings of
an individual user are consistent. In a measurement campaign C, an individual user u
sequentially views three different YouTube video clips with a predefined stalling pattern
xi for i ∈ {1, 2, 3} and rates the QoE accordingly with yi. In each campaign, we only vary
a single test condition (either the number of stalling pattern or the length of a single
stalling event) and keep the others constant. Hence, we assume that worse stalling
conditions xj > xk will be reflected accordingly by the the user ratings with yj ≤ yk.
Therefore, we can apply the Spearman rank-order correlation coefficient ρC;u(xu, yu) for
ordinal data between the user ratings yu and the varied stalling parameter xu. Spearman
rank correlation considers only that the items on the rating scale represent higher vs.
lower values, but not necessarily of equal intervals. We define the intra-rater reliability
ρC of a campaign C by averaging over all users U , i.e. ρc =

1
|U|

∑

u∈U ρC,u.

C1 C2 C3 C4 C5 C6 C7
0.65

0.7

0.75

0.8

0.85

0.9

campaign c

in
tr

a
-r

a
te

r 
re

lia
b
ili

ty
 ρ

c

 

 
original
filtered

Figure 7: Increase of intra-rater reliability of filtered data compared to original data

2See http://www.quirksmode.org/dom/events/
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Secondly, inter-rater reliability denotes the degree of agreement among raters. For a
campaign c, we define it as Spearman rank-order correlation coefficient κc between all
user ratings yC and the varied stalling parameter xC for all user ratings in a campaign.
It has to be noted that the applied filter levels are independent of the actual stalling
conditions, hence, the above defined reliability metrics are valid.
Figure 7 and Figure 8 shows the intra-rater reliability ρC and the inter-rater reliability

κC of the different campaigns for the original data and the filtered data applying level
3, respectively. It can be seen that the intra- and inter-rater reliability is increased in all
campaigns, thus, the filtering succeeds in identifying unreliable users. On average, ρC
and κC is increased about 0.0879 and 0.2215, respectively. The three level filtering of
the users from campaign C3 only leads to a slight increase of the intra-rater reliability.
This is due to the fact that C3 investigates the influence of very short stallings of length
1 s and it seems to be more difficult for individual users to rate the influence on the
5-point ACR scale appropriately. Nevertheless, the inter-rater reliability of campaing
C3 is significantly improved. The inter-reliability of campaign C2 is lower than in the
other user study campaigns, since we consider very long stalling events up to 64 s within
C2.
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Figure 8: Increase of inter-rater reliability of filtered data compared to orignial data

3.4 Quantification of YouTube QoE

The quantification of YouTube QoE aims at inferring the subjective user rating from
the stalling parameters. This includes an analysis of the user diversity conducted by
means of the SOS hypothesis, before the key influence factors on YouTube QoE are
investigated. Finally, a mapping between the user ratings and the key influence factors
are presented. Together with the quantification of user diversity, the mapping function
provides a complete picture of YouTube QoE.
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3.4.1 User Diversity and the SOS Hypothesis

The reliability of the data indicates to which extent the users give consistent QoE ratings.
However, a certain heterogenity of the test subjects’ opinions on the quality experienced
remains, caused by several psychological influence factors such as individual expectations
regarding quality levels, type of user and sensitivity to impairments, uncertainty how to
rate a certain test condition, etc. Therefore, we investigate this diversity among users
and show that the filtered data leads to valid results.
To this end, we analyze quality ratings where users experience the same individual

test conditions, i.e. the same number of stalling events and the same length of single
stalling events. The SOS hypothesis as introduced in [26] postulates a square relationship
between the average user ratings MOS(x) and the standard deviation SOS(x) of the
user ratings for the same test condition x: SOS(x)2 = a

(

−MOS(x)2 + 6 ·MOS(x)− 5
)

