
IEEE Communications Magazine • June 20142 0163-6804/14/$25.00 © 2014 IEEE

Michael Jarschel, Thomas
Zinner, Tobias Hoßfeld,
and Phuoc Tran-Gia are
with University of
Würzburg.

Wolfgang Kellerer is with
Technische Universität
München.

PRINCIPLES OF
SOFTWARE DEFINED NETWORKING

How networks are currently structured and oper-
ated poses a significant financial issue to Inter-
net service providers and, in fact, has become a
handicap for progress in the cloud and service
provider space. SDN [1] enables a programmable
network control and offers a solution to a variety
of use cases. The success stories of these bot-
tom-up SDN solutions have led to a shift in the
way operators and vendors perceive the network.
In the following we define four basic principles
of SDN. Each of these principles is mandatory
for classifying a technology as SDN.

SEPARATION OF CONTROL- AND DATA PLANE
The physical separation of the control- and for-
warding- or data plane is the best-known principle
of SDN [1, 2]. It postulates the externalization of
the control plane from a network device to an
external control plane entity often called the
“controller.” In particular this means that an
internal software control plane, while it may still

exist, is not enough to brand a device or technol-
ogy as “Software Defined Networking.” The
external controller has to have the ability to
change the forwarding behavior of the network
element directly. This enables several key bene-
fits of SDN. The control- and data plane can be
developed separately from each other, which
lowers the entry-to-market hurdle, as a company
no longer has to have expert knowledge in both
areas. Moreover, the externalization of a soft-
ware-based controller produces pressure on
established hardware switch vendors, which are
reduced to providing forwarding hardware only.
This has already introduced new and disruptive
start-ups to the market that have sped up inno-
vation in the network. Even the market leader
Cisco has reacted to this trend by introducing its
own flavor of SDN with the Application Centric
Infrastructure concept developed at the Spin-In
company “Insieme.” Customers are also enabled
to “mix-and-match” products of different ven-
dors and thus increase competition further. The
switch vendors have reacted to the growing
interest in SDN, forming the OpenDaylight pro-
ject for an open SDN software platform.
Challenges in this area are to find the appro-

priate control protocol for the specific scenario
out of different protocols and protocol versions,
and the appropriate forwarding elements that
support this protocol.

LOGICALLY CENTRALIZED CONTROL
The controller of an SDN network is a logically
centralized entity, that is, it can consist of multi-
ple physical or virtual instances, but behaves like
a single component. The global network infor-
mation such a central controller possesses
enables it to adapt its network policy with respect
to routing and forwarding much better and faster
than a system of traditional routers could.
The realization of a logically centralized con-

troller is challenging with respect to scalability
depending on the specific scenario and network or
virtual network size. Scalability can be achieved
by implementing a centralized controller as a
distributed system where the contained informa-
tion has to be maintained consistently.

OPEN INTERFACES
For SDN to reach its full potential in terms of
flexibility and adaptability, it is fundamental that
its interfaces are and remain open. A closed or

ABSTRACT

The term Software Defined Networking (SDN)
is prevalent in today’s discussion about future
communication networks. As with any new term
or paradigm, however, no consistent definition
regarding this technology has formed. The frag-
mented view on SDN results in legacy products
being passed off by equipment vendors as SDN,
academics mixing up the attributes of SDN with
those of network virtualization, and users not
fully understanding the benefits. Therefore,
establishing SDN as a widely adopted technology
beyond laboratories and insular deployments
requires a compass to navigate the multitude of
ideas and concepts that make up SDN today.
The contribution of this article represents an

important step toward such an instrument. It
gives a thorough definition of SDN and its inter-
faces as well as a list of its key attributes. Fur-
thermore, a mapping of interfaces and attributes
to SDN use cases is provided, highlighting the
relevance of the interfaces and attributes for
each scenario. This compass gives guidance to a
potential adopter of SDN on whether SDN is in
fact the right technology for a specific use case.

ACCEPTED FROM OPEN CALL

Michael Jarschel, Thomas Zinner, Tobias Hoßfeld, Phuoc Tran-Gia, and Wolfgang Kellerer

Interfaces, Attributes, and Use Cases:
A Compass for SDN

c ©
2
0
1
4

IE
E

E
.

P
er

so
n

a
l

u
se

o
f

th
is

m
a
te

ri
a
l

is
p

er
m

it
te

d
.

