
University of Würzburg
Institute of Computer Science

Research Report Series

A Compass Through SDN Networks

Thomas Zinner1, Michael Jarschel1, Tobias Hossfeld1, Phuoc
Tran-Gia1 and Wolfgang Kellerer2

Report No. 488 December 2013

1 University of Würzburg
Institute of Computer Science

Departement of Communcation Networks
Am Hubland, D-97074 Würzburg, Germany

{zinner,jarschel,hossfeld,trangia}@informatik.uni-wuerzburg.de

2 Technische Universität München
Lehrstuhl für Kommunikationsnetze

Arcisstrasse 21, 80290 München, Germany
wolfgang.kellerer@tum.de

1 Introduction

A Compass Through SDN Networks

Thomas Zinner, Michael Jarschel,
Tobias Hossfeld, Phuoc Tran-Gia

University of Würzburg
Institute of Computer Science

Departement of Communcation Networks
Am Hubland, D-97074 Würzburg, Germany
{zinner,jarschel,hossfeld,

trangia}@informatik.
uni-wuerzburg.de

Wolfgang Kellerer
Technische Universität München

Lehrstuhl für Kommunikationsnetze
Arcisstrasse 21, 80290 München, Germany

wolfgang.kellerer@tum.de

Abstract

The term Software Defined Networking (SDN) is prevalent in todays discussion about
future communication networks. However, no consistent definition regarding this tech-
nology has formed, yet. The fragmented view on SDN results in legacy products being
passed off by equipment vendors as SDN, academics mixing up the attributes of SDN
with those of network virtualization, and users not fully understanding the benefits. There-
fore,establishing SDN as a widely adopted technology beyond laboratories and insular de-
ployments requires a compass to navigate the multitude of ideas and concepts that make up
SDN today.

The contribution of this research report is twofold. First, it gives a thoroug definition
of SDN and its interfaces and a list of its key attributes. Second, it provides a mapping of
interfaces and attributes to SDN use cases and highlights their relevance on a per-scenario
basis. Thus, this report guides a potential adopter of SDN, whether SDN is in fact the right
technology for his arbitrary use case.

1 Introduction

Today’s networks face challenges that have not been expected during the time of their develop-
ment 40 years ago. This is particularly illustrated by the rise of cloud systems and data centers.
These systems rely on the high performance and flexibility of virtualized environments. If a ser-
vice requires additional resources to support more customers they can easily be provisioned by
dynamically adding new virtual instances running upon current server hardware. This flexibility,
however, stands in contrast to static, properitary network components. Due to the heterogeneity
of network equipment and vendors topology changes require much longer than provisioning a
virtual machine.

Software-Defined Networking (SDN) is a technology that tries to overcome the ossification of
the networks. It enables the decoupling of both data- and forwarding plane and offers a dynamic,
logically centralized, cost-effective, and adaptable architecture. One of the main contributions
of SDN is a standardized control protocol which allows the SDN controller to modify the for-
warding tables of routers and switches and thus to change the data forwarding. The OpenFlow
protocol is currently the most common realization of this protocol.

Parts of this manuscript have been submitted to IEEE Communications Magazine

1

2 Brief Overview of the OpenFlow Protocol

SDN is prevalent in today’s discussion about future communication networks. Like with any
new term or paradigm, however, no consistent definition regarding this technology has formed.
The fragmented view on SDN results in legacy products being passed off by equipment ven-
dors as SDN, academics mixing up the attributes of SDN with those of network virtualization,
and users not fully understanding the benefits. Therefore, establishing SDN as a widely adopted
technology beyond laboratories and insular deployments requires a compass to navigate the mul-
titude of ideas and concepts that make up SDN today. The contribution of this paper represents
an important step towards such an instrument. It gives a thorough definition of SDN and its in-
terfaces as well as a list of its key attributes. Furthermore, a mapping of interfaces and attributes
to SDN use cases is provided, highlighting the relevance of the interfaces and attributes for each
scenario. Thus, the compass guides a potential adopter of SDN, whether SDN is in fact the right
technology for an arbitrary use case.