.
Then, the SOS parameter a is characteristic for certain applications and stimuli like
waiting times. Web surfing is closely related to YouTube videostreaming due to the
TCP-based delivery of data and the resulting waiting times due to network impairments.
For web surfing, the SOS parameter is about 0.3 according to [26].
For the unfiltered YouTube user ratings, we obtain a SOS parameter of 0.4592 which

is very large and shows an even larger user diversity than for complex cloud gaming [27].
Thus, the unfiltered data do not seem to be valid from this perspective. Considering
the filtered data, we obtain an SOS parameter of 0.3367 which lies in the range of web
surfing. This clearly indicates the validity of the filtered data. Consequently, we consider
only filtered data in the following because of their reliability and validity.

3.4.2 Key Influence Factors on YouTube QoE

In the crowdsourcing campaigns, we focused on quantifying the impact of stalling on
YouTube QoE and varied 1) the number of stalling events as well as 2) the length of
a single stalling event, resulting in 3) different total stalling times. We also considered
the influence of 4) the different crowdsourcing campaigns, 5) the test video id in order
to take into account the type of video as well as the resolution, used codec settings, etc.
Further, we asked the users to additionally rate 6) whether they liked the content (using
a 5-point ACR scale). We collected additional data concerning the demographics of the
user by integrating demographical questions in the survey. In particular, we asked the
users about their 6) age, 7) gender, 8) family situation, 9) education, 10) profession,
11) home country, 12) and home continent.
To get insights into the users expectations and habits in the context of YouTube, we

additionally estimated 13) the user’s access speed by measuring the time for download-
ing the video contents. Further, 14) the used browser was monitored by reading the
user-agent field in the HTTP request header. Finally, we asked the users how their
15) YouTube usage and 16) Internet usage, i.e. how often the use YouTube or the In-
ternet (several times per day, once a day, several times per week, once a week, several
times per month, less often, never).
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Figure 9: Identification of key influence factors on YouTube QoE

Finally, the key influence factors on YouTube QoE are identified by means of (a)
correlation coefficients and (b) support vector machine (SVM) weights. We compute the
Spearman rank-order correlation coefficient between the subjective user rating and the
above mentioned variables. In addition, we utilize SVMs as machine learning approach
to make a model for classification. Every variable gets a weight from the model indicating
the importance of the variable. However, SVMs are acting on two-class problems only.
For this, we take the categories 1 to 3 of the ACR scale to class “bad quality” and
the categories 4 to 5 to class “good quality”. We choose the implementation of SMO
(Sequential Minimal Optimization [28]) in WEKA [29] for analysis.
Figure 9 shows the results from the key influence analysis. On the x-axis, the different

influence factors νi are considered, while the y-axis depicts the correlation coefficient αi

as well as the SVM weights βi which are normalized to the largest correlation coefficient
for the sake of readability. We can clearly observe from both measures αi and βi, that
the stalling parameters dominate and are the key influence factors. Surprisingly, the user
ratings are statistically independent from the video parameters (like resolution, video
motion, type of content like news or music clip, etc.), the usage pattern of the user, as
well as its access speed to reflect the user’s expectations. As future work, we will further
investigate such influence factors by considering more extreme scenarios (e.g. very small
resolution vs. HD resolution).

3.4.3 Mapping between MOS and Stalling

The analysis in the previous subsection has shown that YouTube QoE is mainly de-
termined by stalling and both stalling parameters, i.e. frequency and length. For
quantifying YouTube QoE, concrete mapping functions depending on these two stalling
parameters have to be derived.
First, we investigate the invididual user ratings in detail, cf. Figure 10. The x-axis

denotes the number of stallings whereas the y-axis denotes the user ratio for the different
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Figure 10: User ratings for length of 3 s of a single stalling event

