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1 Introduction

Due to the rapid growth of social media in the last decade, many theoretical studies have
been focused on the growth dynamics of social networks (Jin et al. 2001). In such a social
network, individuals are connected to each other (e.g. friends in facebook, sender and re-
ceiver in mail networks) and there is an interaction between the individuals (e.g. exchanging
messages). Hence, beside the network topology, the interaction among individuals charac-
terize the social network. However, recent observations by Barnes and Andonian (2011)
indicate that many social networks are approaching a plateau of constant size, e.g. due to
logistic growth models and resulting upper population bounds like in Hoßfeld et al. (2011a).
In such a matured state, the dynamics of the network are approximately stationary in a sta-
tistical sense, meaning that the network topology as well as the probability for receiving and
sending messages do not change in the long-term limit.

The dynamics of a stationary state of a network is not uniquely given, rather there is a large
variety of possible realizations. For example, the three individuals shown in Fig. 1 may send
messages (a) randomly in both directions or (b) in clockwise direction. In both situations
the individuals send and receive messages at constant rate, meaning that the network is
statistically stationary. However, in the first case the dynamics is locally balanced between
pairs of users, while in the second case there is a directed current of messages flowing
clockwise through the system.

In the present work we introduce a new type of quantity, called entropy production, to char-
acterize the stationary properties of arbitrary social networks. In statistical physics this quan-
tity is frequently used as a experimentally accessible measure for the irreversibility of a
complex system dynamical system, see e.g. Tietz et al. (2006) and Andrieux et al. (2007).
More specifically, in physics thermally equilibrated systems are known to be invariant under
time reversal, i.e., watching a movie of the microscopic dynamics we would not be able to
decide whether the movie is running forward or backward. Obviously such a system cannot
exhibit any kind of directed currents because they would flow in opposite direction under
time reversal. This means that in thermal equilibrium all microscopic processes are statis-
tically undirected, obeying ’detailed balance’ in the jargon of statistical physics. Systems
out of equilibrium, however, do have directed currents, even if the dynamics is statistically
stationary. It turns out that such currents can only be maintained if they are actively driven
from outside, leading to a continuous increase of the entropy in the environment. Therefore,
by quantifying the entropy production in the environment, one can measure how strongly a
system is out of thermal equilibrium.

Here we show that the concept of entropy production can also be used in the completely
different context of communication networks. More specifically, we associate with each
pair of individuals i, j of a social network a quantity Hi j called entropy production, which
depends on the number of messages sent from i to j and vice versa. Of course this quantity
is not an entropy in the usual physical sense, it rather measures the directionality of the
information exchange and vanishes for perfectly balanced communication. Therefore, the
intuitive meaning of entropy production in the context of social networks is that of a measure
for the directionality of communication flow. As we will see, this measure can be defined
both globally and locally. For example, defining the entropy production of a node as the
sum over the entropy of all its links, one can identify nodes contributing preferentially to
balanced or unidirectional information transfer.
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The concept of entropy production requires to make certain assumptions about the dynamics
of the network. In particular, we ignore possible correlations between the messages by as-
suming that the individuals communicate randomly at constant rates. With this assumption
each message sent from node i to node j increases the entropy by

∆Hi j := ln
wi j

w j i
, (1)

where wi j and w j i are the rates for messages from i to j and in opposite direction, respec-
tively. In physics, this quantity can be interpreted as the minimal entropy produced by a
machine that keeps a nonequilibrium process running (Schnakenberg 1976; Schreiber 2000;
Andrieux and Gaspard 2004; Seifert 2005). In the present context it does not represent a
physical entropy, it rather characterizes the directionality of communication, for example,
by distinguishing the situations (a) and (b) in Fig. 1. This means that we use the term en-
tropy production to highlight the analogy to physical systems but not in the sense of a direct
correspondence.

Equation (1) is trivial to evaluate if the rates wi j and w j i are known. However, in realistic
networks with data taking over a finite time span T , only the number of messages ni j and
n j i exchanged between pairs of nodes are known. Although it is tempting to replace the
rates wi j by the relative frequencies ni j/T and to approximate the entropy production by
∆Hi j = ln ni j − ln n j i , it is easy to see that this approximation would diverge as soon as one
of the count numbers vanishes. Therefore, this article deals to a large extent with the question
how we can reasonably reconstruct the rates from the given number of messages. Bayesian
inference enables the computation of rates from observations which leads to non-vanishing
values (wi j > 0) even in the case that no messages were sent (ni j = 0), but only received
(n j i > 0) or vice versa (w j i > 0,n j i = 0,ni j > 0). Accordingly, the entropy production is
calculated and leads to finite values.

The remainder of this paper is structured as follows. Section 2 provides a brief overview
on existing social network measures and revisits related work in order to show that en-
tropy production fills a gap in characterizing social networks. Section 3 introduces variables
describing the observed data from a measurement campaign of a social network. Further, as-
sumptions on the network dynamics are summarized. Using these assumptions we define the
entropy production as a function of the (unknown) rates at which the individuals exchange
their messages. Applying a simulation model to construct arbitrary networks with given
properties and well-known rates, we show the need for introducing entropy production as a
new metric in Section 4, as it quantifies the social network characteristics differently than
existing metrics. An estimator of the unknown rates based on the observed measurement
data is then introduced by means of Bayesian inference. Section 5 shows the need to use

Fig. 1 Example of a stationary network with three users. (a) Each individual sends messages to randomly
selected neighbors, leading to a statistically balanced stationary state with vanishing entropy production. (b)
The individuals send messages to only one neighbor, generating a stationary but directed flow of information
with positive entropy production.
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Bayesian inference for computing the rates wi j instead of using measured frequencies ni j .
Section 6 presents appropriate choice of the prior distribution for small-world networks, in
which the number of messages follows a power-law distribution. Relevant parameters of the
prior distribution are calculated which finally allows computing the entropy production. The
general scheme is summarized for social networks manifesting small-world characteristics
on the number of messages. The general scheme is applied exemplarily to the R mailing list.
Finally, Section 7 concludes the work and gives an outlook on next steps in this research
direction.

2 Related Work on Social Networks, their Characteristics, and Common Metrics

In literature, various measures of the characteristics of complex networks exist. We briefly
revisit them in order to show qualitatively that entropy production fills a gap for measuring
the directionality of the information exchange and quantifying the balance of communica-
tion or interaction. The quantities introduced in literature analyze mainly the topology of
the graph itself by means of the adjacency matrix A with elements Ai j = 1− δ0,ni j using
the Kronecker delta δa,b . Extensions of several quantities exist for weighted networks. In
that case, the directed link connecting the nodes i and j is weighted by the message rate
wi j . Instead of A, the message rate matrixW is used. Thereby, beyond the topological ef-
fects, the metrics which allow to work on weighted networks give insights into the structure
of the message diffusion, too. Those metrics are to be analyzed with the network entropy
H for different network topologies and message exchange modelsW . Section 4 concerns
a quantitative analysis of those metrics with the entropy production for different network
topologies and message exchange modelsW , while Section 6.4 considers a real-world ex-
ample. In addition, recent work on the dynamical properties of networks from an entropic
viewpoint is revisited at the end of this section.

