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Abstract—WiFi offloading has become increasingly popular.
Many private and public institutions (e.g., libraries, cafes, restau-
rants) already provide an alternative free Internet link via WiFi,
but also commercial services emerge to mitigate the load on
mobile networks. Moreover, smart cities start to establish WiFi
infrastructure for current and future civic services. In this work,
the hotspot locations of ten diverse large cities are characterized,
and a surprisingly simple model for the distribution of WiFi
hotspots in an urban environment is derived.

I. INTRODUCTION

With the spread of smartphones, end users access Internet
services on the run relying mainly on cellular networks. The
amount of total mobile data traffic reached 2.5 exabytes per
month in 2014 and this monthly traffic is expected to surpass
24.3 exabytes in the year 2019 [1]. To respond to these trends,
WiFi offloading has come to the center of industry thinking
and drives the research agenda.

With WiFi offloading, the load on existing cellular infra-
structure, and consequently, the expenses for new infrastructure
can be reduced. Together with the increased capacity of WiFi
hotspots, customer satisfaction can be improved. End users
also benefit from WiFi offloading due to reducing the risk
of exceeding their data plan volume limitations. Furthermore,
in areas with low mobile coverage, WiFi connections are
superior to cellular connections and permit usage of bandwidth
demanding applications like video streaming or online gaming.

What can a WiFi hotspot model be used for? The
performance of traffic management solutions using WiFi net-
works highly depends on the coverage of WiFi hotspots and
on the strength of the received signal. A low signal strength
of the WiFi signal results in low throughput, which has an
impact on energy consumption [2] and may not meet the
requirements of the application [3]. A model for WiFi hotspot
locations can facilitate the design and performance evaluation
of mobile traffic management solutions, which incorporate
WiFi offloading (e.g., [4]), as well as future Internet of Things
services for smart cities relying on WiFi infrastructure [5].
A generic model allows generating WiFi hotspot distributions
for cities of different size, shape, population density, and
number of hotspots to evaluate hypothetical scenarios and
the scalability of mechanisms. Thereby, the benefits of such
solutions/services can be assessed more accurately depending
on the available offloading potential.

In this work, the WiFi hotspot locations of ten large cities
were obtained from a public WiFi database1 and their charac-
teristics are analyzed. As a result, we propose a simple model

1http://www.openwifispots.com/

for the distribution of WiFi hotspots in an urban environment
relative to the city center. Using a transformation into polar
coordinates, we show that the hotspot locations can be modeled
with a uniform distribution of the angle and an exponential
or gamma distribution of the distance. Our proposed model
allows to investigate offloading potential and mimics realistic
characteristics, e.g., in terms of distance of an arbitrary user
to the closest hotspot.

Why propose a simple model? The WiFi hotspot locations
could also be modeled with more complex distributions or
higher order models. Although these more complicated models
might better fit the characteristics of particular cities, they
are harder to parametrize and they must be fitted for each
city separately. However, in this case, a higher accuracy for
a given city can be obtained by taking the actual hotspot
locations from public databases. In contrast, our proposed
model is general, has an intuitive parameter, and showed to
be sufficiently accurate for the desired applications.

This work is structured as follows. Section II describes
related work on WiFi hotspot models. Section III shows the
applied methodology and Section IV presents the character-
istics and model of hotspots distributions in cities. Finally,
Section V concludes.

II. RELATED WORK

WiFi offloading/sharing started in specialized communities
(e.g., Fon2), but public WiFi is now widely available as
both free and commercial services. Many cities over the
world have comprehensive WiFi coverage in the city centers
just by free public WiFi hotspots provided by various cafes,
shops, bars, pubs, libraries, public buildings, and government
buildings. There are databases providing the locations of these
open/public WiFi hotspots. Many of these databases are user
based websites with hotspot locations gathered, uploaded,
and updated by a huge community (e.g., OpenWiFiSpots1).
Moreover, also telecommunication operators (e.g., BT3) deploy
own private/closed WiFi infrastructure to offer their users
access to an alternative Internet link.