ratings (S = i). It can be seen that all users rate the video play out with maximum rating
S = 5 if no stalling occurs. Further, for one stalling event of length 3 s the full rating
scale is already exploited, whereas the majority of users still rank the video playback
with at least a S = 4, i.e. good quality. In case of two and more stalling events more
than 30% of the users rate the video experience with the lowest rating score S = 1. For
three or more stalling events the opinion score distribution does not change significantly.
This is due to the fact that it does not matter any more if the user has to wait four
or more times during the video playback; the perceived quality is too low, the user is
dissatisfied. We can conclude that users might excuse one stalling, but more stalling
events, especially more than two, significantly reduce the user perceived video quality.
Figure 11 depicts the MOS values for one and three seconds stalling length for varying

number of stalling events. In addition, the MOS values are fitted according the IQX
hypothesis as discussed in [30]. The IQX hypothesis formulates a fundamentail rela-
tionship between QoE and an impairment factor corresponding to the QoS. According
to the IQX hypothesis, the change of QoE depends on the current level of QoE – the
expectation level– given the same amount of change of the QoS value. Mathematically,
this relationship can be expressed by a differential equation

∂QoE

∂QoS
= −β(QoE − γ) (2)

which can be easily solved as an exponential functional relationship between QoE and
QoS.
In the context of YouTube QoE for TCP based video streaming, the number of stallings

is considered as impairment. Hence, QoE in terms of MOS is described by an exponential
function. The mapping functions between the numberN of stalling events of length L are
given in Table 4 which also shows the coefficients of determination R2

L for the different
fitting functions being close to perfect match, i.e. R2

L = 1. The results in Figure 11
show that users tend to be highly dissatisfied with two ore more stalling events per clip.
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However, for the case of a stalling length of 1 s, the user ratings are substantially better
for same number of stallings. Nonetheless, users are likely to be dissatisfied in case of
four or more stalling events, independent of the stalling duration.
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Figure 11: Mapping functions of stalling parameters to mean opinion scores

We additionally investigated whether it is possible to summarize the stalling pattern
into a total stalling time T = N · L. For this, we used the fitting functions fL(N) for
the different stalling lenghts and compared the functions hL(T ) = hL(L · N) = fL(N)
transformed to total stalling times. However, we found that the resulting curves sig-
nificantly differ, hence, it is not sufficient to summarize the stalling pattern into total
stalling times. This is inline to our findings in Section 3.4.2 where both stalling param-
eters revealed equal importance and thus have to be taken into account individually for
any mapping functions.

length L mapping function fL(N) R2
L

1 s f1(N) = 3.26 · e−0.37·N + 1.65 0.941

2 s f2(N) = 2.99 · e−0.69·N + 1.95 0.923

3 s f3(N) = 2.99 · e−0.96·N + 2.01 0.997

4 s f4(N) = 3.35 · e−0.89·N + 1.62 0.978

Table 4: Mapping functions between MOS and number N of stalling events of length L
as well as coefficient of determination for TCP transmission

23



4 Comparison of YouTube Quality of Experience for UDP

and TCP Transport Protocols

For quantifying the influence of the transport protocol on the QoE, we consider now the
bottleneck scenario with a given bottleneck capacity B. In case of TCP based video
streaming, the bottleneck may lead to stalling as QoE impairment. According to our
findings in Section 2 a given bottleneck link capacity results in a certain stalling pattern,
i.e. a certain stalling frequency F and a certain stalling length L. With the YouTube
QoE model in Section 3, the stalling pattern can then be mapped to a MOS. In case of
UDP based video streaming, the bottleneck link capacity may lead to packet loss as QoE
impairment. Then, the QoE model from Section 4.1 can be applied to quantify the QoE
in terms of MOS for a given packet loss ratio R. Hence, in both cases, TCP or UDP
based video streaming, the bottleneck link capacity is mapped to MOS. In the following,
we show how this mapping is applied in case of UDP (Section 4.2) and TCP (Section 4.3).
In order to have a fair comparison between UDP and TCP based transmission of video
contents, we neglect any initial delays. Finally, Section 4.4 compares both protocols
from the end user perspective, when the video stream is delivered over a bottleneck.