2.1 Principal Graph Characteristics

The basic quantities are the in- and out-degree of nodes corresponding to the number of
incoming and outgoing links of nodes. We observe a strong correlation of the node degree
with entropy production for the example of the R mailing list which will be discussed later
in Section 6.4. Nodes with a large number of outgoing links tend to produce less entropy
per message. Future work investigates for which kind of network topologies and message
exchange models those quantities are correlated. Other principal characteristics of nodes are
eccentricity and local clustering coefficient. Global network metrics are e.g. radius, diameter,
average path length, or assortativity coefficient. Those metrics can be extended to weighted
networks and need to be interrelated to entropy production per node and network entropy
production, respectively.

Social networks show heavy-tailed in- and out-degrees (e.g. Bird et al. 2006; Broder et al.
2000; Mislove et al. 2007). Futhermore social networks form communities which are ex-
hibited by a high clustering coefficient. Recent works aim at identifying those communities
efficiently (Vasudevan and Deo 2012) or in dynamic social networks (Gilbert et al. 2011).
As a social network evolves the effective diameter of the network shrinks because cross-
community links are formed which lead to a huge largest connected component. We use the
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Forest Fire model (Leskovec et al. 2005) to generate networks with those properties. This is
later described in detail in Section 4.

2.2 Centrality Metrics

Centrality metrics quantify the ’importance’ of nodes. Different variations exist like de-
gree, (random walk) closeness, information, betweenness, or Eigenvector centrality like
PageRank. Considering again the R mailing list, we observed a strong correlation between
entropy production per node Hi and e.g. betweenness centrality. Nodes in the social net-
work that have a high probability to occur on a randomly chosen shortest path between two
randomly chosen nodes have a high betweenness. Hence, those nodes are also responsible
for high entropy production in the network. However, node betweeness centrality is compu-
tationally expensive. Brandes (2001) proposes an approximation of weighted graphs in time
O(nm) + n2 log n for n vertices and m edges. Kourtellis et al. (2013) introduced a new graph
centrality index to reach a speedup gain of up to 6 orders of magnitude for large networks
while still allowing to identify the top central nodes properly. Beyond betweenness central-
ity, closeness measures how fast it will take to spread information from a single node to all
other nodes sequentially. In contrast, closeness centrality and entropy production revealed
no correlation which we will show in Section 6.4.

2.3 Symmetry Measures and Entropy Measures

Current developments introduce measures of symmetry and their relation with measures
like graph entropy (Garrido 2011). The graph entropy is defined as the intrinsic Shannon
entropy or information content of the node distribution quantifying the homogeneity of the
node importance. More specifically, networks with equally important nodes have a high
graph entropy, while networks with dominating hubs are characterized by a low graph en-
tropy. This entropy differs from the entropy production studied in the present work in that
the latter depends on rates of communication between the nodes, quantifying the asymmetry
of data transmission across links. Hence, graph entropy measures the amount of information
within the graph. Symmetry of complex networks means invariance of adjacency of nodes
under the permutations on the node set itself and a symmetry index is defined in Mowsho-
witz and Dehmer (2010). This concept is close to entropy production, however, symmetry
measures are defined on the network topology only. In a similar way, the symmetry based
structure entropy of complex networks (Xiao et al. 2008) quantifies the heterogeneity of a
network system concerning the automorphism partition of the node set into equivalent cells.
Thereby, the probability that a node belongs to the cell is used while message rates are not
part of this concept. Dehmer and Mowshowitz (2011) survey methods for measuring the en-
tropy of graphs and their applicability and present later a taxonomy to the measurement of
network complexity for a systematic interpretation of entropy based measures of graph com-
plexity (Mowshowitz and Dehmer 2012). The entropy based measures depend on particular
structural features, as the above mentioned graph entropy.
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2.4 Dynamical Properties of Networks from an Entropic Viewpoint

As a key concept, entropy production quantifies the dynamical properties of a network and
the flow of information. Kossinets and Watts (2006) shows on the example of email commu-
nication that average network properties appear to approach an equilibrium state, whereas
individual properties are unstable. To this end, a network time series is constructed from the
user interactions in terms of email exchange which allows to analyze network-level prop-
erties over time. In particular, the mean node degree, the fractional size of the largest com-
ponent, the average path length, and the clustering coefficient are calculated. Kossinets and
Watts found that averages of local network properties like clustering coefficient are more
stable than global properties like average shortest path length. Related to entropy produc-
tion, the convergence of those metrics supports our assumption that social networks reach
a statistically stationary state which was also demonstrated for the network of Wikipedia
authors by Hirth et al. (2012). Wang and De Wilde (2004) propose an email network model
which formulates the network topology as a random process which allows to study the dy-
namics of the process. In Zhu et al. (2006), analytical results show a number of steady state
properties on email exchange between nodes and the macroscopic networking behavior.
The influence of the network topology on the dynamics of spreading processes is investi-
gated on macroscopic but also on microscopic level in related work. Smilkov and Kocarev
(2012) study an epidemic model on graphs in which the dynamics of individual nodes is
described by a discrete-time Markov chain. Thereby numerical results are given for the En-
ron email network with respect to the reactive process and the contact process. As a main
result, it is shown that under certain circumstances local information of the topology, i.e.
without knowing the whole network, is sufficient to derive characteristics of the spreading
process. An interesting model based on interarrival times is provided by Mihaljev et al.
(2011) which allows to indirectly learn about the process of sending messages on networks
with unknown topologies. Entropy production utilizes also only local information of a node
about its neighbors and the message exchange with them in order to quantify globally the
balance of information flow in the network.

The dynamical properties of entropy in complex networks has recently drawn attention in
the research community. Gómez-Gardeñes and Latora (2008) analyze the entropy rate for
a dynamical process on a graph and in particular diffusion processes with node degrees as
local information by random walkers related to information flow in a social network. En-
tropy rate of the diffusion process is defined to capture the dynamics, i.e. the bias in the
random walker, and the graph topology. Therefore, entropy rate also allows to character-
ize complex networks. The design of random walks that maximize entropy rate on a given
graph is proposed by Sinatra et al. (2011). The goal is to use local information on the graph
only to construct the maximal-entropy random walk which has its application for example
in spreading information in a network. For quantifying the complexity of a system changing
in time, West et al. (2012) consider approximate entropy whose notion was introduced by
Pincus and Huang (1992). Thereby, the concept of approximate entropy is modified in order
to cope with networks generated by a dynamical process and West et al. find that approx-
imate entropy relates to the amount of information generated by the underlying dynamics.
The quantity entropy production is complementary to the approaches above and its relation
to entropy rate or approximate entropy is an interesting path for future work.
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3 Entropy Production: Definition and Model Assumptions

3.1 Definition

As outlined above, the entropy production is defined in such a way that each message sent
from node i to j produces an entropy of

∆Hi j := ln
wi j

w j i
. (2)

Since node i sends ni j messages to node j during the observation period, the total entropy
produced by messages i → j is given by ni j∆Hi j , while messages in opposite direction
produce the entropy n j i∆H j i . Adding the two contributions we obtain the link entropy

Hi j = ni j∆Hi j + n j i∆H j i = (ni j − n j i ) ln
wi j

w j i
. (3)

We chose Eq. (2) as a logarithmic ratio of rates because it complies with the usual defini-
tion of entropy production in statistical physics. The logarithmic ratio can be motivated as
follows. Firstly, a reasonable measure for the directionality of the traffic along a link should
increase linearly with the intensity of the mutual communication. As (ni j − n j i ) in Eq. (3)
is linear in the communication intensity, this means that ∆Hi j should be dimensionless and
asymptotically constant. Since rates carry the dimension 1/time, this suggests that ∆Hi j

should depend on the ratio of the forward and backward rate. Moreover, a measure of direc-
tionality should respond to the imbalance of message flow but not on the direction itself, i.e.
it should be invariant under links reversal i↔ j. Obviously, the logarithm in Eq. (3) is the
most natural function which obeys these requirements.

