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In this paper, we present an exact analysis of a queueing system with Poisson arrivals and
batch service. The system has a finite number S of waiting places and a batch service capacity b.
A service period is initialized when a service starting threshold a of waiting customers has
been reached. The model is denoted accordingly by M/G®? /1—S. The motivation for this
model arises from manufacturing environments with batch service work stations, e.g. in
machines for computer components and chip productions. The method of embedded Markov
chain is used for the analysis, whereby a representation of the general service time is obtained
via a moment matching approach. Numerical results are shown in order to illustrate the depen-
dency of performance measures on special sets of system parameters. Furthermore, attention
is devoted to the issues of starting rules, where performance objectives like short waiting time,
small blocking probability and minimal amount of work in progress are taken into account.

Keywords: Queueing analysis; performance analysis; manufacturing modelling; batch
systems; Markov chain.

1. Introduction

Batch service models are useful to investigate the performance of various pro-
cesses in production environments. Models arising out of the manufacturing tech-
nology for every large scale integrated (VLSI) circuits and the related problems in
production planning and control of VLSI manufacturing have been already investi-
gated in the literature in operations research.

Most of the investigations which employed batch service models consider queue-
ing systems having infinite capacities. This assumption stands in contrast to real
systems, where e.g. factories’ buffer storage capacities of transfer line systems are
finite. The starting strategies required for batch servers in production environ-
ments seems to be more subtle than those usually regarded in the literature.

There are a few studies in the literature, which deal with batch service systems.
The modelling approaches consider various starting strategies with respect to the
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following question: when to start a batch processing by observing the number of

parts waiting in the input buffer. The most important ones among these are:

e server starts to serve with maximum batch size or fewer jobs according to queue
length (Bailey [5], Downton [6], Gnedenko and Koénig [7], Gross and Harris
[8D,

e server starts to serve when the number of jobs in the queue reaches a certain
threshold a (Neuts [1-3], Chaudhry et al. [4]). This is also considered in this
paper.

The major analysis method employed in these studies is the embedded Markov
chain technique. The system M/G#1 /1—oco was first analyzed by Bailey [5]. He
provided the z-transform of the distribution of the queue length. Detailed calcula-
tions of the mean and variance of the queue length and of the mean waiting time
were given for the case of x2-distributions with an even number of degrees of free-
dom of the service time. In Downton [6] the analysis is focused on the waiting time
distribution (with non-waiting jobs excluded). The waiting time distribution of
the system M/M%b/1—co and M/G!!#1/1—00 can be found in Gnedenko and
K6nig [7]. In some standard queueing literature (e.g. Gross and Harris [8]) results
for the state probabilities of some basic batch service systems like M /M4 /1—00
are given, where the starting strategy was simplified as follows: new arrivals imme-
diately enter service up to the limit b, and finish together with the other jobs being
served in the current production phases. The infinite system M/G!**1/1—oco has
also already been investigated by some authors. Neuts [1,2] derived results for the
queue length, the distribution function of the busy period and a description of the
output process of the system. In Neuts [3] he gave a matrix-geometric solution for
the steady-state probabilities of the system. Chaudhry et al. [4] showed how to
numerically evaluate the steady-state probabilities and moments for the number in
system at postdeparture, prearrival and random epochs. Thereby they use the fol-
lowing service time distributions: Deterministic (D), Erlangian (E), two-phase
hyperexponential (HE;) and uniform (U). Thus any given service time characteris-
tic given in a representation of its first two moments (mean and coefficient of varia-
tion) can roughly be accommodated. We close the gap left by using D, E; and U
for distributions with ¢ <1 and therefore introduce a two-phase distribution con-
sisting of a deterministic and a Markovian period (D+M).

In this study we stress the manufacturing issues of the finite system
M /Gl /1—S, in particular the dimensioning aspects for the threshold a. A proper
choice of this threshold depends on service time characteristics, capacity of the
waiting room in from of the batch server and traffic load. The quality criteria are
the aims of lean production: short response times, low blocking probability, effi-
cient use of resources, continuous flow through the production line. In order to
study the question of the proper choice we devote attention to the finite system
M /G%bl /1—S, where a denotes the server starting threshold, S the waiting room
capacity. Since we are interested in practical applicability of our investigations, we
attach great importance to the following points:
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e numerical tractability of the derived solution,

e casy parameterization of the analytic model according to real world problems
particularly with regard to service time characteristics and waiting room
capacity,

e the possibility of instationary analysis.

The paper is organized as follows. Details of the model and related parameters
are given in section 2. The analysis using an embedded Markov chain is subdivided
into the calculation of the Markov chain state probabilities (section 3) and the deri-
vation of the arbitrary time state probabilities (section 4). In section 5 the latter
state probability vector is used to obtain the characteristic performance measures.
Insections 6 and 7 we explain details concerning the numerical handling of our gen-
eral solution and finally in section 8 we provide an insight into dimensioning
aspects for a common class of production machines by means of diagrams.