P
er

m
is

si
o
n

fr
o
m

IE
E

E
m

u
st

b
e

o
b

ta
in

ed
fo

r
a
ll

o
th

er
u

se
s,

in
a
n
y

cu
rr

en
t

o
r

fu
tu

re
m

ed
ia

,
in

cl
u

d
in

g
re

p
ri

n
ti

n
g
/
re

p
u

b
li
sh

in
g

th
is

m
a
te

ri
a
l

fo
r

a
d

v
er

ti
si

n
g

o
r

p
ro

m
o
ti

o
n

a
l

p
u

rp
o
se

s,
cr

ea
ti

n
g

n
ew

co
ll
ec

ti
v
e

w
o
rk

s,
fo

r
re

sa
le

o
r

re
d

is
tr

ib
u

ti
o
n

to
se

rv
er

s
o
r

li
st

s,
o
r

re
u

se
o
f

a
n
y

co
p
y
ri

g
h
te

d
co

m
p

o
n

en
t

o
f

th
is

w
o
rk

in
o
th

er
w

o
rk

s.
T

h
e

d
efi

n
i-

ti
v
e

v
er

si
o
n

o
f

th
is

p
a
p

er
h

a
s

b
ee

n
p

u
b

li
sh

ed
in

IE
E

E
C

o
m

m
u

n
ic

a
ti

o
n

s
M

a
g
a
zi

n
e,

2
0
1
4
.

IEEE Communications Magazine • June 2014 3

proprietary interface limits component exchange-
ability and innovation. This is especially true for
the interface between control- and data plane
(Southbound Interface). In the absence of a
standard open interface, one of the main SDN
advantages — the interchangeability of network
devices and control planes — would be taken away.
This is also true for the remaining interfaces, which
are discussed in more detail in the next section.
To maintain open interfaces might be chal-

lenging since vendors try to introduce propri-
etary interfaces or to bypass proprietary
information via the open interface. This could
generate additional value if entities of the same
vendor are used, but also lead to deadlocks and
performance bottlenecks in mixed operation.

PROGRAMMABILITY
The fundamental paradigm shift in networking
SDN has initiated is represented by programma-
bility. It is enabled by the external software con-
troller and open interfaces. The programmability
principle is not limited to introducing new network
features to the control plane, but rather repre-
sents the ability to treat the network as a single
programmable entity instead of an accumulation
of devices that have to be configured individual-
ly. SDN can thus be regarded as a very suitable
complement to network virtualization, providing
the control plane for an easy operation (“pro-
gramming”) of, for example, virtual networks in
network substrates or to control specific flows
within a virtual network as possible applications.
Here it is essential to find the appropriate

abstraction level, which determines on the one
hand the ease-of-use for network programmers, and
on the other hand the abstraction overhead and
therewith a possible performance degradation.

KEY INTERFACES AND FEATURES OF
SOFTWARE DEFINED NETWORKING
Key components of the SDN compass are its
interfaces and features.

DEFINITION AND SIGNIFICANCE OF
SDN INTERFACES

The four key interfaces of Software Defined
Networking are illustrated in Fig. 1 for a generic,
example network, consisting of three
autonomous systems (AS): a conventional IP or
legacy access network at the user end, an SDN-
based transit-WAN, and an SDN-enabled data
center network (cloud).

Southbound-API — The Southbound-API rep-
resents the interface between control- and data
plane. It is the enabler for the externalization of
the control plane and therefore key to the corre-
sponding SDN principle [2, 3]. Its realization is a
standardized instruction set for the networking
hardware. Implementation examples are the
IETF ForCES Protocol [4] and most notably the
OpenFlow protocol [5].

Northbound-API — SDN enables the exchange
of information with applications running on top
of the network. This information exchange is
performed via the Northbound-API between the
SDN controller and an “application control
plane” [2, 3]. A universal, standardized North-
bound API does not exist. Further, as the kind
of information exchanged, its form and frequen-
cy depends on the targeted application and net-
work, such universal API is not useful.
Standardization of this interface only makes
sense for common scenarios, provided that all
implementations are kept open. While the SDN
controller can directly adapt the behavior of the
network, the application controller adapts the
behavior of the application using the network. It
can be implemented as part of a single applica-
tion instance to a central entity for the entire
network responsible for all applications.

Westbound-API — The Westbound-API serves
as an information conduit between SDN control
planes of different network domains [6]. It allows
the exchange of network state information to

Figure 1. Example: interfaces of a software defined network.