In statistical physics the logarithm has in addition a direct information-theoretic meaning as
it quantifies the amount of information needed to specify physical states in the environment.
In case of social networks this could be translated into the difference of information needed
to specify one of the messages in forward and in backward direction, respectively (not to
be confused with the unknown information content of the messages themselves). In the
present case, however, this information-theoretic interpretation is not needed and therefore
it is not required to use a logarithm. In fact, various other functionals may be also suitable
and should be studied in the future. However, the logarithm is simple and special in so far
as it responds only weakly to extreme rate asymmetries. Moreover, it behaves nicely under
Bayesian regularization, as will be discussed below.

As the entropy is symmetric (Hi j = H j i ) it can equally be attributed to the corresponding
nodes, allowing us to define an entropy production per node i by considering all N links of
node i

Hi =
1
2

N∑
j=1

Hi j (4)

as well as the entropy production of the total network

H =
∑
i

Hi =
1
2

N∑
i, j=1

Hi j . (5)
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3.2 Observed Data

Let us consider a social network of individuals communicating by directed messages (e.g.
emails, Twitter or Facebook messages). Suppose that we monitor M messages over a finite
time span, recording sender and receiver identifiers in a file. Such a data set can be repre-
sented as a graph of nodes (individuals) connected by directed links (messages) as depicted
in Fig. 2.

{wi j } =




0 0.3 0 0 2.0
0.5 0 0 0.5 0
0 0 0 3.0 0
0 0.7 0.2 0 1.5

0.2 0 0 1.5 0



, {ni j } =




0 0 0 0 5
1 0 0 1 0
0 0 0 4 0
0 1 1 0 3
0 0 0 2 0




Fig. 2 Example of a directed social network with N = 5 participants. It is assumed that node i sends messages
to node j randomly with the rate wi j . Observing the network for a finite time span the number of recorded
messages from i to j is ni j . In order to compute the entropy production, one has to estimate the unknown
rates wi j from the numbers ni j .

Enumerating the individuals in the list by i = 1 . . .N , let ni j be the number of messages sent
from i to j. These numbers constitute a N × N connectivity matrix which is the starting
point for the subsequent analysis. If at least one message is sent from i to j, the two nodes
are said to be connected by a directed link. Obviously, the number of recorded messages M
and the total number of directed links L are the following using the Kronecker delta δa,b .

M =

N∑
i, j=1

ni j , L =

N∑
i, j=1

(1− δ0,ni j ) (6)

Note that M ≥ L since two individuals can communicate several times during the observa-
tion period. The statistics of multiple communication is described by the probability distri-
bution

P(n) :=

∑N
i, j=1 δn,ni j

N (N − 1)
(7)

of the matrix elements ni j . In the present work we are particularly interested in social media
networks with a small-world topology, where this distribution follows a power law,

P(n) ∼ n−1−α . (8)

3.3 Assumptions on Stationary Network Dynamics

In a realistic social network the messages are causally connected and mutually correlated.
As this information is usually not available and requires semantic analysis of the messages,
let us consider the messages as uncorrelated instantaneous events which occur randomly like
the clicks of a Geiger counter. More specifically, we start with the following assumptions:
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– Stationarity: We assume that the size of the social network is approximately constant
during data taking. This means that the total number Ntot of participants in the system is
constant. This assumption is e.g. valid for networks following a logistic growth model
(Hoßfeld et al. 2011a). Note that Ntot may be larger than the actual number of partici-
pants N communicating during data taking.

– Effective rates: Messages are sent from node i to node j at a constant rate (probability
per unit time), denoted as wi j ≥ 0.

– Reversibility: If node i can communicate with note j, node j can also communicate with
node i. This assumption is typically true in social networks. Hence if wi j is nonzero,
then the rate in opposite direction w j i is also nonzero.

With these assumptions, the average number of communications from i to j is given by
〈ni j 〉 = wi jT ,where T denotes the observation time. It has to be noted that the assumptions
above can be relaxed at the cost of complexer derivations of the message rates from observed
measurements, see Section 6. For the sake of simplicity, throughout this paper we shall
assume that these assumptions are valid or at least approximately fulfilled.

4 Entropy Production vs. Existing Metrics: Example of ForestFire Graphs

The differences between entropy production and existing metrics for characterizing social
networks were qualitatively discussed in Section 2. To quantify the differences but also to un-
derstand similarities, arbitrary networks with given network characteristics and well-known
message rates are considered. The intention is to support the reader with the interpretation
of the entropy production metric and its relation to properties of a simple synthetic network
which can be easily understood. As a result, we found that for typical small world networks,
complex metrics like betweenness centrality can be approximated by entropy production
which is a strong outcome due to the computational effort for computing betweenness cen-
trality (Brandes 2001; Kourtellis et al. 2013). In the following, a simulation model for the
network topology and the message rates is introduced, before the numerical results are pre-
sented.

4.1 Simulation Model

In order to evaluate the relevance of entropy production for real networks and to compare
entropy production with existing online social network metrics, we need a graph model that
generates realistic online social network graphs. Online social network graphs have several
properties such as a degree power law, i.e. heavy tailed in- and out-degrees, communities,
a densification power law and a shrinking diameters. The densification power law describes
the evolution of the number of edges e(t) and nodes n(t) of the graph at time t

e(t) ∝ n(t)a , (9)

where a is an exponent that is generally between 1 and 2. As the network grows and gets
more dense, the effective diameter is shrinking. This enables small world phenomena to
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be present even in large networks. A model that produces graphs with these properties is
the Forest Fire Model which was first proposed in Leskovec et al. (2005). In literature,
there are also other topology models provided as for example by Sallaberry et al. (2013)
which allows to generate artificial social networks having community structures with small-
world and scale-free properties. Nevertheless, the aim of Section 4 is to illustrate on one
hand the differences between entropy production and other metrics and on the other hand to
illustrate the meaning of the entropy production metric. Therefore, we have used the Forest
Fire model as an example, as its properties are well researched and due to its simplicity to
get an impression about entropy production. Along the same line of argumentation, we have
used a simple message rate model of constant outgoing email traffic rate which is known
as equal contact model proposed by Zhu et al. (2006). In contrast, Section 6.4 provides
the analysis of the R mailing list as a real world example including correlations between
message rate and network topology.

4.1.1 Forest Fire Model

The Forest Fire model is based on a process that finds neighbors of new nodes by virally
burning through existing edges. The most basic version of the model is defined as follows. A
new node v forms an out-link to a random node w in the existing graph. Then it burns links
outward from w linking to the nodes with a certain probability p and recursively discovering
the linked nodes. Similar to a citation network where an author not only is interested in the
literature a paper A refers to but also in the papers that refer to paper A, in-links are also
burned backward with a certain probability pb in the same fashion as the out-links. For a
detailed description of the algorithm refer to the paper by Leskovec et al. (2005).