2. Model description

The basic model is illustrated in fig. 1. The model consists of a finite capacity
queue which is served by a single batch server according to a starting rule to be spe-
cified below. The arrival stream of jobs constitutes a Poisson process. The server
has a maximum capacity of “b”’ jobs and the service time is generally distributed.
The server starting scheme is driven by the number of jobs waiting in the queue.
When the server is idle and there are less than a number “a” of jobs in the queue, the
server remains idle until “a” jobs have been accumulated. At the end of a service
phase, the server will proceed according to the number of waiting jobs. If there are
more than a number ““a” of jobs in the queue at the scheduling time, the server
will start the next service immediately by taking up to ““4’’ waiting jobs. Jobs seeing
upon arrival a full queue are thought of to be blocked.

The following symbols and random variables (r.v.) are used in this paper:

A arrival rate,
H r.v. for the service time distribution for a batch,
b server capacity,
S queue capacity,
a
A —— SI 1] — @ O ooo @ —_—

A

starting threshold a j

Fig. 1. The basic queueing model.
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a service starting threshold,

X r.v. for the number of jobs in the queue at embedded points,

X*  r.v.for the number of jobs in the queue at an arbitrary observation epoch,
Y r.v. for the number of jobs in the server,

Y  r.v.for the number of jobs in the activated server,

B blocking probability,

D r.v. for the number of arriving jobs during a service period.

For arandom variable (r.v.), e.g. X, we use the following notation:

fx(t) probability density function (pdf) of r.v. X,

Fx(t) probability distribution function (PDF) of r.v. X,
EX meanofX,

Cx coefficient of variation of X.

3. Markov chain state probabilities

We observe the state process in the finite queue. At the end of a service phase, a
Markov chain can be embedded. The regeneration points of the embedded Markov
chain are chosen to be immediately after departure instants of jobs from service.

We consider for this purpose the two-dimensional stochastic process (Z(t))
with (Z(¢)) = (X(¢), U(t)), which is a Markov process, where X (f) denotes the
number of jobs in the queue at time ¢ and U(¢) the remaining service time for the
batch actually in service at time 7. Thus we observe now a set of points in time Ty
with Z(Ty —0) = (X(Ty —0),0) or ZM(0~) = (X™(07),0). The entities
. X100, X (0), XN+ (0), . . . constitute an embedded Markov chain, since
the arrival process offered to the queue is Poisson. The sequence
... X¥-1)(0), XM (0), X¥+1)(0), . .. relates to the non-stationary Markov chain
state probabilities

x" (k) =Pr{X"(0") =k}, k=0,1,...,S. (1)

The steady-state probabilities of the Markov chain under stationary conditions
aredefined as

x(k) =Pr{X(07) =k} = lim x"(k), k=0,1,...,S. (2)
In order to calculate the transition probabilities g;; of the Markov chain,
gj = Pr{X"*D(07) = j/ X" (07) = i}, (3)

we observe the state development of the queue shown in fig. 2. At time #; a service
period ends and i <a customers are in the queue. Thus a type-4i-interval starts. This
interval ends at time £, when a number of a customers has accumulated in the
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A

X<a E. . X>b a<X<b
Fig. 2. State space dynamics of the system M/G*%1 /1 — S.

queue. At time #, a service period begins and the number in the queue drops to 0.
During this service period which ends at time 3 more than b customers arrive. At
time #; a number of b customers is taken into service and it is finished at time #4. At
time ¢4 there are more than a but fewer than b customers present in the queue, so
all waiting customers are taken into service.

Now we are able to derive the matrix of transition probabilities Q = {g;;} by
inspecting the state development. In table 1 we show typical entrances of this
matrix. Thereby d; indicates the probability for i arrivals during a service phase:

* - A’
d; = ai(t)fH(t) dt with a,-(t) = Te . (4)
0 H
Finally the Markov chain state probability vector at time T+ denoted by
X@+1) can be determined out of the state probability vector at time T ) using
X" (07) = g"x"(07). (5)
To obtain the steady state probabilities of the Markov chain is just to find the eigen
vectors of the matrix Q with respect to the normalizing condition
s

> x(@) =1. (6)

i=0
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Table 1

Matrix of transition probabilities.
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4. Arbitrary time state probabilities

Using the Markov chain state probability the state probability at an arbitrarily
chosen observation epoch can be derived. Recall that X* is the random variable for

the number of jobs in the queue at an arbitrary point in time, i.e.