Hypervisor
vSwitchHypervisor

vSwitch

Control
module

Control
module

Application
control interface

User

Legacy WANSDN WANCloud

Hypervisor

SwitchSwitch

SwitchvSwitch
User

User

Southbound API

Westbound API Eastbound API

Northbound API

SDN network control
plane

Legacy network
control planeSDN network control plane

Control
module

Control
module

Control
module

Application control plane

To maintain open

interfaces might be

challenging since

vendors try to intro-

duce proprietary

interfaces or to

bypass proprietary

information via the

open interface. This

could generate addi-

tional value if entities

of the same vendor

are used, but also

lead to deadlocks

and performance

bottlenecks in

mixed operation.

IEEE Communications Magazine • June 20144

influence routing decisions of each controller,
but at the same time enables the seamless setup
of network flows across multiple domains. For
the information exchange, standard inter-domain
routing protocols like BGP could be used.

Eastbound-API — Communication with the
control planes of non-SDN domains, for exam-
ple, a Multi-Protocol Label Switching (MPLS)
control plane, uses the Eastbound-API [7]. The
implementation of this interface depends on the
technology used in the non-SDN domain. Essen-
tially, a translation module between SDN and
the legacy technology is required. In this way,
both domains should ideally appear to be fully
compatible to each other. For example, the SDN
domain should be able to use the routing proto-
col deployed between non-SDN domains or be
able to react to Path Computation Element Pro-
tocol (PCEP) messages requesting path setups
from an MPLS domain.

DEFINITION OF SDN FEATURES
The combination of these four open interfaces
together with the core features we outline in the
following makes SDN a very flexible and power-
ful tool for network control and operation. Later
we show how matching SDN’s unique features to
use cases can help a potential adopter of SDN to
determine whether SDN is the right technology
for that use case.

Programmability — Programmability is not
only a principle but also the key feature of SDN
and drives most SDN use cases. This opens the
control plane to innovation using conventional
software development methods, in turn enabling
the customization of the network according to a
specific setup or scenario.
Example: Based on one or more external

information resources (e.g. cloud orchestration)
the routing in a network is adapted automatically
to optimize resource utilization. Google uses such
a mechanism to optimize the bandwidth usage
on links between the company’s data centers. It
achieves this by leveraging information from the
traffic sources and grouping application traffic
into flow groups with different priorities [6].

Protocol Independence — Protocol indepen-
dence enables SDN to control or run in conjunc-
tion with a large variety of networking technolo-
gies and protocols on different network layers.
This feature enables migration strategies from
old to new technologies and supports the possi-
bility to even run a different network protocol
stack tailored for each application.
Example: In order to enable the migration

from IPv4 to IPv6 a network operator decides to
run both versions of IP in parallel. This is usually
done using tunnels and encapsulation. The authors
in [8] propose to use SDN-enabled forwarding
elements with a centralized control plane to
dynamically set up the tunnels at the end points.

Ability to Dynamically Modify Network
Parameters — The ability to actively modify
network parameters in a dynamic manner that is
close to real time defines this SDN feature.
Dynamic re-configuration is feasible in different

time-scales. This covers wide area networks
where only a few change operations are required
per day, to data center networks where the con-
stant instantiation or migration of virtual
machines and their network connectivity has to
happen in minutes or even seconds.
Example: In case of an overloaded link between

two network elements with multiple routes, pri-
ority traffic is identified through application
information and rerouted with minimal delay [9].
In this case the SDN controller receives informa-
tion about individual flows from the application
control plane to determine whether a certain
application actually needs more resources and
allocates a higher priority to its flows.

Granularity — Networking spans different pro-
tocol layers and also levels of data flow aggre-
gates. SDN enables the control of traffic flows
with a different granularity on both the aggregate
level and the protocol layers. This can range
from large MPLS tunnels in core networks to a
single TCP connection in a home LAN. This is a
necessary feature to ensure scalability and enable
the control plane to work on different levels.
Example: In [10] the SDN controller operates

on the granularity of individual flows to optimize
the user experience for the user of one particular
session. This high granularity is feasible in net-
works with a low total number of flows, for exam-
ple, home or access networks. In [8] SDN is used
to interconnect a virtualized access network to a
legacy MPLS core operating on tunnels only.
Each tunnel can contain a multitude of flows.