Such we obtain graphs with the desired properties. Highly-linked nodes can easily be reached
by new nodes during the discovering process, such heavy-tailed degrees are derived. Com-
munities emerge, cause every new node copies several neighbors of its ambassador. New
nodes form a lot of links near the community of the ambassador. During the burning process
they also form a few links beyond the community and significantly fewer links in remote
parts of the graphs. Such the densification power law is derived. Finally graphs generated
by the Forest Fire Model also exhibit a shrinking diameter as they grow with proper choice
of parameters.

For easy access and comparison with the synthetic social network graphs we generate ran-
dom graphs by creating an edge between each pair of nodes with probability p.

4.1.2 Message Rate Model

Neither the Forest Fire Model nor random graphs define rates on links. Furthermore the
generated graphs can include node pairs which have links only in one direction, which would
not allow the calculation of entropy production. Hence, we distinguish the structure obtained
by the graph generation models and the rates. Such we neglect the directions of the edges
in the generated graphs to obtain an undirected graph structure. To define rates for an initial
evaluation of the entropy production metric we assume limited capacity per user. Such we
set the total outgoing rate of each node to a constant c. The total outgoing rate is equally
divided among the (undirected) links of the node, such that
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∑
j∈V , i, j

wi j = c (10)

holds for each node i. Hence, we set the outgoing rate wi j on each link of node i to

wi j =
c∑

j∈V , i, j

. (11)

4.2 Numerical Analysis: Common Metrics for Characterizing the Social Networks

To find if the entropy production metric provides additional value for (social) network anal-
ysis, we simulate different networks and compare entropy production to existing network
metrics. Several metrics measure quantities of nodes in a graph. An overview is given in
Section 2. We compare entropy production against two centrality metrics, namely PageRank
and betweenness centrality. Another widely used metric that reflects the connectedness of
the neighborhood of a node is the clustering coefficient. PageRank was developed to rank
websites based on the link structure of the web. According to Moler (2011) PageRank is the
limiting probability that an infinitely dedicated random walker visits any particular page.
The random walker follows the links randomly according to the probabilities given by the
weights of the links. The stationary probability distribution of the websites being visited is
basically derived by the eigenvector v of the weighted adjacency matrixW with eigenvalue
λ = 1:

Wv = λv. (12)

This solution is extended such that the random walker jumps with a certain probability to a
random website to cope with dead ends. For further information refer to the literature, e.g.
Page et al. (1999).

The clustering coefficient of a node quantifies in how far the neighbors of a node are fully
meshed. If di is the degree of node i, di (di − 1) is the number of edges that could exist
among the nodes in the neighborhood of node i. The local clustering coefficient of node
i is then defined as the fraction of actual number of edges in the neighborhood of i and
di (di − 1). For details and a definition of the weighted clustering coefficient please refer to
Fagiolo (2007).

Another centrality measure is the betweenness centrality. The betweenness centrality of a
node v determines the number of shortest paths in the graph passing v. Let σst denote the
number of shortest paths from s ∈ V to t ∈ V . σst (v) is the number of shortest paths from
s to t that traverse some v. The length of a path is the sum of the weights of its edges. The
betweenness centrality for a node v is then defined as:

CB (v) =
∑

s,v,t∈V

σst (v)
σst

. (13)

For more details and a definition of weighted betweenness centrality refer to Brandes (2001).

Figure 3 shows the mean scores of graph metrics for each node sorted by decreasing node
degree. 20 runs were conducted with burning probability p from 0.05 to 0.95 resulting in
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(c) Betweenness Centrality

Fig. 3 Mean scores of graphs metrics in the Forest Fire model for each node sorted by decreasing node
degree. 20 runs were conducted with burning probability p from 0.05 to 0.95 depicted by the color.

very sparse graphs and dense clique-like graphs, respectively. Each of the lines represents
one burning probability depicted by its color. Figure 3(a) shows the mean scores of the
PageRank metric. Very sparse graphs show PageRank values independent of the node de-
gree. As the graphs get denser with increasing p, higher degree nodes show higher PageRank
scores. This is expected, since such nodes are visited more frequently by a random walker.
As p approaches 1 graphs get very dense, such the probability of a random walker hitting
high degree nodes decreases, resulting in less difference in the PageRank scores.

Figure 3(b) shows the mean scores of the clustering coefficient. For dense networks the
network consists of one big cluster resulting in a clustering coefficient independent of the
node degree. If we do not consider edge weights the clustering in a fully meshed network
would be 1 for each node. However, we calculate values dependent on the edge weights,
which tend to be smaller for dense networks. For the same reason the cluster coefficient
increases for sparse networks. Since the edge weights are indirect proportional to the node
degree, the weighted clustering coefficient increases with the degree rank. Very low degree
nodes in sparse graphs which might not be part of a clique show again lower clustering
coefficients.

Figure 3(c) shows the mean scores of the betweenness centrality. As expected the between-
ness centrality decreases with the node degree, since high degree nodes are located centrally
in the graph. If the graph gets denser central high degree nodes get less important, because
the number of shortest paths connecting nodes without traversing central high degree nodes
increases. In a very dense graph a node v only is part of a few shortest paths in the graph.
The length of a path is the sum of the weights of its edges. If node v has low degree and
therefore high edge weights, there might be even shorter paths without v that connect the
direct neighbors of v. Hence, in this case v does not lie on any shortest path, resulting in
betweenness centrality of 0. Thus the log-log-plot in Figure 3(c) shows no value.

4.3 Numerical Analysis: Entropy Production

In the previous section we saw how existing network metrics rank nodes in Forest Fire
networks with varying density. Here we investigate entropy production as a new metric and
compare it to the existing metrics. Figure 4 shows the mean scores of the entropy production
metric dependent on the degree rank for Forest Fire and random graphs of different density.
The mean scores of the entropy production metric in the Forest Fire graph are depicted
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Fig. 4 Mean scores of the entropy production metric for Forest Fire and random graphs dependent on the
degree rank. 20 runs were conducted with parameter p varying from 0.05 to 0.95 depicted by the color.

in Figure 4(a). In Forest Fire graphs with equal node rates low degree nodes tend to have
lower entropy production. High degree nodes have many links with low outgoing rates. Each
neighbor having less links and therefore higher rates contributes to the entropy production
of the high degree nodes. Thus high degree nodes achieve high entropy production scores.
On the other hand very low degree nodes also show high entropy production scores. Low
degree nodes have high outgoing rates. If they are connected to nodes with high degree, the
entropy production on the links is also high. Here the high value stems from the high entropy
production of single links.

The same relation of entropy production and node degree can be observed for random net-
works, cf. Figure 4(b). Furthermore, in the random graph the entropy production is corre-
lated with the sparsity of a the graph. If the graph is fully meshed, the entropy production is
zero, since in our simulation model the rates are then equal for all links and all neighbors, re-
sulting in no entropy being produced. If the graph gets sparser hub nodes with higher degree
than the nodes in their neighborhood exist with higher probability that contribute to entropy
production, as explained above. The entropy production scores in the random graph are at
least one magnitude lower than in the Forest Fire graph. This can be explained by the fact,
that the node degrees in the random network follow a binomial distribution with mean p · N
with N nodes in the network. Hence, the difference between degrees and rates of neighbored
nodes tend to be lower than in the network with heavy-tailed node degree distribution. This
leads to less entropy production of the links and nodes in the random network compared to
the Forest Fire network.