4.1 Quality Assessment of UDP-based YouTube Videostreaming

For assessing the user perceived quality of YouTube video streaming using the UDP
transport protocol, we rely on a publicly available database, that is the “EPFL-PoliMI
video quality assessment database” at http://vqa.como.polimi.it/. Its video streams
are encoded with H.264, the same codec used by YouTube. Twelve different video se-
quences were investigated from which one half has a spatial CIF resolution (352 × 240
pixel) and the other half 4CIF resolution (704× 480 pixel). For each of the twelve orig-
inal H.264 bit-streams, a number of corrupted bit-streams were generated, by dropping
packets according to a given error pattern. The error patterns were generated at six
different packet loss ratios R, that are 0.1%, 0.4%, 1%, 3%, 5%, 10%. Furthermore,
two different types of error patterns are considered, that are random errors and bursty
errors. Thus, in total, 72 CIF and 72 4CIF video sequences with packet losses as well as
the original 6 CIF and 6 4CIF sequences without packet losses were considered in the
subjective tests.
The CIF and 4CIF video sequences were presented in two separate test sessions to

the test users. At the end of each video sequence, the subjects were asked to rate the
quality using a five-point ITU continuous adjectival scale. Using a slider, the test users
continuously rate the instantaneously perceived quality using an adjectival scale from
“bad” to “excellent”, which corresponds to an equivalent numerical scale from 0 to 5.
Thus, in contrast to the subjective user study in the previous section 3, “bad” quality
rating y is any continuous value between 0 and 1, i.e. 0 ≤ y ≤ 1, while “excellent” quality
rating means 4 < y ≤ 5. In total, fourty naive subjects took part in the subjective tests.
More details on the subjective test can be found in [31, 4].
Figure 12 shows the MOS depending on the simulated packet loss ratio R for the

two different resolutions CIF and 4CIF. For each packet loss ratio R and each video
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Figure 12: MOS values and mapping function between packet loss ratio R for UDP based
streaming

resolution, the subjective ratings from all test users (across the different video contents
and the type of error pattern) were averaged to obtain the corresponding MOS value. It
can be seen that the MOS strongly decays with increasing network impairment in terms
of packet loss.
To this end, we consider the packet loss ratio as impairment factor on the QoE. Hence,

we can apply again the IQX hypothesis in order to derive a mapping function between
the QoS impairment, i.e. the packet loss ratio, and the QoE in terms of MOS. As a result,
we obtain an exponential mapping function between QoE and QoS which is depicted as
solid line in Figure 12. Furthermore, the mapping function itself is shown in the plot.
Again, we see a very good match of the mapping function and the measured MOS values
which is quantified by the coefficient of determination being close to a perfect match.
As a result, we see that in the case of UDP-based video streaming, packet loss is a

key influence factor on QoE. In contrast, the resolution of the video contents (CIF vs.
4CIF) has only a minor impact on the MOS.

4.2 UDP based Streaming with Packet Loss

During the video of length D, about D·B
S packets of size S are downloaded with a down-

load bandwidth B. Since the video (encoded with bitrate V ) consists of D·V
S packets,

the packet loss ratio follows as

R = 1−
B

V
. (3)

Accordingly, the mapping Υv between the normalized throughput ρ = B
V and the MOS

value is derived as
Υv(ρ) = fv (1− ρ) (4)

using the mapping function fv(R) between the packet loss ratio R and the MOS value
as defined in Section 4.1 for a given video resolution v.
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4.3 TCP based Video Streaming with Stalling

The download time Td of a video of duration D which is encoded with average video
bitrate V depends on the capacity B of the bottleneck,

Td =
V ·D

B
. (5)

Thus, the total stalling time Ts follows as difference Td −D between the download time
and the video duration,

Ts =

(

V

B
− 1

)

D . (6)

Then, the number N of stalling events of length L is

N =

(

V

B
− 1

)