Elasticity — The elasticity feature of SDN
describes the ability of the SDN network control
plane to increase and decrease its resource con-
sumption based on the required capacity. As
controllers run in software, they can be flexibly
instantiated and synchronized using a distributed
or hierarchical approach on multiple physical or
virtual hosts. This enables the control plane to
react to variations in traffic mix and volume.
Example: Due to a temporarily increased

amount of control traffic in a data center net-
work, the SDN controller can no longer be host-
ed by a single physical device and has to be
distributed among several machines. However,
when the situation resolves itself, the control plane
can again be relocated to its original host in order
to conserve resources. There are several approach-
es to achieve this kind of distributed SDN con-
trol plane. The Onix [11] realization is based on
synchronizing the network information base, that
is, the global state of the network, across a clus-
ter of servers. Each server directly manages a
subset of network elements and exchanges infor-
mation with the rest of the network controller
instances via the shared network state.

USE CASES FOR
SOFTWARE DEFINED NETWORKING
This section introduces several use cases that we
have selected to derive and to illustrate a method
for classifying SDN in terms of the above fea-
tures and interfaces.

Programmability is

not only a principle

but also the key fea-

ture of SDN and

drives most SDN use

cases. This opens the

control plane to

innovation using

conventional soft-

ware development

methods, in turn

enabling the

customization of the

network according

to a specific setup

or scenario.

IEEE Communications Magazine • June 2014 5

CLOUD ORCHESTRATION

Over the last decade cloud services have devel-
oped at a rapid pace. However, the innovation in
this field was mainly confined to server and data
center technologies as well as distributed appli-
cations. This has led to networks becoming a
hindrance for cloud operations. A major reason
for this is the fact that networks and servers
were traditionally managed separately. For cloud
applications to be provisioned and operated
quickly and in an automated manner, the man-
agement of both network and cloud framework
needs to be integrated.
SDN is a viable way to achieve this integra-

tion, as the SDN controller as well as the cloud
orchestration framework is software, and a (stan-
dardized) interface between both worlds is there-
fore easily attainable. This interface can then,
for example, be used to notify the network con-
troller of an imminent virtual machine migration
or to notify the cloud orchestration that a link is
overloaded and the server load should be moved
to a different location.
In [11] the benefits of such an interface are

shown. The cloud orchestration software Open-
Nebula is used to orchestrate virtual servers across
multiple hosts and show that a short advance
notification from the cloud orchestration to the
SDN controller before a virtual machine migra-
tion was sufficient to maintain the user sessions of
a video streaming service during the migration.

LOAD BALANCING
Another service required for the successful oper-
ation of online services that are hosted in data
centers is load balancing. Online services, e.g.
search engines and web portals, are often repli-
cated on multiple hosts in a data center for effi-
ciency and availability reasons. Here a load
balancer dispatches client requests to a selected
service replica based on certain metrics such as
server load. In general, a load balancer is typi-
cally a separately deployed function in a network
that distributes the load among network and
data center elements in its scope according to a
certain optimization metric such as minimum
average load or link cost.
Today’s solutions for load balancers are effec-

tive but have limited flexibility in terms of cus-
tomization. Being a proprietary middlebox
function, such solutions also come at a high cost.
When using SDN technologies, load balancing
can be integrated within any forwarding element
in the network, e.g. OpenFlow switch, avoiding
the need for separate devices. Furthermore,
SDN allows load balancing to operate on any
flow granularity.
In [11] a use case for a data center load bal-

ancer is described and a solution based on Open-
Flow is proposed. Instead of using a traditional
middlebox solution the functionality is realized
at the OpenFlow controller and enforced by set-
ting aggregate flow rules using wildcards in the
network elements. In this way the need for a
dedicated balancer device is no longer existent.
Current research tries to provide an abstract lan-
guage that allows programmers to directly con-
trol the network and mechanisms such as load
balancing [12].

ROUTING

The API between data plane forwarding and a
centralized control plane in SDN provides ample
opportunities for a routing protocol adaptation,
which is very difficult in existing decentralized
routing schemes implemented on closed box net-
work elements. Routing services that can be real-
ized by the SDN concept, for example, through
programming modules on OpenFlow controllers
directing OpenFlow Switches, include path selec-
tion for traffic optimization, multi-homing,
secure routing, path protection, and migration
between protocol versions, that is, IPv6.
In [13] the authors propose a hybrid SDN/BGP

control plane that on the one hand leverages the
new possibilities in a simplified centralized rout-
ing approach, and other hand benefits from the
compatibility with legacy networks.

MONITORING AND MEASUREMENT
SDN provides the network the ability to perform
certain network monitoring operations and mea-
surements without any additional equipment or
overhead. The concept was introduced in [14]
and is based on the fact that an SDN inherently
collects information about the network to main-
tain a global network state at the logically cen-
tralized controller. This information can then be
processed in software to obtain a subset of moni-
toring parameters. Furthermore, active measure-
ments are enabled by selectively mirroring
specific production traffic flows to the control
plane or an external measurement device with-
out the need to introduce artificial and poten-
tially disruptive measurement probe traffic into
the network. For example, by mirroring the traf-
fic for a phone call at ingress and egress point of
the network, the network administrator can
determine the delay and quality of service for a
particular call at a certain time.