To show the difference between entropy production and the existing metrics we compare the
metrics in Forest Fire graphs with fixed burning probability p = 0.45. Figure 5 shows the
mean score of the normalized metrics dependent on the entropy production rank. Between-
ness centrality seems to have a high correlation with entropy production for nodes that have
a high rank. For low rank nodes the value of betweeness centrality fluctuate a lot which let’s
assume that the scores differ for these nodes.

Clustering coefficient and entropy production seem to be negative correlated. In highly clus-
tered regions node degrees are similar, leading to similar rates and low entropy production
scores. Bridge builders that connect different possibly distinct communities show high en-
tropy production but low clustering coefficient.
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PageRank and entropy production show a positive correlation. The PageRank scores only
have a slight gradient compared to entropy production. Such we can identify a point of
interception after which PageRank scores are higher than entropy production. This suggests
to take a closer look at the correlation between entropy production and the existing metrics.

4.4 Correlation between Entropy Production and Existing Social Network Metrics

To further study the similarity of entropy production to the existing metrics we investigate
the correlation between the entropy production metric and existing metrics. Figure 6 shows
the correlation of entropy production with the existing metrics for a fraction of x percent
of nodes with highest entropy production scores. For the sake of clarity the results are only
plotted for p in range [0.3,0.75].

Figure 6(a) shows the correlation of entropy production with the PageRank score, dependent
on the top nodes according to entropy production metrics. PageRank shows low correlation
for sparse graphs with low burning probability p. The correlation increases above 0.5 as the
graphs get denser, but drops below 0.5 for very dense graphs again. Hence, dependent on
the density of the graph PageRank and entropy production are correlated and rank scores
similarly or are uncorrelated. This shows that entropy production offers additional value to
identify and rank nodes in complex networks.

Figure 6(b) shows the correlation of entropy production with the clustering coefficient, de-
pendent of the percentage of nodes with highest entropy production. As seen in the previous
Section 4.3 the clustering coefficient is negative correlated with entropy production for nodes
with high entropy score in graphs with p < 0.6. The correlation is less than 0.5 if we look
at more than the top 10% of nodes with highest entropy production and can argue that the
metrics are uncorrelated for these subgraphs.

Figure 6(c) shows the correlation of entropy production with the betweenness centrality met-
ric for the top x-% of nodes with highest entropy production. In the previous section 4.3 we
found that betweenness centrality has a high correlation with entropy production in a Forest
Fire graph with burning probability p = 0.45. As depicted in Figure 6(c), entropy produc-
tion and betweenness centrality are correlated for sparse graphs with burning probabilities
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Fig. 5 Normalized score of common metrics dependent on the entropy production rank. Normalized mean
value of 20 Forest Fire networks with fixed burning probability p = 0.45.



On the Computation of Entropy Production in Stationary Social Networks 15

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

ratio of top nodes wrt. H
i
 (%)

co
rr

el
at

io
n 

co
ef

fic
ie

nt

 

 

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

p

(a) PageRank

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

ratio of top nodes wrt. H
i
 (%)

co
rr

el
at

io
n 

co
ef

fic
ie

nt

 

 

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

p

(b) Clustering Coefficient

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

ratio of top nodes wrt. H
i
 (%)

co
rr

el
at

io
n 

co
ef

fic
ie

nt

 

 

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

p

(c) Betweenness Centrality

Fig. 6 Correlation of entropy production with common metrics for nodes with highest entropy production
scores. Correlation has been calculated for Forest Fire graphs with burning probability p = {k · 0.05|k =

6, 7, ..., 15}.
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Fig. 7 Correlation of entropy production with existing metrics dependent on the graph density. Mean corre-
lation together with 95% confidence intervals have been calculated for 20 Forest Fire and random networks.

p < 0.5. As the graphs get denser the correlation remains only for the entropy production
nodes with high rank. For dense graphs with p > 0.7 betweenness centrality and entropy
production are uncorrelated.

Hence, the correlation of entropy production with existing metrics in Forest Fire graphs de-
pends heavily on the density of the graph. Figure 7 shows the correlation of entropy produc-
tion with common metrics dependent on the graph density, given by parameter p. For each
p the mean correlation together with 95% confidence intervals have been calculated for 20
Forest Fire and random networks. Figure 7(a) shows the correlation of entropy production
for Forest Fire graphs with increasing density. Dependent on the density entropy production
is correlated with existing metrics. For instance betweenness centrality and the node degree
show high correlation with entropy production if p is in the range p = [0.3,0.45]. Interesting
is, that if p is in that range most realistic networks are generated. Furthermore, for such re-
alistic networks PageRank is uncorrelated, whereas it is correlated with entropy production
for slightly denser graphs. The clustering coefficient is correlated with entropy production
only for very dense graphs. For very dense graphs the node degree is also correlated with
entropy production but negatively. Figure 7(b) shows the correlation of entropy production
for random graphs with increasing density. Except of betweenness centrality entropy pro-
duction is uncorrelated with the existing metrics independent of the density of the random
graph, because there is no structure in the graph. Betweenness centrality is correlated with
entropy production in random networks for sparse graphs. The correlation decreases with
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the graph density. This depends on the fact that for increasing p the weighted betweenness
centrality approaches 0 for more an more nodes, as described in Section 4.2.

All in all we find that entropy production offers additional value to rank nodes of complex
networks compared to the existing social network metrics, we see the need for entropy pro-
duction as new metric.

The correlation of entropy production and betweenness centrality in some especially real-
istic networks still has to be understood and might help to develop improved algorithms to
identify central nodes.

5 Naive Estimate vs. Bayesian Inference

In real networks, the rates for messages between nodes are unknown and have to be es-
timated from measurements over a certain time period. We show the need for Bayesian
inference instead of naïve estimates of those rates, but highlight that for large measurement
campaigns over a sufficient time period (or number of messages) the results based on naïve
estimate are close to the results from Bayesian inference.

5.1 Naïve Estimate

The entropy production depends on the message numbers ni j and the rates wi j . While the
numbers ni j can be determined directly from the given data, the rates wi j are usually not
known in advance. Of course, in the limit of infinite observation time the relative frequencies
of messages converge to the corresponding rates, i.e.

wi j = lim
T→∞

ni j
T
. (14)

For finite observation time the count numbers ni j are scattered around their mean value
〈ni j 〉 = Twi j . Therefore it is tempting to approximate the entropy production by replacing
the ratio of the rates with the ratio of the relative frequencies, i.e.