D

L
=

(

1

ρ
− 1

)

D

L
. (7)

Together with the normalized throughput ρ which is defined as the ratio between the
bandwidth limitation B and the video bitrate V , i.e. ρ = B

V , we arrive at the following
mapping function ΥL between the normalized throughput and the MOS value,

ΥL(ρ) = fL

((

1

ρ
− 1

)

D

L

)

, (8)

where fL(N) is defined as in Section 3 in Figure 11 or Table 4.
In addition to this simple model for obtaining the stalling pattern to a given bottleneck

capacity B, we can use the fitting function in Eq.(1) which returns the stalling frequency
F = N/D for given V/B = 1/ρ.

4.4 Comparison of User Perceived Quality for TCP and UDP based

YouTube Video Delivery

In this section, we combine the results from the previous subsections in order to compare
the QoE for YouTube video streaming over a bottleneck with capacity B. For TCP based
transmission, this results in stalling which degrades the QoE; for UDP based transmis-
sion, the bottleneck results into packet loss and corresponding visual impairments of the
video.
Thus, for the current two Internet protocols, TCP and UDP, the same QoS impairment

in terms of the bottleneck bandwidth will lead to completely different QoE impairments.
Thus, it is possible to evaluate which kind of stalling pattern (in terms of number of
stallings and length of a single stalling event) corresponds to which packet loss ratio,
such that the user experiences the same QoE. Figure 13 shows the number N of stallings
on the x-axis and the corresponding packet loss ratio R on the y-axis which result in the
same MOS value, which is indicated by the color of the point. Two different curves are
depicted according to a stalling length of L = 1 s and L = 4 s. For the mapping between
packet loss and MOS we used the CIF resolution. For example, N = 2 stallings of length
L = 4 s correspond to a packet loss ratio R = 2% and lead to a MOS value about 2, i.e.
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Figure 13: MOS color plot wrt. stalling frequency (TCP) and packet loss ratio (UDP)

bad quality. It can be seen, that the transformation between both impairment factors is
quite complex and non-linear.
Finally, we compare both protocols, TCP and UDP, for a given bottleneck bandwidth

B in terms of MOS. In particular, we use the normalized throughput ρ as ratio of
the bottleneck bandwidth B and the video bitrate V . Then, we can directly use the
mapping functions in Eq.(8) and in Eq.(4) based on the subjective user studies presented
in Section 3 and in Section 4.1 for TCP and UDP, respectively.
Figure 14 shows the numerical results depending on the normalized throughput ρ. In

case of TCP, we use the mapping functions based on the four different stalling length
from L = 1 s to L = 4 s. In addition, the measurement results from Section 2.3 are used.
For the different videos streamed over a bottleneck, we measured the video bitrate, the
duration of the video, the observed number of stallings, and the median of the stalling
length. These values are used as input in Eq.(8) to obtain a MOS value. The first
observation is that the measured stalling values mapped to MOS are in the range of
the curves ΥL(ρ), although the assumptions in Section 4.3 are quite rough and neglect
aspects like variable bitrate or initial video buffer time.
In case of UDP, the MOS values are plotted for the CIF and the 4CIF resolution with

respect to ρ in Figure 14. The second observation is that UDP always performs worse
than TCP from the end user perspective. Hence, for the same bottleneck capacity, the
end user will likely more tolerate the resulting stalling in case of TCP than the resulting
video quality degradation in case of UDP.
The results indicate that TCP based video streaming actually used by YouTube out-

performs UDP based video streaming in terms of user perceived quality for network
bottleneck scenarios. However, it has to be noted that also techniques for overcoming
the video quality degradation due to packet losses in case of UDP do exist. By allow-
ing buffering as well as additional retransmission mechanisms on the application layer,
UDP based streaming approach might be enhanced significantly and even keep up with
TCP. Furthermore, we have restricted the results of this paper to the bottleneck sce-
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nario. Therefore, it would be interesting to investigate if the results can be transfered
to lossy links scenarios or if UDP might be the appropriate choice for such scenarios,
as the TCP throughput is approximately proportional to 1/

√
R, cf. [32]. In addition,

an investigation of other transport protocols like DCCP and SCTP would reveal their
ability for video streaming and identify the optimal transport protocol for a YouTube
like streaming service.