2 Brief Overview of the OpenFlow Protocol

This section provides a brief overview of OpenFlow. More details on OpenFlow can be found in
the white paper [1] as well as in the OpenFlow specification [2].

OpenFlow was designed as a new network paradigm, which enables researchers to test new
ideas under realistic conditions on an existing network infrastructure. To be able to take action
in the switching, OpenFlow separates the control plane from the data plane and connects them
by an open interface, the OpenFlow protocol. The control plane is implemented in software
in form of a controller on an external PC. For the communication between the switch and the
controller, a secure channel is used. This allows researchers to be flexible with their work, while
at the same time using high-performance hardware.

The OpenFlow switch itself holds a flow table which stores flow entries consisting of three
components. First, a set of 12 fields with information found in a packet header that is used to
match incoming packets. Second, a list of actions that dictates how to handle matched packets.
Third, a collection of statistics for the particular flow, like number of bytes, number of packets,
and the time passed since the last match.

When a packet arrives at the OpenFlow switch, its header information is extracted and then
matched against the header portion of the flow table entries. If checking against entries in each of
the switches’ tables does not result in a match, the packet is forwarded to the controller, which
determines how the packet should be handled. In the case of a match, the switch applies the
appropriate actions to the packet and updates statistics for the flow table entry. This process is
visualized in Figure 1.

Several papers have been published indicating possible uses for OpenFlow [3–6]. All these
papers demonstrate that the concept of splitting the control plane from the data plane is useful
in a variety of fields, like data center routing, energy saving, and network virtualization.

3 Principles of Software Defined Networking

How networks are currently structured and operated poses a significant financial issue to internet
service providers and, in fact, has become a handicap for progress in the cloud and service

2

3 Principles of Software Defined Networking

Packet
arrives

Extract header
fie lds

M atch in
any tab le?

Encapsulate
and forw ard to

contro lle r

Apply actions,
update sta tistics

no

yes

Figure 1: Handling of incoming packets in an OpenFlow switch.

provider space. SDN enables a programmable network control and offers a solution to a variety
of use cases. The success stories of these bottom-up SDN solutions have led to a shift in the way
operators and vendors perceive the network. In the following, we define four basic principles of
SDN. Each of these principles is considered as mandatory for classifying a technology as SDN.

3.1 Separation of Control- and Forwarding Plane

The physical separation of control- and forwarding- or data plane is the best known principle of
SDN. It postulates the externalization of the control plane from a network device to an exter-
nal control plane entity often called the ”controller”. In particular, this means that an internal
software control plane, while it may still exist, is not enough to brand a device or technology
as ”Software Defined Networking”. The external controller has to have the ability to directly
change the forwarding behavior of the network element. This enables several key benefits of
SDN. Control- and data plane can be developed separately from each other, which lowers the
entry-to-market hurdle as a company no longer has to have expert knowledge in both areas. This
has already introduced new and disruptive start-ups to the market that have sped up innovation
in the network. Customers are also enabled to ”mix-and-match” products of different vendors
and thus increase competition further.

3.2 Logically Centralized Control

The controller of an SDN network is a logically centralized entity, i.e. it can consist of multiple
physical or virtual instances, but behaves like a single component. A network or virtual network
has a single active controller which maintains a global state of that particular network or slice. In
particular, this means that multiple active controllers per network domain/slice are not allowed.
Multiple controllers are not required as a controller can be implemented as a distributed system
and backups can be defined in case of a controller failure. Depending on the implementation,
such a controller can operate networks ranging from a virtual network on a single network de-
vice to a global network spanning a multitude of nodes. The global knowledge such a central
controller possesses about the network enables it to adapt its network policy much faster than a
system of traditional routers could.

3

4 Key Interfaces and Features of Software Defined Networking

3.3 Open Interfaces

For SDN to reach its full potential in terms of flexibility and adaptability, it is fundamental
that its interfaces are and remain open. A closed or proprietary interface limits component
exchangeability and innovation. This is especially true for the interface between control- and
data plane. In the absence of a standard open interface, one of the main SDN advantages - the
interchangeability of network devices and control planes - would be taken away (cf. Southbound
API). This is also true for the remaining interfaces, which are discussed in greater detail in
Section 4.1.