NETWORK MANAGEMENT
Today’s network management policies are usual-
ly decided upon by the network operator and then
configured once in each network element by an
administrator. The larger the network, the higher
the required configuration effort becomes. Hence,
an established policy is seldom modified. This
leads to an often very inefficient network opera-
tion. The fact that traffic patterns continually
change cannot be taken into account this way.
In order to change this, the network needs to

be able to adapt policies dynamically and auto-
matically based on a range of information. This
calls for a more general specification of network
policies that are subsequently translated into
specific rules for each device in the network
using a policy engine. The logically centralized
control plane of SDN offers itself as a very suit-
able way to enable such an approach, as it has
all information about the network available.
For example, a high-level network policy dic-

tates the prioritization of VoIP traffic inside an
Enterprise network. The SDN controller can
then identify corresponding network flows and
assign them to a high priority level in each
device. This is dynamic on the one hand as VoIP
flows are set up and terminated with each phone
call, and on the other hand it is automated as

Routing services that

can be realized by

the SDN concept, for

example, through

programming mod-

ules on OpenFlow

controllers directing

OpenFlow Switches,

include path selec-

tion for traffic

optimization, multi-

homing, secure rout-

ing, path protection,

and migration

between protocol

versions, that is, IPv6.

IEEE Communications Magazine • June 20146

the devices are configured without the need for
physical access and any human intervention. In
fact, the administrator does not have to know
the topology of the network or the devices
involved in order to achieve the policy’s goal.
Such an approach has been implemented proto-
typically in [15].

APPLICATION-AWARENESS
Using network resources efficiently and optimiz-
ing traffic flows toward high end-user Quality of
Experience (QoE) is an often cited goal for next
generation networks. However, it is difficult to
realize when nothing is known about the kind of
applications that are run on the network and
their state. Existing approaches in this direction
often rely on Deep Packet Inspection to identify
the applications. This, however, is not a very
accurate technique and does not take the appli-
cation state or QoE into account at all [16].
With the Northbound-API of the SDN con-

troller, the application itself can inform the net-
work about its properties and state. In this way,
the network controller can direct traffic flows to
complement rather than disrupt each other
[9,17]. Furthermore, a previously made forward-
ing decision can be revised in light of changing
situations in the network and a different applica-
tion state. The other way around, if the network
can no longer sustain a certain service level for
the application due to lack of resources, it can
notify the application to modify its behavior. For
example, due to its architecture, SDN easily
allows cross-layer optimization between applica-
tions and their demands and the network capa-
bilities. Thus, a better use of the network
resources with respect to more generic con-
straints such as user-centrality [9] or energy-effi-
ciency [11] is possible.

A USE CASE BASED ANALYSIS OF
SDN INTERFACES AND FEATURES

To analyze the importance of SDN in terms of
its interfaces and features for different use cases,
we map each of the use cases shown in the pre-
vious section to them. We validate the presented
features and their mapping to the use-cases.
Thus, the compass guides a potential adopter of
SDN, whether SDN in fact is the right technolo-
gy for an arbitrary use case.
In the first step of our analysis, we map the

use cases to the SDN interfaces as shown in
Table 1. Reliance on an interface is checked,
whereas non-reliance is marked with an X. As
can be seen, not all use cases depend on all inter-
faces. In fact, the only use case leveraging all
interfaces of SDN is the “Monitoring and Mea-
surement” use case. Overall, the use cases are
quite heterogeneous in terms of SDN interface
dependency. The most used interface appears to
be the “Northbound-API” interface. However,
no conclusion is drawn about the importance of
an interface here. This depends on the specific
implementation of a use case, on how an inter-
face is used, and therefore how crucial it is. To
apply the SDN compass it is important enough to
understand which interfaces to use for a consid-
ered use case to be implemented using SDN.
In the second step of our use case analysis,

we classify the use cases according to:
• The importance of each of the above identi-
fied features as a use case enabler: HIGH
(***) = enables service, MEDIUM (**) =
improves service significantly, LOW (*) =
nice to have.