x*(k) = P{an arbitrary outside observer sees the queue in state k}

Looking at the step-by-step state transitions, as shown in the lower part of fig. 2,
we can recognize four types of intervals. Details of these interval types are given in
table 2, where the probability for appearance, the length and the number of jobs
in service for the different interval types are listed. In this table E, indicates the
Erlang distribution of order n. This leads to the probabilities that an outside obser-
ver looking arbitrarily at the system sees an interval of type 1, 2, 3, 4i (i = 0,

— P{X* =k}.

coa—1)
Table 2
Characteristics of different transition interval types.
Type Probability Interval Mean Number
VYeype length Tiype EType in service
1 > x(i) H EH b
i=b+1
b
2 Z x(i) H EH x~
ot
3 > (i) H EH a
i=0
4i x(i)(i<a) E,_; (a—i)/A 0
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_ Yiype * EType (7)

Tt =
ype o ’

where the normalization factor o is given by
o= Z Yype * ETtype - : (8)
alltypes

The time interval from the last scheduling epoch until the observation time in the
case of interval type 1, 2 or 3 is the recurrence time of the service time with the prob-
ability density function

r _ 1-F H (t)
Thus, the arrival probabilities during the forward recurrence time is
dr = / GO (1) dr. (10)
0

We define T as the random variable for the type of interval seen at an arbitrary
epoch. Considering all four types of intervals and combining the above results, the
arbitrary time state probabilities can be written as follows:

j=0,...,a-1,
*( 7 > - ; * * d T4
X()= Y PXO) =i T=1d p+(m+m)d +3 —, (11)
i=b+1 i=0
J=a... aS -1,
s
x*(j)= ) P(X(07) =i, T =1)d;  + (m+ m)d;, (12)
i=b+1
Jj=15,
S 00 00
(=D PXO)=iT=1) > d+(m+m)) &, (13
i=b+1 k=S—i+b k=S
where the joint probability P(X = i, T =type) is given by
P(X(0-) =i, T = type)=U)*Mype (14)

“Ytype

5. System characteristics

As the arrivals follow a Poisson process having the Markov property (cf.
PASTA: Poisson arrivals see time averages), the arbitrary time state probability
fromeq. (13) can be used directly to yield the blocking probability B:



420 H. Gold, P. Tran-Gia / Analysis of abatch service queue

B=x'(S). (15)

The mean waiting time EW in the queue can be derived applying the Little’s theo-
rem:

EX*
where
S
Ex* =) ix*(i) (17)
i=0

is the mean queue length. The amount of accepted traffic is A(1 — B). Hence, again
with Little’s theorem, we get the formula for the average number of jobs in the
server:

EY =\(1-B)EH . (18)

In particular, for use in production environments, the number of jobs the server
takes for each start is of interest. It indicates the efficiency of machine handling and
starting rules. This measure, the mean number of jobs per start, is given by

EY™ =gq i x(i) + bi ix(i) + b XS: x(i). (19)
i=0 i=a i=b

6. Substitute service time distribution functions

The service time of the batch server can be arbitrarily specified. However, in
order to have a parametric representation of the service time in the numerical
results discussed below, we adopt the two-moment substitution as proposed in
Kuehn [9] as well as in Tran-Gia and Raith [10]. The r.v. H be now characterized by
only two parameters: mean and coefficient of variation, where the following substi-
tute distribution functions F(¢) are used:

Casel:0<cyg <1

0, 0<t<,
Fu(t) = 1—e (-0t >4 (20)

wheret; = EH(1 — cy)and t, = EHcy.

Case2:cy>1
Fu(t) =1-pe™/" — (1 —p)e'™, (21)
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where
-1
cyg—1
ho=FEH|1+ and p=EH/24, pty=(1-p)t,.
’ i +1

With regard to the corresponding probability density functions, eq. (4) yields:

Casel:0<cy<l1

_ )Y S ((/n)0n + 1)
f‘(1+,\2t2)f+1e > ; 2 k!2 ‘ (22)
Case2:cy>1
()\tl)j ()\tz)j

4 (23)

=Py T (1-p) (1 + Myt

Based on the arrival probapbilities in egs. (22) and (23) the Markov chain state prob-
abilities are numerically calculated. Analogously, the arrival probabilities during
the recurrence time of the service time can be derived (cf. Tran-Gia and Raith

[10)):

Casel:0<cyg<l1

s 1 Ln) )
4 —m(l“ZTe tara? 24

with d; givenineq. (22).