Hnaive
i j ≈ (ni j − n j i ) ln

ni j
n j i

. (15)

However, this naïve estimator is useless for two reasons. Firstly, the nonlinear logarithm does
not commute with the linear average and is thus expected to generate systematic deviations.
Secondly, in realistic data sets there may be one-way communications with ni j > 0 and
n j i = 0, producing diverging contributions in the naïve estimator (15). However, observing
no messages in opposite direction does not mean that the actual rate is zero, it only means
that the rate is small. In the following we suggest a possible solution to this problem by
using standard methods of Bayesian inference, following similar ideas recently addressed in
a different context (Zeraati et al. 2012).
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5.2 Bayesian Inference

As the messages are assumed to occur randomly and independently like the clicks of a
Geiger counter, we expect the number of messages n for a given rate w to be distributed
according to the Poisson distribution

P(n|w) =
(Tw)ne−Tw

n!
, (16)

where T is the observation time. But instead of n for given w, we need an estimate of the
rate w for given n. According to Bayes formula (Box and Tiao 1973) the corresponding
conditional probability distribution is given by the posterior

P(w |n) =
P(n|w)P(w)

P(n)
, (17)

where P(w) is the prior distribution and

P(n) =

∫ ∞

0
dwP(n|w)P(w) (18)

is the normalizing marginal likelihood. The prior distribution expresses our belief how the
rates are statistically distributed and introduces an element of ambiguity as will be discussed
below. Having chosen an appropriate prior the expectation value 〈lnw〉 for given n reads

〈lnw〉n =

∫ ∞

0
dw lnwP(w |n) . (19)

This allows us to estimate the entropy production of the directed link i→ j by

Hi j ≈ (ni j − n j i )
[
〈lnw〉ni j − 〈lnw〉n j i

]
. (20)

As we will see, this estimator does not diverge if n j i = 0.

5.3 Difference: Naive Estimate vs. Bayesian Inference

In the previous section we described a naïve estimate Hnaive of the entropy production
using the relative frequencies of messages. The naïve estimator diverges, if we count a finite
number of messages ni j from i to j in the observation period in one direction but count n j i =

0 messages in the opposite direction. To cope with this problem we set n j i := ε assuming
that a small number of messages ε > 0 was observed in the opposite direction. Such ni j

n j i
is a

finite value, making sure that Hnaive
i j does not diverge.

To compare the naïve estimate with Bayesian inference, we conduct another experiment
using Forest Fire and random graphs. We use the graphs with fixed burning probability
p = 0.45 and use fixed node capacity and equal outgoing rates wi j = wi as in Section 4.

We simulate an observation of the communication in these networks by generating messages
according to the edge weights over a given period of time M . We assume that a node i sends
a message with probability wi in each time step t = 1,2,...,M . Such the number of messages
sent by a node with outgoing link rates wi over the period of time M follows a binomial
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distribution with parameters M and wi and mean M ·wi . Such for each run of the simulation
we draw a random number X ∼ B(M,wi ) for each link i j that follows a binomial distribution
according to its rate wi j . If X is greater than zero we set ni j = X , otherwise we set ni j = ε .

We calculate the naïve estimates Hnaive
i j according to equation Eq. (15). Figure 8 shows

the the results of a Forest Fire graph and a random graph with p = 0.45. To investigate
the impact of the length of the observation period, we simulate the periods M = 100 and
M = 1000. The length of the simulation period is depicted by the color. Furthermore we
try to identify the impact of ε on the estimate. Figure 8(a) depicts the naïve estimate of the
entropy production Hnaive for each node in the Forest Fire graph dependent on the rank of
the entropy production derived by Bayesian inference. Regardless of ε and the observation
period, the naïve estimate tends to decrease with the entropy rank. That means, that Hnaive

is a useful estimate for the entropy production in Forest Fire like networks. Figure 8(b)
shows the same results for random graphs. Obviously in random networks the estimator
does not work, since mean values of Hnaive seem to be independent from the entropy rank.
If we look at the Forest Fire graph and compare a short observation period M = 100 with a
long observation period M = 1000 we can see that the naïve entropy production scores lie
closer together and that the estimates fluctuate less for high entropy nodes. That means that
the accuracy of the estimator can be increased if the observation period is extended.

To further investigate the impact of ε on the naïve estimate and to compare it to the Bayesian
inference, we calculate the absolute difference of the naïve estimate and the Bayesian infer-
ence for a short observation period M = 10 and varying ε = {1,10−1,10−6}. Figure 9 shows
the results for (a) a Forest Fire graph and (b) a random graph with fixed p = 0.45. One would
expect that the difference of the estimate increases if we use a large ε , since we use a relative
large value for a rate that is expected to be close to zero. But that is not the case. The results
for the random graph show exactly the contrary behavior, the absolute difference increases,
while ε decreases. This can be explained by the fact that it frequently happens that in the
short observation period no message is recorded, although it has a decent rate. Such, ε = 1
would be the best estimate. Furthermore the quotient ni j

ε can get very large for small ε ,
leading to a large difference if no message is recorded. Why the absolute difference first
decreases with epsilon for values ε < 1 but then gets higher for very small ε = 10−6 still has
to be cleared. The probability that no message is recorded in the observation period depends
on the message rate wi and the length of the observation period M is P(X = 0) = (1−wi )M .

6 Retrieving Weights from Measurements on the Example of Small World Networks

6.1 Choice of the Prior Distribution in Bayesian Inference

The prior should be as much as possible in accordance with the available data. In the example
to be discussed below, where we investigate a small-world network with message numbers
distributed according to Eq. (8) with an exponent α > 1, it would be natural to postulate
a power-law distribution of the rates P(w) ∼ w−1−α . Since such a distribution can only be
normalized with a suitable lower cutoff, a natural choice for the prior would be the inverse
gamma distribution

P(w) =
βαw−α−1e−β/w

Γ(α)
, (21)
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Fig. 8 Naïve estimate of the entropy production dependent on rank of actual entropy production. Comparison
of a short observation period M = 100 with a long observation period M = 1000 with different ε in a Forest
Fire and a random graph with fixed p = 0.45.
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Fig. 9 Absolute difference of the naïve estimate for entropy production for a short observation period with
M = 10. The absolute difference is calculated for different ε = {1, 10−1, 10−6 } in a Forest Fire and a random
graph with fixed p = 0.45.

where the parameter β plays the role of a lower cutoff for the rate w. With this prior distri-
bution the integration can be carried out, giving the posterior

P(w |n) =
(β/T )

α−n
2 wn−α−1e−Tw−

β
w

2Kn−α (z)
, (22)

where Kν (z) is the modified Bessel function of the second kind and z = 2
√
βT . Inserting

this result into Eq. (19) we obtain an estimate of lnw for given n, namely

〈lnw〉n =
1
2

ln
β

T
+

K (1,0)
n−α (z)

Kn−α (z)
, (23)

where K (1,0)
ν (z) = ∂

∂ν Kν (z). The estimator for the entropy production is given by

Hi j ≈ (ni j − n j i )
[K (1,0)

ni j−α (z)

Kni j−α (z)
−

K (1,0)
n j i−α (z)

Kn j i−α (z)

]
. (24)
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6.2 Estimating the Cutoff Parameter z = 2
√
βT

Eq. (23) depends on the exponent α, which can be obtained from the distribution of messages
per link, and the lower cutoff β, which can be determined as follows. On the one hand, the
probability to have no link between two nodes for a given rate w is 1− P(0|w). Therefore,
the total number of links L can be estimated by

L ≈ Ltot

∫ ∞

0
dw

(
1− P(0|w)

)
P(w) = Ltot

(
1−

2(T β)α/2

Γ(α)
Kα (2

√
T β)

)
. (25)

Here Ltot = Ntot(Ntot − 1) is the unknown total number of potential links in the stationary
network which may exceed the actual number of links L established during the finite obser-
vation time T . On the other hand, it is obvious that the total number of messages M can be
estimated by

M ≈ Ltot

∞∑
n=0

n
∫ ∞

0
dwP(n|w)P(w) = Ltot

T β
α − 1

. (26)

This relation can be used to eliminate Ltot, turning Eq. (25) into

L z2

4M (α − 1)
≈ 1−

2(z/2)α

Γ(α)
Kα (z) . (27)

For given M,L,α this approximation interpreted as an equation allows us to numerically
determine z = 2

√
βT .