The spatial distribution of WiFi hotspots is measured with a
tracking method in [6]. The results show that highest density of
WiFi hotspots corresponds to residential areas. The distribution
of WiFi hotspots is naturally related to the population density
in the city, since WiFi hotspots are deployed in close to every
household, offices, shops or public places. A first model of the
population density exponential decline from the city center was

2http://www.fon.com
3http://www.btwifi.co.uk/
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(a) Extract of hotspot locations and computed center
(51.5126N, 0.1405W). Map source: OpenStreetMap.
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(b) Angular distribution.
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Fig. 1. Visualization of London hotspots. Angular and distance distributions of London, Portland, and San Francisco hotspots with respect to city center.

developed in [7]. A survey on studies of urban population den-
sity [8] provides an overview of refined models considering,
e.g., lower density in the center due to lower residential land
use or polycentric cities [9] induced for example by suburbs.
The relation between the spatial structures of wireless networks
and population densities has been investiaged in [10]. The
authors find that base stations belonging to different mobile
operators often cluster according to population density. In [11]
different point process models are used to model the density
of cellular networks. A survey on the literature related to
stochastic geometry models for modeling cellular networks
is provided in [12]. The models lack of means to generate
hotspot distribution for cities of different shape due to, e.g.,
natural boarders of a coastline.

III. METHODOLOGY

To characterize the geographic distribution of public WiFi
hotspots in cities, geographic information about these hotspots
is needed. Considering that every single point on the surface
of the earth is uniquely identified by a pair of geographic
coordinates (latitude ϕ and longitude λ), each hotspot location
can be described by such an ordered pair (ϕ, λ).

In this work, we use the OpenWiFiSpots1 database to
obtain the addresses of public hotspots. Considering that the
website provides no API to request the data, hotspots in
different cities were searched manually on the website and the
addresses were parsed from the search results. To transform the
addresses to geographic coordinates, the MapQuest4 geocoding
API was used. Hotspot locations of ten large cities were
obtained, eight in the United States and two in Europe. To
give an example, Fig. 1a shows a small map extract of London
with those of the hotspots that are contained in this area. Cities
with a large number of listed hotspots and different layouts
(e.g., grid-based cities, ring-based cities) and characteristics
were selected to obtain more general results. The first columns
of Table I present some of these characteristics, i.e., the
number of gathered hotspots, the total investigated area, and
the population of each city. It can be seen that the cities widely
differ, e.g., in the number of users per hotspot. Note that the
obtained hotspot locations are only a sample of a possibly
larger number of WiFi hotspots, as some hotspots might not
be listed in the database. As a result of this work, we find a

4http://developer.mapquest.com/

simple model that fits quite well for all cities independent of
the actual characteristics.

To provide general statements for each city, the hotspot
distribution is analyzed relative to the city center. Therefore,
the city center was computed via a centroid calculation on
the WiFi hotspot locations using the k-means algorithm.
Then, the geographic coordinates of the WiFi hotspots were
transformed into a polar coordinate system, which had the
city center (ϕc, λc) as reference point and north as reference
direction. Thus, coordinates (ϕ, λ) of each WiFi hotspot could
be expressed in terms of polar coordinates (d, θ) with the
spherical distance d from the city center and angle θ towards
the reference direction5. Eq. 2 can be used to calculate the
spherical distance between the coordinates (ϕc, λc) and (ϕ, λ)
(in radians) by using the haversine formula (term a from Eq. 1)
and the mean radius of the Earth rE . Eq. 3 can be used to
compute the angle between (ϕ, λ) and the reference direction.
Both computations use the atan2 function6, which is a two
argument version of the arctangent function implemented by
many programming languages. Note that negative angles of
θ point counterclockwise from north, whereas positive angles
point clockwise from north.

a = sin2(
ϕ− ϕc

2
) + cosϕ · cosϕc · sin2(

λ− λc
2

) (1)

d = 2 · rE · atan2(
√
a,
√
1− a) (2)

θ = atan2(sin(λ− λc) · cosϕ,
cosϕc · sinϕ− sinϕc · cosϕ · cos(λ− λc)) (3)

IV. MODEL

To model the hotspot distributions in cities, we first ana-
lyze their characteristics. Based on the insights from the ten
investigated cities, it is possible to generate hotspot locations
with similar characteristics.

A. Analysis of Hotspot Distributions

We investigate the hotspot distribution in terms of the
distance and angle of the polar coordinates with respect to
the city center. As an example, Fig. 1b and 1c show the angle

5http://www.movable-type.co.uk/scripts/latlong.html
6http://www.mathworks.com/help/matlab/ref/atan2.html
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TABLE I. GENERAL INFORMATION ABOUT INVESTIGATED CITIES. MAXIMUM (D) AND MEAN (mae) ABSOLUTE ERROR FOR UNIFORM FITTINGS OF
ANGULAR DISTRIBUTION. MEAN (µ) AND COEFFICIENT OF VARIATION (cv ) OF DISTRIBUTION OF HOTSPOT DISTANCES, AND D AND mae FOR

EXPONENTIAL (E) AND GAMMA (G) FITTINGS.