5 Conclusions and Outlook

Quality of Experience as a subjective measure of the end-customer’s quality percep-
tion has become a key concept for analyzing Internet applications like YouTube video
streaming from the end user’s perspective. Therefore, in this technical report we have
taken a closer look at the impact of the current Internet transport protocols on QoE for
YouTube video streaming. In particular, we have investigated the quality degradations
which occur in case of network bandwidth bottlenecks in case of TCP and UDP based
video streaming.
For UDP based video streaming, a network bottleneck may result into packet loss

and therefore visual impairments of the video contents. In contrast, TCP based video
streaming, as currently implemented by YouTube, will not suffer from video quality
degradation, i.e. the video content itself is not disturbed, however the bottleneck may
lead to stalling of the video stream. The question arises which of both protocols is more
appropriate in case of a bottleneck from the end user’s perspective.
Therefore, we conducted a large-scale measurement study of YouTube video streaming

over a bottleneck, in order to derive and model the resulting stalling pattern. This
stalling pattern is non-trivial, due to a number of interactions and correlations on several
layers of the ISO/OSI stack. YouTube implements flow control on application layer;
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TCP implements flow control on transport layer; the video player implementation tries
to overcome stalling by means of a video buffer; and the videos are encoded with variable
bit rates. However, we found that the stalling patterns can be modeled in the following
way: the stalling frequency as ratio of the number of stallings and the video duration
simply depends on the normalized video demand, which is the ratio of the video bit rate
and the bottleneck link capacity. However, their relation follows a non-linear exponential
function. The median of the length of a single stalling event was found to be between
two seconds and four seconds. With these two parameters, the observed stalling pattern
can be modeled for a given bottleneck bandwidth.
As second contribution, we presented the results of two subjective user studies from

literature and transformed them accordingly in order to predict user perceived quality
for a given bottleneck bandwidth. The first subjective measurement campaign consid-
ers QoE when stalling occurs in case of TCP video streaming. The second subjective
measurement study allows to quantify QoE when packets get lost in case of UDP video
streaming. Finally, this allows to compare the influence of UDP and TCP in the bottle-
neck scenario. Our results show that TCP outperforms UDP for any given bottleneck
bandwidth. Furthermore, we have seen that some basic considerations regarding the
observed stalling pattern also enable accurate results in terms of predicted QoE.
Due to the lack of YouTube QoE models, we have quantified QoE of YouTube on

behalf of the results of seven crowdsourcing campaigns. We have shown that for this
application, QoE is primarily influenced by the frequency and duration of stalling events.
In contrast, we did not detect any significant impact of other factors like age, level of
internet usage or content type. Our results indicate that users tolerate one stalling event
per clip as long as stalling event duration remains below 3 s. These findings together
with our analytical mapping functions that quantify the QoE impact of stalling can be
used as guidelines for service design and network dimensioning.
Furthermore, we demonstrated how crowdsourcing can be used for fast and scalable

QoE assessment for online video services, since testing is parallelized and campaign
turnaround times lie in the range of a few days. We also showed that results quality
are an inherent problem of the method, but can be dramatically improved by filtering
based on additional test design measures, i.e. by including consistency, content, and gold
standard questions as well as application monitoring. Albeit such filtering can result in
a 75% reduction of user data eligible for analysis, crowdsourcing still remains a cost-
effective testing method since users are typically remunerated with less than 1 $. For
these reasons we believe that crowdsourcing has high potential not only for testing online
video usage scenarios, but also for QoE assessment of typical Internet applications like
web surfing, file downloads and cloud gaming.
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