3.4 Programmability

The most important principle of SDN from our point of view is the programmability of the
network. This is enabled through the external software controller and the open interfaces. The
programmability principle is not limited to introducing new network features to the control plane
but rather represents the ability to treat the network as a single programmable entity instead of an
accumulation of devices that have to be configured individually. This represents the fundamental
paradigm shift in networking SDN has initiated.

4 Key Interfaces and Features of Software Defined Networking

In this section, we define the key interfaces of an SDN system and highlight the features of
Software Defined Networking - key components of the SDN compass.

4.1 Definition and Significance of SDN Interfaces

The interfaces of Software Defined Networking as we see them are illustrated in Figure 1 for
a generic, exemplary network. This network consists of three autonomous systems (AS); a
conventional IP or legacy access network at the user end, an SDN-based Transit-WAN, and an
SDN-enabled data center network (cloud). The mapping of SDN interfaces to this example
network is discussed below.

4.1.1 Southbound-API

The Southbound-API represents the interface between control- and data plane. It is the enabler
for the externalization of the control plane and therefore key to the corresponding SDN prin-
ciple. Its realization is a standardized instruction set for the networking hardware, comparable
to OpenGL or DirectX in the graphics field. Implementation examples are the IETF ForCES
Protocol [7] and most notably the OpenFlow protocol [8].

4.1.2 Northbound-API

SDN enables the exchange of information with applications running on top of the network. This
information exchange is performed via the Northbound-API between the SDN controller and
what we call the ”application control plane”. What kind of information is exchanged, in which

4

4 Key Interfaces and Features of Software Defined Networking

Figure 2: Example - Interfaces of a Software Defined Network

form, and how often, depends on the kind of application and network in question along with
the network policy. Standardization of this interface only makes sense for common scenarios,
however, all implementations should be kept open. While the SDN controller can directly adapt
the behavior of the network, the application controller adapts the behavior of the application
using the network. It can be implemented as part of a single application instance to a central
entity for the entire network responsible for all applications.

4.1.3 Westbound-API

The Westbound-API serves as an information conduit between SDN control planes of different
network domains. It allows the exchange of network state information to influence routing
decisions of each controller but at the same time enabling the seamless setup of network flow
across multiple domains. For the information exchange, standard inter-domain routing protocols
like BGP could be used.

4.1.4 Eastbound-API

Communication with the control planes of non-SDN domains, e.g. a Multi-Protocol Label
Switching (MPLS) control plane, uses the Eastbound-API. The implementation of this inter-
face depends on the technology used in the non-SDN domain. Essentially, a translation module
between SDN and the legacy technology is required. This way, both domains should ideally ap-
pear to be fully compatible to each other. For example, the SDN domain should be able to use the
routing protocol deployed between non-SDN domains or be able to react to Path Computation
Element Protocol (PCEP) messages requesting path setups from an MPLS domain.

5

4 Key Interfaces and Features of Software Defined Networking

4.2 Definition of SDN Features

The combination of these four open interfaces together with the core features we outline in the
following makes SDN a very flexible and powerful tool for network operation. Matching SDN’s
unique features and their importance to one’s particular use case can help a potential adopter of
SDN to determine, whether SDN is in fact the right technology for that specific purpose.

4.2.1 Programmability

Programmability is not only a principle but also the key feature of SDN and drives most SDN
use cases. It is enabled by an open interface between data and control plane, which allows the
control plane to be realized in software external from the data plane devices. This opens the
control plane to broad modifications and innovation using conventional software development
methods, in turn enabling the customization of the network according to a specific setup or
scenario.

Example: Based on one or more external information resources (e.g. traffic/power pricing)
the routing in a network is adapted automatically to lower the cost [9].

4.2.2 Protocol Independence

Protocol independence enables SDN to control or run in conjunction with a large variety of net-
working technologies and protocols on different network layers. This feature enables migration
strategies from old to new technologies and supports the possibility to run a different network
protocol stack tailored for each application.