City Number of Total investigated Population D mae µ cv DE maeE DG maeG
hotspots area (in km2) (in thousands)

Austin 220 220 843 0.1619 0.0677 3.2041 0.6886 0.1262 0.0545 0.0814 0.0319
Berlin 110 250 3502 0.0841 0.0401 5.0306 0.9335 0.0661 0.0270 0.0767 0.0295
Boston 193 173 637 0.0809 0.0274 2.5224 0.7201 0.1884 0.0476 0.1048 0.0195
Brooklyn (NYC) 454 419 2566 0.1142 0.0537 5.5942 0.7948 0.2057 0.0383 0.1674 0.0466
Houston 307 306 2161 0.1023 0.0412 6.7299 0.7294 0.1645 0.0335 0.0608 0.0124
Los Angeles 199 165 3858 0.0757 0.0288 2.7116 0.7239 0.1079 0.0542 0.1027 0.0418
London 668 367 8308 0.0855 0.0308 5.7011 0.8826 0.0488 0.0185 0.0609 0.0177
Portland 419 465 603 0.0713 0.0244 3.8773 0.7394 0.1186 0.0339 0.0640 0.0199
San Francisco 214 241 826 0.1036 0.0370 2.5045 0.6294 0.2732 0.0710 0.0943 0.0179
Seattle 296 202 635 0.0887 0.0353 2.9365 0.7968 0.1136 0.0464 0.1304 0.0456

and distance distribution of hotspots of three diverse cities,
namely, London, Portland, and San Francisco.

In Fig. 1b, the cumulative distribution functions (CDF) of
the angular coordinates of the hotspots (solid) are compared
to a uniform distribution F (x) = x+π

2π , x ∈ [−π, π) (black
dashed). We observed for each of the ten cities that the
angular distributions are not perfectly uniform with some
minor deviations due to city-specific geographic conditions like
water areas or parks, which caused hotspot-free spaces at the
corresponding angles. Nevertheless, still a high similarity to a
uniform distribution is visible.

For assessing the goodness of fit, we apply two standard
methods for comparing distributions7, namely, the maximum
absolute error, i.e., the Kolmogorov-Smirnov statistic D, and
the mean absolute error (mae), indicating how far the model is
from reality at most (D) and on average (mae), respectively.
The fifth column of Table I shows D values for fitting the
angular distributions with a uniform distribution. It can be
seen that all fittings have a rather high D due to particular
geographic characteristics of the different cities. For example,
the shape of the city of Austin contributed to a slightly elliptic
hotspot distribution causing the highest D value. However, the
mae values in column six show low values and indicate that
the angular distribution of hotspots in a city can nevertheless
be well approximated by a uniform distribution, which is
sufficiently accurate for practical applications (see below).

In Fig. 1c, the cumulative distribution functions of hotspots
(solid) are shown, i.e., the relative frequency of hotspots having
a distance to the city center smaller than d. In this case,
a high similarity to an exponential distribution F (x, µ) =
1 − exp(− x

µ ), x ≥ 0 (dashed) with mean µ can be observed.
Estimating the mean µ of the exponential distribution from the
hotspot data (cf. seventh column of Table I) in a maximum
likelihood sense, a good approximation is reached. As the
coefficients of variation cv in the eighth column indicate that
exponential fitting might not be perfectly accurate (cv ≈
1), we also compare to a more general gamma distribution
F (x, α, β) = γ(α,βx)

Γ(α) , x ≥ 0, whose parameters α and β can
be estimated from µ and cv .

The ninth and tenth column of Table I indicate D and
mae of the fitting of distance distributions of each city with
exponential distributions, while columns eleven and twelve
refer to the respective goodness of fit values for Gamma
distributions. The D values illustrate that the distributions

7http://www.mathworks.com/matlabcentral/fileexchange/
22020-goodness-of-fit--modified-/content/gfit2.m

are not perfectly exponential. For example, the highest D
value in San Francisco is caused by the high hotspot density
along the northeast waterfront, which cannot be accurately
reproduced by an exponential distribution (cv � 1). Again
for all cities, the generally low mae values indicate that yet
a good approximation is possible. It is also noteworthy that
the exponential fitting works well for cities of different sizes,
although small cities are more prone to inaccuracies caused
by geographical peculiarities. Fitting with the more general,
two parametric gamma distribution, in most cases a better
approximation in terms of D and mae can be reached. As
expected, the smaller the cv values, the better the goodness
of the gamma fitting compared to the exponential fitting. This
means, especially for cities with low cv (e.g., Austin or San
Francisco), the additional parameter of the gamma fitting helps
to decrease the D and mae values, and thus improves the
approximation of the actual distance distribution. The closer
cv to 1 (e.g., Berlin or London), the less the gain of using a
gamma distribution is visible.