• The area of application in which these fea-
tures are most important for each use case:
Data Center = one data center, WAN =
ISP Core network, Enterprise = Enterprise
network without enterprise data center.
As a result of the use case classification apply-

ing these simple metrics, we obtain Table 2.
Here we observe horizontal clusters as well as
local clusters of importance across the different
use cases and areas of application. This analysis
does not only validate the five SDN features as
described previously, but also allows us to identi-
fy the importance of each feature for certain
classes of SDN use cases.
Let us have a closer look at the table. There

are entire rows filled with a background color
where all features are classified as highly impor-
tant enablers for a use case. These horizontal lines
are limited to one application area only. Cloud
orchestration, for example, is a use case that is
focused on data center environments. This is also
confirmed by the table where the horizontal line
marking each SDN feature with high importance
runs in the data center application area. A similar
observation can be made for monitoring. Here
enterprise networks benefit most from all SDN
features due to the high application mix that has
to be monitored in enterprise networks.
Local clusters of importance (dark) point to a

particular importance of one SDN feature for a
use case across all three areas of application.
For example, the time-dynamics to be realized
for SDN-based routing for path protection are

Table 1.Mapping of use cases to SDN interfaces. Reliance on an interface
is checked, whereas non-reliance is marked with an X.

Int erface

Use case
Southbound
interface

Northbound
interface

Eastbound
interface

Westbound
interface

Cloud
orchestration X X**

Load balancing X *

Routing X

Monitoring and
measurement

Network
management X X

Application-
awareness X X X

• The Westbound interface is not used in cases where the load balancer is only
responsible for a single SDN domain, e.g. a single data center.
** The Westbound interface is used when parts of the cloud are connected via
a non-SDN controlled network, e.g. MPLS PCE.

IEEE Communications Magazine • June 2014 7

based on the dynamic feature of SDN as the key
enabler. Monitoring is mostly concerned with
data gathering across protocols and different lev-
els of granularity. This is confirmed by the table
with the SDN features protocol independence
and granularity expressing high importance
markings. Network management is based on the
features programmability and protocol indepen-
dence as here the configuration aspect is a key
feature enabled by SDN.
The general use case application awareness

shows four importance clusters, namely: pro-
grammability, protocol independence, dynamic,
and granularity.

KEY DERIVATIONS
The above definitions and use case analysis aim
to create an understanding of the applicability of
the SDN principles. There is a lack of clear defi-

nitions and a lack of methodology for assessing
the suitability of SDN concepts for certain use
cases. Current discussions direct SDN toward an
image of being a universal solution in networking.
As a basis for such a methodology, we defined

four main interfaces in an SDN-enabled network
control architecture — the southbound, eastbound,
westbound, and northbound interfaces — and
we identified the five main features provided by
SDN technologies: programmability, protocol
independence, dynamic, granularity, and elasticity.
Our analysis of selected use cases based on

related publications mainly taken from recent
workshops, conferences, and journal articles
(cloud orchestration, load balancing, routing,
measurement, network management) provides a
methodology for assessing the importance of
SDN as an enabler for certain use cases.
Our discussion shows that the use cases

depend on different application areas (Data cen-

Table 2.Mapping of Use Cases to SDN Features. The importance of each of the above identified features as a use case enabler:
HIGH (***) = enables service, MEDIUM (**) = improves service significantly, LOW (*) = nice to have. The area of applica-
tion in which these features are most important for each use case: Data Center = one data center, WAN = ISP Core network,
Enterprise = Enterprise network without enterprise data center. Local clusters of importance (dark grey) point to a particular
importance of one SDN feature for a use case across all three areas of application. Complete rows marked with a background
color indicate that all features are classified as highly important enablers for the use case, but limited to one application area
only.

Feature
Use case

Area of
application Elasticity Programmability Protocol

independence Dynamic Granularity

Cloud orchestration

Data center * * * * * * * * * * * * * * *

WAN * * ** * ***

Enterprise * * ** * ***

Load balancing

Data center * * * *** **

WAN * * ** ** **

Enterprise * * ** ** **

Routing/forwarding

Data center * *** * *** **

WAN ** **** *** ** **

Enterprise * *** ** *** **

Monitoring and
measurement

Data center ** ** *** ** ***

WAN * ** *** * ***

Enterprise *** *** *** *** ***

Network
management

Data center ** *** *** ** **

WAN * *** *** * **

Enterprise * *** *** * **

Application-
awareness

Data center * *** *** *** ***

WAN * *** *** *** ***

Enterprise * *** *** *** ***

IEEE Communications Magazine • June 20148

ter, Enterprise, WAN). Referring to Table 2 we
cannot determine a specific area of application
where SDN excels. Furthermore, different inter-
faces are needed for each use case, that is, not
all interfaces have to be implemented. Accord-
ingly, development guidelines for specific con-
trollers can be derived based on the analysis of
the specific use-case in relation to the features
and interfaces used. Different use cases are
based on different SDN features, that is, the
implementation of the features depends on the
specific use-case.
Similarly, a corresponding analysis of a new