Example: In order to enable the migration from IPv4 to IPv6 a network operator decides to
run both versions of IP in parallel [10].

4.2.3 Dynamic

The ability to actively modify network parameters in a dynamic manner that is close to real
time defines this SDN feature. Dynamic re-configuration is feasible in different time-scales.
This covers wide area networks where only a few change operations are required per day, to
data center networks where the constant instantiation or migration of virtual machines and their
network connectivity has to happen in minutes or even seconds.

Example: In case of an overloaded link, the traffic is efficiently rerouted with minimal de-
lay [11].

4.2.4 Granularity

Networking spans different protocol layers and also levels of data flow aggregates. SDN also
features the ability to control traffic flows with a different granularity on both the aggregate level
and the protocol layers. This can range from large MPLS tunnels in core networks to a single
TCP connection in a home LAN. This is a necessary feature to ensure scalability and enable the
control plane to work on different levels.

6

5 Use Cases for Software Defined Networking

Example: A network administrator wants all traffic to a specific TCP port, e.g. 80 (HTTP),
sent via a dedicated link. SDN can reroute the traffic according to the corresponding field in the
packet header [11]..

4.2.5 Elasticity

The elasticity feature of SDN describes the ability of the SDN network control plane to increase
and decrease its resource consumption based on the required capacity. As controllers run in
software, they can be flexibly instantiated and synchronized using a distributed or hierarchi-
cal approach on multiple physical or virtual hosts. This enables the control plane to react to
variations in traffic mix and volume.

Example: Due to a temporarily increased amount of control traffic in a data center network,
the SDN controller can no longer be hosted by a single physical device and has to be distributed
among several machines. However, when the situation resolves itself, the control plane can again
be relocated to its original host in order to conserve resources [12]

5 Use Cases for Software Defined Networking

This section introduces several use cases which we consider representative of SDN. This list is
not meant to be exhaustive, but serves as a method for classifying SDN in terms of its features
and interfaces (cf. Section 6).

5.1 Cloud Orchestration

Over the last decade, cloud services have developed at a rapid pace. However, the innovation
in this field was mainly confined to server and data center technologies as well as distributed
applications. This has led to networks becoming a hindrance for cloud operations. A major
reason for this is the fact that networks and servers were traditionally managed separately. For
cloud applications to be provisioned and operated quickly and in an automated manner, the
management of both network and cloud framework needs to be integrated. SDN is a viable
way to achieve this integration as SDN controller as well as cloud orchestration framework
is software and a (standardized) interface between both worlds is therefore easily attainable.
This interface can then, for example, be used to notify the network controller of an imminent
virtual machine migration or to notify the cloud orchestration that a link is overloaded and the
server load should be moved to a different location. One approach to create such an interface is
Meridian introduced by Banikazemi et al. [13].

5.2 Load Balancing

Another service required for the successful operation of online services that are hosted in data
centers is load balancing. Online services, e.g., search engines and web portals, are often repli-
cated on multiple hosts in a data center for efficiency and availability reasons. Here, a load
balancer dispatches client requests to a selected service replica based on certain metrics such as
server load. In general, a load balancer is typically a separately-deployed function in a network

7

5 Use Cases for Software Defined Networking

that distributes the load among network and data center elements in its scope according to a cer-
tain optimization metric such as minimum average load or link cost. Today’s solutions for load
balancers are effective but have limited flexibility in terms of customization. Being a proprietary
middlebox function, such solutions also come at a high cost. When using SDN technologies, the
load balancing can be integrated within any forwarding element in the network, e.g., OpenFlow
switch, avoiding the need for separate devices. Furthermore, SDN allows load balancing to op-
erate on any flow granularity. In [14], a use case for a data center load balancer is described and
a solution based on OpenFlow is proposed.