All in all, after transforming the hotspot locations in polar
coordinates with respect to the city center, it could be observed
that the angular distribution can be decently approximated by
a uniform distribution, whereas the distance distribution can be
fitted by an exponential or gamma distribution. Next, hotspot
distributions with these characteristics can be created.

B. Generation of a Hotspot Distribution for a Generic City

First, the coordinates of the city center (ϕc, λc) (lati-
tude/longitude) have to be determined. Then, random hotspot
locations will be computed in polar coordinates by generating a
uniformly distributed angle θ, and a distance d, which follows
the desired exponential or gamma distribution. For example,
for a uniformly distributed angle and an exponential distance
distribution with mean µ, two random numbers (d, θ) can
be easily obtained by inverse transform sampling. Eq. 4 and
5 use the trigonometrical functions to transform the polar
coordinates (d, θ) back to latitude/longitude coordinates (ϕ, λ)
(in radians)5 taking into account the city center (ϕc, λc) and
the spherical Earth with radius rE :

ϕ = arcsin(sinϕc · cos
d

rE
+ cosϕc · sin

d

rE
· cos θ) (4)

λ = λc + atan2(sin θ · sin d

rE
· cosϕc, cos

d

rE
− sinϕc · sinϕ)

(5)

The limitation of this naive approach is that a circular
and possibly unlimited area will be covered with hotspots.
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(a) Original and generated WiFi coverage (single run).
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(c) Distance of random point to closest hotspot.

Fig. 2. Impact of models (exponential, gamma) and truncation to city limits (convex hull of hotspots) on generated hotspot distribution in San Francisco.

To create a hotspot distribution for a city with a given shape
(or any arbitrary area), additionally an accept-reject method
can be applied, accepting only hotspot locations within the
city limits. However, the rejection sampling leads to a trun-
cated distribution, which has different characteristics than the
modeled distribution. In Fig. 2a, we illustrate this effect for
the city of San Francisco. The top subplot shows the original
WiFi coverage (in blue) within the city limits (convex hull
of hotspots, black) assuming a WiFi range of 100m. In the
subplots below, the same number of hotspot locations were
generated using the fittings presented in Table I. Generating
hotspot distributions with the naive exponential (E) or gamma
(G) model places many hotspots outside the city limits (red
locations). This can be avoided by rejecting hotspot locations
outside the convex hull of the real hotspots resulting in
truncated exponential (Et) or truncated gamma (Gt) models.
Fig. 2b depicts the CDF of the distance d of a hotspot to
the center for the different generation approaches, showing
that the truncation leads to smaller distances than in reality.
This means, the model parameters need to be adjusted to
take the truncation into account. Fig. 2c shows the CDF of
the mean distance from a random point within the city to
the closest hotspot over 50 generated hotspot distributions.
This constitutes an exemplary application and can be used, for
example, to calculate coverage, signal strength, and handovers.
Here again, the impact of the truncation is visible. It can be
seen that the exponential models produce more realistic results,
which is due to the higher variance of the distances. This effect
could be observed for all ten investigated cities, therefore, we
infer that the exponential model is sufficient to create practical
hotspot distributions for truncated areas.

To sum up, we showed that a simple model can be used
to generate hotspot distributions for generic cities. Using a
uniformly distributed angle and an exponentially distributed
distance provides an easy generation of hotspot distributions
(only mean of distances is needed as parameter), which have a
good applicability and a high accuracy. To increase the accu-
racy of the generated distributions, it is not sufficient to only
improve the fitting of the angular/distance distributions, but
more sophisticated generation processes are needed, which also
take city shape and geographical peculiarities into account.

V. CONCLUSION

This work presented the characteristics of the distribution
of WiFi hotspot locations in cities. When looking at the polar

coordinates of the hotspots with respect to the city center, a
uniform distribution of the angle and an exponential or gamma
distribution of the distance could be observed. Thus, a simple
but accurate model of WiFi hotspot locations could be derived,
which can be used to create spatial distributions of WiFi
hotspots in arbitrary cities, e.g., for performance evaluation of
mechanisms that rely on the coverage and throughput of WiFi
hotspots in cities. In future work, additional characteristics
of hotspot locations have to be investigated, which could
necessitate more complex models.
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