use case can reveal whether the use case can
benefit from SDN technology, that is, is there at
least one feature with “high.” Furthermore, the
benefit of SDN for a certain use case increases
with the number of important features identified.
Additionally, we can observe that there are more
advanced use cases that cannot be realized in
today’s networks. These use cases can benefit
from or are even enabled by SDN features such
as the presented application awareness use-case.
Despite the operational use-cases discussed

above, SDN also drives innovation in other
areas. Particularly in research testbeds [18], for
prototyping [19], and for service rollout (Beta
Slice), the capabilities of SDN enable innovation
within networks. Accordingly, the areas of appli-
cation are not limited to the discussed use-cases,
but are expected to expand beyond the scope of
today’s networks. However, this discussion is not
the intended topic of this article.

CONCLUSION
Due to its innovation potential, SDN is seen as
one key technology to enable and operate next-
generation networks. However, different defini-
tions and meanings of the term SDN currently
exist, leading to a fragmented view.
This article is a major step toward a better

understanding of SDN, its necessary interfaces,
as well as its key attributes. Based on an induc-
tive approach, we derived a mapping of inter-
faces and attributes to SDN use cases. In a
second step, a mapping of use cases to SDN fea-
tures, highlighting the importance of the specific
features to the use-cases and areas of applica-
tion, is performed. This approach can be adapt-
ed to help classify other use cases and gauge the
potential benefits of using SDN in their context.
Their main features can be identified and weighted,
and the implementation focus of the required
network applications can be planned accordingly.
Therefore, the main contribution of this arti-

cle is to supply SDN adopters with a compass
and a map to reach the desired answer to the
question of using SDN in a specific scenario.

REFERENCES
[1] T. Nadeau and K. Gray, ”SDN: Software Defined Net-

works,” O’Reil ly Media, Sept. 2013, ISBN: 978-
1449342302.

[2] Open Networking Foundation, “Software-Defined Net-
working: The New Norm for Networks,” https://www.
opennetworking.org/images/stories/downloads/sdn-
resources/white-papers/wp-sdn-newnorm.pdf, 2012.

[3] S. Sezer et al., “Are We Ready for SDN? Implementation
Challenges for Software-Defined Networks,” IEEE Com-
mun. Mag., vol. 51, no. 7, July 2013, pp. 36–43.

[4] A. Doria, R. Haas, and J. H. Salim, “ForCES Protocol

Specification,” http://www.ietf.org/internet-drafts/draft-
ietf-forces-protocol-08.txt, 2006.

[5] N. McKeown et al., “OpenFlow: Enabling Innovation in
Campus Networks,” ACM SIGCOMM Comp. Commun.
Rev., vol. 38, no. 2, April 2008, pp. 69–74.

[6] S. Jain et al., “B4: Experience with a globally-deployed
software defined WAN,” Proc. ACM SIGCOMM 2013
Conference, Aug. 2013, pp. 3–14.

[7] A. Devlic, W. John, and P. Sköldström, “Carrier-Grade
Network Management Extensions to the SDN Frame-
work,” Proc. 8th Swedish National Computer Network-
ing Wksp. SNCNW 2012, June 2012.

[8] G. Hampel, M. Steiner, and B. Tian, “Applying Soft-
ware-Defined Networking to the Telecom Domain,”
Proc. 16th IEEE Global Internet Symp. in conjunction
with IEEE INFOCOM, Apr. 2013, pp. 133–8.

[9] M. Jarschel et al., “SDN-based Application-Aware Net-
working on the Example of YouTube Video Streaming,”
Proc. 2nd European Wksp. Software Defined Networks
(EWSDN 2013), Oct. 2013, pp. 87–92.

[10] T. Koponen et al., “Onix: A Distributed Control Plat-
form for Large-scale Production Networks,” Proc. 9th
USENIX Conf. Operating Systems Design and Imple-
mentation (OSDI 10), Oct. 2010, pp. 351–64.

[11] M. Jarschel and R. Pries, “An OpenFlow-Based Energy-
Efficient Data Center Approach,” Proc. ACM SIGCOMM
2012 Conf., Aug. 2012, pp. 87–8.