5.3 Routing

The API between data plane forwarding and a centralized control plane in SDN provides ample
opportunities for routing protocol adaptation, which is very difficult in existing decentralized
routing schemes implemented on closed box network elements. Routing services that can be
realized by the SDN concept, e.g. through programming modules on OpenFlow controllers di-
recting OpenFlow Switches, include path selection for traffic optimization, multi-homing, secure
routing, path protection, and migration between protocol versions, i.e. IPv6. The opportunities
for using SDN/OpenFlow for a centralized routing control platform are described in [9].

5.4 Monitoring and Measurement

SDN provides the network the ability to perform certain network monitoring operations and
measurements without any additional equipment or overhead. The concept was introduced by
Yu et al. [15] and is based on the fact that an SDN inherently collects information about the net-
work to maintain a global network state at the logically centralized controller. This information
can then be processed in software to obtain a subset of monitoring parameters. Furthermore,
active measurements are enabled by selectively mirroring specific production traffic flows to the
control plane or an external measurement device without the need of introducing artificial and
potentially disruptive measurement probe traffic into the network. For example, by mirroring
the traffic for a phone call at ingress and egress point of the network, the network administrator
can determine the delay and quality of service for a particular call at a certain time.

5.5 Network Management

Today’s network management policies are usually decided upon by the network operator and
then configured once in each network element by an administrator. The larger the network, the
greater the required configuration effort becomes. Hence, a once set policy is seldom modified.
This leads to an often very inefficient network operation. The fact that traffic patterns continually
change cannot be taken into account this way. In order to change this, the network needs to be
able to adapt policies dynamically and automatically based on a range of information. This
calls for a more general specification of network policies that are subsequently translated into
specific rules for each device in the network using a policy engine. The logically centralized
control plane of SDN offers itself as a very suitable way to enable such an approach as it has all
information about the network available. For example, a high level network policy dictates the

8

6 A Use Case Based Analysis of SDN Interfaces and Features

prioritization of VoIP traffic inside an Enterprise network. The SDN controller can then identify
corresponding network flows and assign them to a high priority level in each device. This is
dynamic on the one hand as VoIP flows are set up and terminated with each phone call and on
the other hand it is automated as the devices are configured without the need for physical access
and any human intervention. In fact the administrator does not have to know the topology of the
network or the devices involved in order to achieve the policy’s goal. Such an approach has been
implemented prototypically by Kim et al. [16].

Recently, Google [17] presented its a network management solution based on SDN used in
its own private WAN, B4. This WAN connects Google’s data centers and utilizes Open-Flow
enabled switches. Due to three characteristics presented in the following, the SDN technology
can be applied resulting in a high usage of the network links of up to 100% in single cases and
70% on average.

First, Google does not only control the network entities in the WAN, but also applications,
servers and the local area networks. Second, the bandwidth-intensive applications, i.e., data
copies between the data centers, are based on TCP and can easily adapt the transmision rate to
the available bandwidth. Third, the small number of data centers allows a central control of the
WAN with a single SDN controller.

This results in a higher utilization of the data links, 70% instead of 40%, and thus a significant
reduction of expenditures.

5.6 Application-Awareness

Using network resources efficiently and optimizing traffic flows towards high end-user Quality
of Experience (QoE) is an often cited goal for next generation networks. However, it is difficult
to realize when nothing is known about the kind of applications, which are run on the network
and their state. Existing approaches in this direction often rely on Deep Packet Inspection to
identify the applications. This, however, is not a very accurate technique and does not take
the application state or QoE into account at all [18]. With the Northbound-API of the SDN
controller, the application itself can inform the network about its properties and state. This
way, the network controller can direct traffic flows to complement rather than disrupt each other.
Furthermore, a once made forwarding decision can be revised in light of changing situations
in the network and a different application state. The other way around, if the network can no
longer sustain a certain service level for the application due to lack of resources, it can notify the
application to modify its behavior. For example, due to its architecture, SDN easily allows cross-
layer optimization between applications and their demands and the network capabilities. Thus,
a better use of the network resources with respect to more generic constraints like user-centrality
or energy-efficiency is possible. An example aiming at improving the QoE of applications in an
enterprise like network is discussed in [11].