6.3 Summary of the Procedure

The procedure to calculate the entropy production can be summarized as follows.

1. In the given data set of M messages, identify all participants (nodes) and label them
from 1,. . . ,N .

2. Determine the numbers ni j how often a message is sent from i to j and count the
number L of nonzero entries (links) in the matrix {ni j }.

3. Plot a histogram of the numbers ni j . If it exhibits a power law P(n) ∼ n−1−α esti-
mate the exponent α.

4. Solve Eq.(27) numerically for z.

5. Compute the numbers χn = K (1,0)
n−α (z)/Kn−α (z) .

6. Associate with each directed link i → j the entropy production Hi j = (ni j −
n j i )( χni j − χn j i ).

7. Compute Hi and H according to Eqs. (4) and (5).
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6.4 Real World Example: R Mailing List Archive

To demonstrate the concepts introduced above, we analyzed the mailing lists archive for
the programming language R (R Mailing Lists 2013), recording senders and receivers of all
messages over the past 15 years.

6.4.1 Network Characteristics of R Mailing List Results

In this mailing list N = 23462 individuals (nodes) have exchanged M = 168778 directed
comments (undirected activities like opening a new thread are ignored). The connectivity
matrix ni j has L = 114713 nonzero entries (links). Their statistical distribution shown in
Fig. 10 confirms a small-world topology with α ≈ 2. Interestingly, the node degree dis-
tribution of outgoing and incoming links in Fig. 10(b) seems to exhibit slightly different
exponents. A similar phenomenon was observed some time ago in email communication
networks (Ebel et al. 2002) with an in-degree and out-degree power-law exponent of 1.49
and 2.03, respectively. In a later work, Bird et al. (2006) provides similar result on the node
degree for the email social network on the Apache HTTP server project. The in-degree
and out-degree distribution show typical long-tailed, small world characteristics. In general,
Mislove et al. (2007) analyzes different social networks including Flickr, YouTube, and Live-
Journal and they show behavior consistent with a power-law network. However, social net-
works show much stronger correlation between in-degree and out-degree than Web graphs.
Broder et al. (2000) consider the connection of web sites and also observe a power-law of
in-degree and out-degree with an exponent of 2.1 and 2.72, respectively. Thus, in-degree
and out-degree powerlaw exponents differ significantly, while the study from Mislove et al.
(2007) for social networks shows that they are quite similar. Thus, the distribution of outgo-
ing links and incoming link is similar, while in the web the incoming links are significantly
more concentrated on a few high-degree nodes than the outgoing links.
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Fig. 10 (a) Probability Pr (X > ni j ) that a directed link i → j carries more than ni j messages. The data
is consistent with a power law P(ni j ) ∼ n−3

i j . (b) Probability Pr (X > ki ) that a node i is connected with

more than ki outgoing or incoming links. For incoming links, it is P(ki ) ∼ k−2
i .
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From that perspective, the network characteristics of the R mailing list under investigation
here as real-world example appears as a typical social network. The correlation between the
in-degree and the out-degree per node is very strong with 0.949, see Table 1 which was also
observed by Bird et al. (2006) (0.971) for the Apache HTTP server project mailing list.

The R mailing list leads to a very sparse graph which is quantified in terms of density
measuring how close the network is to complete. A density value of 1 describes a complete
graph with all possible edges, however, the R mailing list leads to 2.084 ·10−4. The diameter
of the network is 9 and the average path length is 3.256. The average clustering coefficient
being computed on the directed R mailing list graph with message rates as link weights
is 0.272 which is inline with the results from Chen et al. (2006) who derived a value of
0.267 for the W3C mailing list archive. Those results clearly emphasize the small world
characteristics of the mailing lists. From the power-law exponent of the node degree, the
corresponding parameters for a comparable Forest Fire graph can be estimated according to
the results given by Leskovec et al. (2005). For the R mailing list, we obtain roughly p = 0.4
and a = 2 which indicates a densifying graph with slowly decreasing diameter.

The results of the synthetic graphs in Section 4 showed for sparse graphs and values of
p < 0.5 a high correlation between betweeness centrality and entropy production per node.
Therefore, we also expect this result for the R mailing list which is discussed in Sec-
tion 6.4.2.

Beside the network topology, the message rates between users describe the activity in the
network and determine entropy production. We have analyzed the correlation between the
node degree di and the message rates for all nodes i which is 0.996 and 0.972 for incoming
and outgoing messages, respectively. In contrast to the simplistic model in Section 4 used
for illustration, we observe now strong correlations between the message rates and the net-
work topology in the real-world example. Similiar to Bird et al. (2006), we als see a strong
dependency between the number of messages sent and the number of different users re-
sponding to them. As a result, we observe a correlation coefficient of 0.933. As an important
characteristic of the message dissemination we take a closer look whether the messages of
a user are equally distributed over all links to neighbors. Figure 11 shows the complemen-
tary cumulative distribution function (CCDF) of the message rate for any node’s links. To
be more precise, for each node i, we consider the message rates X on all links to i’s neigh-
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Fig. 11 For each node i, we consider the message rates on the links to neighbors and compute the mean
message rate E[X ] per link and the coefficient of variation cX . We can observe strong deviations of the
message rates.
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bors and calculate the average message rate E[X] per link and the coefficient of variation
cX over those links. It can be seen in Fig. 11 that there are many nodes with the minimum
message rate E[X] = 1. The minimum value occurs as there is at least one message required
to establish a link between two users. On the other hand, there are a few users accounting
for the bulk of messages sent or received which is also a typical phenomenon in such small
world networks (Bird et al. 2006). The heterogeneity of a node’s message dissemination to
its neighbors is indicated by the coefficient of variation cX in Fig. 11. For 37.87 % of all
nodes, there is only a single neighbor, i.e. a node degree of 1, and therefore no variation
in the message rate, i.e. cX = 0. The large values of cX show that there are strong differ-
ences in the communication of a user with its neighbors and that the total message rate per
user is rather heterogeneously split. Therefore, we expect large differences of the entropy
production which quantifies those dynamical properties and user interactions.

6.4.2 Entropy Production in R Mailing List

Since the entropy production of a link Hi j depends on two integers ni j and n j i , the entropy
production Hi j produces a discrete set of values. The upper panel of Fig. 12 shows how
these values are distributed and how often they occur. As can be seen, the entropy produc-
tion varies over five orders of magnitude and is distributed irregularly with count numbers
ranging from 1 to 105.