[12] C. Monsanto et al., “Composing Software Defined
Networks,” Proc. 13th USENIX Symp. Networked Sys-
tems Design and Implementation (NSDI 13), Apr. 2013,
pp. 1–13.

[13] C. E. Rothenberg et al., “Revisiting Routing Control
Platforms with the Eyes and Muscles of Software-
Defined Networking,” Proc. First Workshop on Hot Top-
ics in Software Defined Networks (HotSDN 12), Aug.
2012, pp. 13–18.

[14] C. Yu et al., “FlowSense: Monitoring Network Utiliza-
tion with Zero Measurement Cost,” Proc. Passive and
Active Measurement Conf. (PAM 2013), Jan. 2013, pp.
31–41.

[15] H. Kim and N. Feamster, “Improving Network Manage-
ment with Software Defined Networking,” IEEE Com-
mun. Mag., vol. 51, no. 2, Feb. 2013, pp. 114–19.

[16] T. Hoßfeld et al., “Challenges of QoE Management for
Cloud Applications,” IEEE Commun. Mag., vol. 50, no.
4, Apr. 2012, pp. 28–36.

[17] G. Wang et al., “Programming Your Network at Run-
Time for Big Data Applications,” Proc. First Workshop
on Hot Topics in Software Defined Networks (HotSDN
12), August 2012, pp. 103–08.

[18] R. Sherwood et al., “Can the Production Network be
the Testbed,” Proc. 9th USENIX Conf. Operating Sys-
tems Design and Implementation (OSDI 10), Oct. 2010,
pp. 365–78.

[19] B. Lantz, B. Heller, and N. McKeown, “A Network in a
Laptop: Rapid Prototyping for Software-Defined Net-
works,” Proc. 9th ACM SIGCOMM Wksp. Hot Topics in
Networks (Hotnets-IX), article no. 19, Oct. 2010.

ADDITIONAL READING
[1] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-based

Server Load Balancing Gone Wild,” Proc. 11th USENIX
Conf. Hot Topics in Management of Internet, Cloud,
and Enterprise Networks and Services (HotICE 2011),
Mar.s 2011.

BIOGRAPHIES
MICHAEL JARSCHEL is a Ph.D. candidate working in the “Next
Generation Networks” research group at the Chair of Com-
munication Networks in Würzburg. He received his diploma
in computer science from the University of Würzburg in
2009. His main research interests are Software Defined
Networking, QoE, and Cloud Networks, with a focus on
performance evaluation.

THOMAS ZINNER is heading the NGN research group “Next
Generation Networks” at the Chair of Communication Net-
works in Würzburg. He finished his Ph.D. thesis on “Perfor-
mance Modeling of QoE-Aware Multipath Video
Transmission in the Future Internet” in 2012. His main
research interests cover the performance assessment of
novel networking technologies, in particular software-
defined networking and network function virtualization, as
well as network-application interaction mechanisms.

This approach can

be adapted to help

classify other use

cases and gauge the

potential benefits of

using SDN in their

context. Their main

features can be iden-

tified and weighted,

and the implementa-

tion focus of the

required network

applications can be

planned accordingly.

IEEE Communications Magazine • June 2014 9

TOBIAS HOSSFELD is heading the FIA research group “Future
Internet Applications & Overlays” at the Chair of Communi-
cation Networks in Würzburg. He finished his Ph.D. in
2009 and his professorial thesis “Modeling and Analysis of
Internet Applications and Services” in 2013. He has pub-
lished more than 100 research papers in major conferences
and journals, receiving four best paper awards, three
awards for his Ph.D. thesis, and the Fred W. Ellersick Prize
2013 (IEEE Communications Society).

PHUOC TRAN-GIA is a professor at the Institute of Computer
Science and head of the Chair of Communication Networks
at the University of Würzburg, Germany. His current
research areas include architecture and performance analy-
sis of communication systems, and planning and optimiza-
tion of communication networks. He has published more
than 100 research papers in major conferences and jour-
nals, and recently received the the Fred W. Ellersick Prize
2013 (IEEE Communications Society).

WOLFGANG KELLERER is a full professor at the Technische Uni-
versität München (TUM), heading the Institute for Commu-
nication Networks in the Faculty of Electrical Engineering
and Information Technology. Until 2012 he has been direc-
tor and head of wireless technology and mobile network
research at NTT DOCOMO’s European research laboratories
for more than ten years. His research resulted in more than
100 publications in the area of mobile networking and ser-
vice platforms.