6 A Use Case Based Analysis of SDN Interfaces and Features

To analyze the importance of SDN in terms of its interfaces and features for different use cases,
we map each of the use cases shown in the previous section to them. We aim at creating an
understanding of the SDN definition and validate the presented features and their mapping to

9

6 A Use Case Based Analysis of SDN Interfaces and Features

Use Case
Interface Southbound

Interface
Northbound

Interface
Eastbound
Interface

Westbound
Interface

Cloud Orchestra-
tion

3 3 7 (7)

Load Balancing 3 3 7 (3)

Routing 3 7 3 3

Monitoring and
Measurement

3 3 3 3

Network Man-
agement

7 3 3 7

Application-
Awareness

7 3 7 7

Table 1: Mapping of Use Cases to SDN Interfaces. Reliance on an interface is checked, whereas
non reliance is marked with an X. Tendencies, i.e. there are some exemptions from the
rule, are marked in brackets.

the use-cases. Thus, the compass guides a potential adopter of SDN, whether SDN in fact is
the right technology for an arbitrary use case. In the first step of our analysis, we map the use
cases to the SDN interfaces as shown in Table 1. Reliance on an interface is checked, whereas
non reliance is marked with an X. Tendencies, i.e. there are some exemptions from the rule,
are marked in brackets. As can be seen, not all use cases depend on all interfaces. In fact,
the only use case leveraging all interfaces of SDN is the ”Monitoring and Measurement” use
case. Overall, the use cases are quite heterogeneous in terms of SDN interface dependency. This
shows that the choice of use cases appears to be a good mix covering all interfaces and many
combinations. The most used interface appears to be the ”Northbound-API” interface with all
but one use cases relying on it. However, a clear statement about the importance of an interface
is not possible as it depends on the specific implementation of a use case, how an interface is
used, and therefore how crucial it is.

In the second step of our use case analysis, we classify the use cases according to

• the importance of each of the above identified features as a use case enabler: HIGH (***)
= enables service, MEDIUM (**) = improves service significantly, LOW (*) = nice to
have, and

• the area of application in which these features are most important for each use case: Data
Center = one data center, WAN = ISP Core network, Enterprise = Enterprise network
without enterprise data center.

As a result of the use case classification using these simple metrics, we obtain Table 2. Here, we
observe horizontal clusters as well as local clusters of importance across the different use cases
and areas of application. This analysis does not only validate the five SDN features as described

10

7 Key Derivations

in Section 4.2, but also allows us to identify the importance of each feature for certain classes
of SDN use cases. Let us have a closer look at the table. There are entire rows filled with a
background color where all features are classified as highly important enablers for a use case.
These horizontal lines are limited to one application area only. Cloud orchestration, for example,
is a use case that is focused on data center environments. This is also confirmed by the table
where the horizontal line marking each SDN feature with high importance runs in the data center
application area. A similar observation can be made for monitoring. Here, enterprise networks
benefit most from all SDN features due to the high application mix that has to be monitored in
enterprise networks. Local clusters of importance (dark) point to a particular importance of one
SDN feature for a use case across all three areas of application. For example, the time-dynamics
to be realized for SDN-based routing for path protection are based on the dynamic feature of
SDN as the key enabler. Monitoring is mostly concerned with data gathering across protocols
and different levels of granularity. This is confirmed by the table with the SDN features proto-
col independence and granularity expressing high importance markings. Network management
is based on the features programmability and protocol independence as here the configuration
aspect is a key feature enabled by SDN. The general use case application awareness shows four
importance clusters; namely programmability, protocol independence, dynamic and granularity.