Case2:cg>1

. () (Arz)!
7 2(1 + )\tl)j'H 2(1 + )\tz)j"'l ’

(25)

7. Numerical calculation of Markov chain state probabilities

In section 3 a recursive calculation scheme for the Markov chain state probabil-
ities has been stated. Recall that the stationary Markov chain state probabilities
are defined by

X(07) = lim X®(07) (26)

n—*o0o
assuming the limit exists. This property is guaranteed by the normalization condi-
tion in eq. (6) in conjunction with the Bolzano—Weierstrass theorem which indi-
cates that if 4 is a bounded set containing infinitely many points in a metric space S,
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then A has at least one limit point. As discussed, the calculation of the stationary
Markov chain state probabilities is reduced to the determination of eigen vectors of
the state transition matrix Q. Since the matrix Q for models depicted from a real
production environment is normally very large, in the numerical result section to
follow we calculate X (0™) iteratively according to egs. (5) and (6). Subsequently
the arbitrary time state probabilities according to section 4 and the performance
measures exposed in section 5 are evaluated.

8. Numerical results

In this section, we present numerical results for various classes of service pro-
cesses, different service starting or batch collection rules and under various load
conditions. In the discussion of the results we stress the influence of, firstly, the var-
iation of the service process, secondly, the service starting threshold dimensioning
and, finally, the traffic intensity on the mean waiting time and on the average num-
ber of jobs per start, keeping in mind that these are essential aspects in models con-
sidered in production environments.

In accordance with the substitute distributions discussed in section 7 we use a
D+M distribution and an H, distribution to obtain service time distributions with
0<cy<1 and cy>1, respectively. Note that this parametric representation
though an appropriate means for our purposes arises not quite as naturally as e.g.
the use of the negative-binomial distribution for a parametric representation of sto-
chastic processes in discrete-time domain. Since the time variables are standar-
dized by EH = 1, the offered traffic intensity is just p = A/b. In the following we
stick to the case of a M/G*? /1—S system with b = 32and S = 64.

Figure 3 shows the mean waiting time as a function of the traffic intensity. This
figure includes a family of curves for different values of the service starting thresh-
old (a=4,a=16) and coefficient of variation of the service time
(cg = 0,cy = 1). As can be seen, with traffic intensity very low the mean waiting
time is very high especially when the service starting threshold “a” is much larger
than one. With increasing traffic intensity waiting time decreases, takes its mini-
mum and finally tends to EW = S/b = 2 as the limit for p— oco. For the case of
deterministic service time the best batch collection rule is not to collect batches at
all but to start the server even with only a single job in the queue. In the case of
cy >0 there is a crossover of the waiting time diagrams for service starting thresh-
oldsa = 1 and a> 1. This is due to the fact that normally during shorter service per-
iods less jobs will arrive and thus the server is often caused to work inefficiently.
The reduction of waiting time gained by choosing the service starting threshold “a”
appropriately gets larger with growing coefficient of variation of the service time
and diminishes slightly with higher traffic intensity (fig. 4). The discontinuous
behavior of the curves in fig. 4 at the change of substitute distribution types
(cg = 1) is due to the unnatural element of the representation of the service time
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distribution mentioned above. We point out that there doesn’t exist a batch collec-
tion rule which is generally valid. Instead we have to analyze the model for some
given configuration and have to look for the optimal value of the service starting
threshold “a”.

Figure 5 shows that the optimal choice of “a” is not always as simple as for the
case with cg = 0 but becomes more critical for higher variation of service time. The
superposition of the diverse dependencies of the waiting time leads to a special
appreciation for the choice of the service starting threshold “a” for each set of para-
meters cy and p. In fig. 6 we show the blocking probability as a function of the traf-
fic intensity for different values of the service starting threshold “a” and
coefficient of variation of the service time c. As expected, the blocking probability
is smaller for the large service starting threshold and becomes higher for larger coef-
ficient of variation of the service time.

Up to now we judged the batch collection rule from the viewpoint of minimizing
the waiting time. Clearly, if our main point lies in utilizing the server in an efficient
way, the optimization issues are somewhat different. Figure 7 shows that for con-
stant service time and low traffic intensity the average number of customers per
start with small service starting threshold is significantly smaller than with larger
service starting threshold. In the case of high traffic intensity the service starting
threshold has no influence on the average number of customers per start. For the
coefficient of variation of service time cy = 1 the service starting threshold has an

0
Y

==

o000

|
VOO

2.0

mean waiting time EW
15

1.0

0.5

0 5 10 15 20 25 30 35
threshold a

Fig. 5. Threshold dimensioning aspects.
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influence on the average number of customers per start even when traffic intensity
is high, but fortunately the resulting appreciation for the choice of the service start-
ing threshold has the same tendency as under the optimization issue of minimizing
the waiting time. Regardless of the value of cy, in the case of low traffic intensity
the two different viewpoints of optimization impose contradictory consequences as
far as the choice of the service starting threshold “a” is concerned. Depending on
the question which viewpoint is more important, individual choice has to be taken
into account.
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