Let us now turn to the question how the node entropy Hi = 1
2
∑N

j=1 Hi j is correlated with the
number of outgoing and incoming messages nout

i =
∑

j ni j , nin
i =

∑
j n j i .Since the entropy

production is expected to grow with the number of messages, it is reasonable to define the
node entropy production per message

hi :=
Hi

nout
i + nin

i

. (28)

Figure 13 shows how the entropy production per node is distributed depending on the num-
ber of sent and received messages. As expected, the entropy is minimal if these numbers
coincide. Plotting the entropy production of a node versus the difference of outgoing and
incoming messages ∆ni = nout

i − nin
i one finds again an asymmetric distribution (see right

panel). This indicates that nodes with a large number of outgoing links tend to produce less
entropy per message than individuals who preferentially receive messages.
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Fig. 12 Upper panel: Histogram of link entropy Hi j . Lower panel: Histogram of node entropy Hi .
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Fig. 13 Left: Average entropy production per node represented by a continuous color scale in a two-
dimensional plane spanned by the number of incoming and outgoing messages. Right: Average entropy pro-
duction of a node (black) and the same data divided by the total number of incoming and outgoing messages
(red) as a function of the difference between outgoing and incoming messages.

Due to the definition of entropy production, there seems to be a strong correlation between
∆ni and Hi which is however not valid in general. For a fixed value of ∆ni , the entropy
production is determined by the factor ln wi j

w j i
, i.e., the absolute number of incoming and

outgoing messages impacts Hi j . Nevertheless, for the provided R mailing data, we observe
a clear relationship between ∆ni and the entropy production per node Hi . In particular, the
correlation coefficient is very high with 0.940.

We have investigated additional correlations between Hi and other node metrics which are
summarized in Table 1 (column ’corr. with Hi ). As a result, very high correlation coefficients
between different centrality measures and entropy production are observed. For example,
betweeness centrality and Hi lead to a Pearson’s linear correlation coefficient of 0.940. Due
to the properties of the R topology, this was an expected result according to Section 4.
However, it has to be noted that the real message rates between nodes are now taken into
account which are strongly varying, see Figure 11, in contrast to the equal contact model for
message rates in Section 4. We conclude that for typical small world networks like the email
social network we observe a strong correlation. The fast computation of entropy production
in O(n) allows therefore to approximate centrality measures like PageRank or betweenness
centrality. Approximation by Brandes (2001) to compute betweeness centrality of weighted
graphs requires time O(nm) + n2 log n for n vertices and m edges. Entropy production also

Table 1 Pearson’s linear correlation coefficient of entropy production Hi , out degree dout
i , and in degree din

i
with other metrics.

node metric corr. with Hi corr. with dout
i corr. with din

i

in degree 0.9173 0.9492 1.0000
out degree 0.9591 1.0000 0.9492
degree 0.9575 0.9963 0.9726
eccentricity 0.0525 0.0778 0.1214
closeness centrality 0.0390 0.0608 0.0969
betweenness centrality 0.9804 0.9524 0.9001
pagerank 0.9404 0.9499 0.9615
eigenvector centrality 0.6548 0.7065 0.8573
clustering coefficient -0.0227 -0.0393 -0.0014
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outperforms novel approaches as suggested by Kourtellis et al. (2013) in order to identify
high betweeness centrality nodes in large scale networks. Therefore, entropy production
may improve existing applications e.g. on real-time monitoring of social networks or on the
identification of leaders or spammers in social networks (Fazeen et al. 2011).

7 Conclusions

In the current Internet, social networks like Facebook gain more and more popularity and at-
tract millions of users. In a social network the users are connected to each other and as a key
feature social media platforms allow interactions between users like exchange of messages.
In complex network research, the majority of existing quantities analyze the structural prop-
erties of the emerging network topology and the growth dynamics, respectively. For social
networks, however, beyond the network topology the interaction among individuals needs
to be characterized. Further, the dynamics of a stationary state of a social network is not
uniquely given, rather there is a large variety of possible realizations. Hence, there is a gap
in describing dynamical properties of social networks in stationary conditions, i.e., when
the network topology as well as the probability for receiving and sending messages do not
change in the long-term limit. Inspired from statistical physics, we introduce a quantity
called entropy production to characterize the stationary properties of arbitrary social net-
works. The entropy production measures the directionality of the information exchange and
vanishes for perfectly balanced communication. Defining the entropy production of a node
as the sum over the entropy of all its links, one can identify nodes contributing preferentially
to balanced or unidirectional information transfer. Hence, entropy production is a valuable
measure for link and node analysis and rating and can be used to detect hidden structures
and interactions in networks. As first major contribution, we find that entropy production
offers additional value to rank nodes of complex networks compared to the existing social
network metrics. In particular, we found a high correlation of entropy production and be-
tweenness centrality for especially realistic networks that may allow a fast computation and
identification of central nodes. The second major contribution describes a procedure how
to compute entropy production for measurements obtained from real networks by taking
into account Bayesian inference and to which degree naïve estimates can be used for close
approximation.

Since the application of entropy production is not limited to social media networks, but
can be used for communication networks or interaction graphs in general, it can be applied
for a variety of different purposes like anomaly detection (Bilgin and Yener 2010), leader
and spammer detection in communication and social networks (Fazeen et al. 2011), but
also characterization of traffic flows in the Internet, e.g. for BitTorrent swarms (Hoßfeld
et al. 2011b). Future work addresses the application of entropy production to such use cases
but also to analytically derive the interdependency between the quantity with centrality or
symmetry measures for various network topologies and message exchange models.
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Appendix: Notion of Variables

variables describing the measurement data
T measurement period over which messages between individuals are recorded

ni j number of messages sent from i to j during time T
N total number of individuals, i.e. nodes in the graph, communicating during T
M total number of recorded messages, i.e. directed link, M =

∑N
i, j=1 ni j

δa,b Kronecker delta defined by δa,b =



1 a = b
0 a , b

L total number of directed links, L =
∑N

i, j=1 1− δ0,ni j

nout
i number of outgoing messages from node i, nout

i =
∑N

j=1 ni j
nin
i number of incoming messages to node i, nin

i =
∑N

j=1 n j i

dout
i outgoing degree of node i

din
i incoming degree of node i

di degree of node i
∆ni difference of outgoing and incoming messages of node i
P(n) probability that n messages are sent on a link, P(n) =

∑N
i, j=1 δn,ni j/N (N−1)

A adjacency matrix with matrix elements Ai j = 1− δ0,ni j

variables describing entropy production
wi j message rate from i to j estimated by measured ni j over T
W rate matrix with matrix elementsWi j = wi j

∆Hi j amount of entropy increased for each message sent from i to j, ∆Hi j = ln wi j

w j i

Hi j entropy production per link, Hi j =
(
ni j − n j i

)
ln wi j

w j i

Hi entropy production per node i, Hi = 1
2
∑N

j=1 Hi j

H entropy production of total network, H =
∑N

i=1 Hi

hi node entropy production per message, hi =
Hi

nout
i +nin

i

variables for estimating message rates
P(w |n) posterior distribution of message rates w conditional on observed messages n
P(w) prior distribution of message rates; assumed to follow a power law in social net-

works with P(w) ∼ w−1−α ; normalization with suitable lower cutoff leads to in-
verse gamma distribution P(w) =

βα

Γ(α)w
−α−1e−β/w

α shape parameter of the inverse gamma distribution
β lower cutoff parameter for the rate w concerning inverse gamma distribution

P(n) normalizing marginal likelihood
〈lnw〉n expectation value for given n, 〈lnw〉n =

∫ ∞
0 dw lnwP(w |n)

Kν (z) modified Bessel function of the second kind and z = 2
√
βT