7 Key Derivations

The above definitions and use case analysis aim to create an understanding of the applicability of
the SDN principles. There is a lack of clear definitions and a lack of methodology for assessing
the suitability of SDN concepts for certain use cases. Current discussions direct SDN towards
an image of being a universal solution in networking. As a basis for such a methodology, we
(1) defined four main interfaces in an SDN-enabled network control architecture, namely the
southbound, eastbound, westbound, and northbound interfaces, and (2) we identified the five
main features provided by SDN technologies, namely programmability, protocol independence,
dynamic, granularity and elasticity. Our analysis of selected use cases based on related publica-
tions mainly taken from recent workshops, conferences and journal articles (cloud orchestration,
load balancing, routing, measurement, network management) hints at a methodology for assess-
ing the importance of SDN as an enabler for certain use cases. Our discussion shows that the
use cases depend on (a) different application areas (Data center, Enterprise, WAN). Referring to
Table 2 we cannot determine a specific area of application where SDN excels. Furthermore, (b)
different interfaces are needed for each use case, i.e., not all interfaces have to be implemented.
Accordingly, development guidelines for specific controllers can be derived based on the analy-
sis of the specific use-case in relation to the features and interfaces used. Different use cases are
based on different SDN features, i.e., the implementation of the features depends on the specific
use-case. Similarly, a corresponding analysis of a new use case can reveal whether the use case
can benefit from SDN technology, i.e., is there at least one feature with ”high”. Furthermore, the
benefit of SDN for a certain use case increases with the number of important features identified.
Additionally, we can observe that there are more advanced use cases which cannot be realized in
today’s networks. These use cases can benefit from or are even enabled by SDN features like the
presented application awareness use-case. Despite the operational use-cases discussed above,

11

7 Key Derivations

Use Case
Feature

Area of
Applica-

tion
Elasticity

Program-
mability

Protocol
Indepen-

dence
Dynamic Granularity

Cloud
Orchestration

Data
Center

*** *** *** *** ***

WAN * * ** * ***
Enterprise * * * * *

Load
Balancing

Data
Center

* * * *** **

WAN * * ** ** **
Enterprise * * ** ** **

Routing /
Forwarding

Data
Center

* *** * *** **

WAN ** *** * *** **
Enterprise * *** ** *** **

Monitoring
and
Measurement

Data
Center

** ** *** ** ***

WAN * ** *** * ***
Enterprise *** *** *** *** ***

Network
Management

Data
Center

** *** *** ** **

WAN * *** *** * **
Enterprise * *** *** * **

Application-
Awareness

Data
Center

* *** *** *** ***

WAN * *** *** *** ***
Enterprise * *** *** *** ***

Table 2: Mapping of Use Cases to SDN Features. The importance of each of the above identified
features as a use case enabler: HIGH (***) = enables service, MEDIUM (**) = im-
proves service significantly, LOW (*) = nice to have. The area of application in which
these features are most important for each use case: Data Center = one data center,
WAN = ISP Core network, Enterprise = Enterprise network without enterprise data
center. Local clusters of importance (dark) point to a particular importance of one SDN
feature for a use case across all three areas of application. Complete rows marked with
a background color indicate that all features are classified as highly important enablers
for the use case, but limited to one application area only.

12

8 Conclusion

SDN drives innovation also in other areas. Particularly in research testbeds [19], for prototyp-
ing [20] and for service rollout (Beta Slice), the capabilities of SDN enable innovation within
networks. Accordingly, the areas of application are not limited to the discussed use-cases, but
are expected to expand beyond the scope of today’s networks. However, this discussion is not
the intended topic of this article.

8 Conclusion

Due to its innovation potential, SDN is seen as one key technology to enable and operate next
generation networks. However, different definitions and meanings of the term SDN currently
exist, leading to a fragmented view. This paper is a major step towards a better understanding of
SDN, its necessary interfaces, as well as its key attributes. Based on an inductive approach we
derived a mapping of interfaces and attributes to SDN use cases. In a second step, a mapping of
use cases to SDN features, highlighting the importance of the specific features to the use-cases
and areas of application is performed. This approach can be adapted to help classify other use
cases and gauge the potential benefits of using SDN in their context. Their main features can be
identified and weighted, and the implementation focus of the required network applications can
be planned accordingly. The main contribution of this paper is therefore to supply SDN adopters
with a compass and a map to reach the desired answer to the question of using SDN in a specific
scenario.

Acknowledgments

References

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in Campus Networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, p. 69, 2008.

[2] “OpenFlow Switch Specification, Version 1.0.0,” December 2009.

[3] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee, and
N. McKeown, “Elastic Tree: Saving Energy in Data Center Networks,” in 7th USENIX
Symposium on Networked System Design and Implementation (NSDI), (San Jose, CA,
USA), pp. 249–264, April 2010.

[4] M. Casado, D. Erickson, I. A. Ganichev, R. Griffith, B. Heller, N. McKeown, D. Moon,
T. Koponen, S. Shenker, and K. Zarifis, “Ripcord: A Modular Platform for Data Center
Networking,” Tech. Rep. UCB/EECS-2010-93, EECS Department, University of Califor-
nia, Berkeley, June 2010.

[5] S. Das, G. Parulkar, P. Singh, D. Getachew, L. Ong, and N. McKeown, “Packet and Circuit
Network Convergence with OpenFlow,” in Optical Fiber Conference (OFC/NFOEC’10),
(San Diego, CA, USA), March 2010.

13

References

[6] R. Braga, E. S. Mota, and A. Passito, “Lightweight DDoS Flooding Attack Detection Using
NOX/OpenFlow,” in 35th Annual IEEE Conference on Local Computer Networks, (Den-
ver, CO, USA), pp. 416–423, October 2010.

[7] A. Doria, R. Haas, and J. Salim, “Forces protocol specification.” http://www.ietf.
org/internet-drafts/draft-ietf-forces-protocol-08.txt, 2006.

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, and
J. Turner, “OpenFlow: Enabling innovation in campus networks,” ACM SIGCOMM Com-
puter Communication Review, vol. 38, no. 2, pp. 60–74, 2008.

[9] C. Rothenberg, M. Salvador, C. Corrła, S. Lucena, and R. Raszuk, “Revisting routing con-
trol platforms with the eyes and muscles of software-defined networking,” in Proceedings
of the 1st Workshop on Hot Topics in Software Defined Networks, 2012.

[10] G. Hampel, M. Steiner, and B. Tian, “Applying software-defined networking to the telecom
domain,” in 2013 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), 2013.

[11] M. Jarschel, F. Wamser, T. Hhn, T. Zinner, and P. Tran-Gia, “Sdn-based application-aware
networking on the example of youtube video streaming,” in 2nd European Workshop on
Software Defined Networks (EWSDN 2013), 2013.

[12] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ramanathan,
Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix: a distributed control platform for
large-scale production networks,” in Proceedings of the 9th USENIX conference on Operat-
ing systems design and implementation, OSDI’10, (Berkeley, CA, USA), pp. 1–6, USENIX
Association, 2010.

[13] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey, and G. Wang, “Meridian: an SDN
platform for cloud network services,” Communications Magazine, IEEE, vol. 51, no. 2,
pp. 120–127, 2013.

[14] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-based server load balancing gone wild,”
in Proceedings of the 11th USENIX conference on Hot topics in management of internet,
cloud, and enterprise networks and services, pp. 12–12, USENIX Association, 2011.

[15] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Madhyastha, “Flowsense:
Monitoring network utilization with zero measurement cost,” in Passive and Active Mea-
surement, pp. 31–41, Springer, 2013.

[16] H. Kim and N. Feamster, “Improving network management with software defined network-
ing,” Communications Magazine, IEEE, vol. 51, no. 2, pp. 114–119, 2013.

[17] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer,
J. Zhou, M. Zhu, et al., “B4: Experience with a globally-deployed software defined wan,”
in Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM, pp. 3–14, ACM,
2013.

14

References

[18] T. Hossfeld, R. Schatz, M. Varela, and C. Timmerer, “Challenges of QoE management for
cloud applications,” Communications Magazine, IEEE, vol. 50, no. 4, pp. 28–36, 2012.

[19] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown, and G. M.
Parulkar, “Can the production network be the testbed?,” in OSDI, vol. 10, pp. 1–14, 2010.

[20] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid prototyping for
software-defined networks,” in Proceedings of the 9th ACM SIGCOMM Workshop on Hot
Topics in Networks, p. 19, ACM, 2010.

15

