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Abstract

Recently, a general organizing principle has been reported connecting 1/ f-noise with
the self-similar scale-invariant ‘fractal’ properties in space, hence reflecting two sides
of a coin, the so-called self-organized critical state. The basic idea is that dynamical
systems with many degrees of freedom operate persistently far from equilibrium at
or near a threshold of stability at the border of chaos. Temporal fluctuations which
cannot be explained as consequences of statistically independent random events are
found in a variety of physical and biological phenomena. The fluctuations of these
systems can be characterized by a power spectrum density S(f) decaying as f~° at
low frequencies with an exponent b < 1.5. We present a new approach to describe
the individual biorhythm of humans using data from a colleague who has kept daily
records for two years of his state of well-being applying a fifty-point magnitude
category.scale. This time series was described as a point process by introducing
two discriminating rating levels R for the occurrence of R > 40 and R < 10.

For b < 1 a new method to estimate the low frequency part of S(f) was applied
using counting statistics without applying Fast Fourier Transform. The method
applied reliably discriminates these types of fluctuations from a random point pro-
cess, with b = 0.0. It is very tempting to speculate that the neural mechanisms at
various levels of the nervous system underlying the perception of different values of
the subjective state of well-being, are expressions of a self-organized critical state.
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1. INTRODUCTION

A variety of phenomena in nature exhibit temporal fluctuations in the absence of intentional
stimulation which cannot be explained as a consequence of statistically independent random
events. It has been shown that temporal fluctuations found in phenomena as different as
membrane currents, earthquakes, sunspot activity, light emitted from quasars, sand falling
through an hour glass, traffic flow, heart beat or breathing activity, can be characterized by
their power spectrum density S(f) decaying as f~° at low frequencies with 0.5 < b < 1.5.
This behavior of the temporal fluctuations of a system described by its S(f) is called
1/ f-noise.

Recently, it has been suggested! that the large fluctuations in time characterized as
1/ f-fluctuations and the self-similarity in space might both be manifestations of a self-
organized critical state. Self-organized criticality (SOC) describes the tendency of some
open dissipative many-body systems to drive themselves spontaneously to a critical state
with no characteristic time or length scales without any fine-tuning by external fields: hence
the criticality is self-organized. This is in contrast to the criticality of equilibrium systems
undergoing phase transition only at a critical external field, such as temperature, pressure,
electrical or magnetic field. The idea provides a unifying concept for large scale behavior
in systems with many degrees of freedom operating persistently far from equilibrium at or

near a threshold of instability, so to speak on the “border to chaos”.?

The SOC phenomenon is expected to be quite universal and we assume that it is the
underlying principle of some biological many-body systems. We present a new approach
to describe the individual biorhythm in humans using data from a colleague who has kept
standardized daily records for two years of his state of general well-being applying a fifty-
point magnitude category scale and analyze the temporal fluctuations by estimating the
power spectrum density in its low frequency range to characterize the self-similar temporal

rating sequences.

2. METHODS

The subjective intensity of well-being was measured with a linear category scaling procedure
(category partitioning)® with five categories each subdivided in ten steps: 1-10: very strong
“down”, 11-20: strong “down”, 21-30: moderate “down” /moderate “up”, 31-40: strong
“up”, 41-50: very strong “up”. Thus, the subject could, after choosing a major category,
fine-tune the rating of well-being by choosing a number within that main category. In
general, the daily ratings were performed at 6.00 a.m. and stored for subsequent analysis.
Occasionally, fluctuations within a day of the subjective well-being were observed, but were
not monitored and therefore neglected in this analysis.

As shown in Fig. 1, the time series of the daily ratings R can be described as a point
process by introducing discriminating rating levels for the occurrence of R > r, e.g. for the
occurrence of “ups” (cf. Fig. 2) and R < s, e.g. for the occurrence of “downs”.

Usually S(f) is obtained by Fast Fourier Transform (FFT). To avoid the well-known
problems in using FFT for the obtained point process, we used a new simple method based
on counting statistics? to analyse the low frequency part of S(f) of the recorded ratings of
human general well-being.
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Fig. 1 Daily ratings of the subjective well-being (biorhythm) for two years using a linear category scaling
procedure.

The series of recorded ratings after introducing a discriminating rating level is considered
to be a point process described as

=Y sty 1)

in- which 6(¢ — t;) represents Dirac’s delta function and t; is the time of occurrence of a
particular R > 7 or R < s within the train of n events. In the absence of severe intentional
stimulation y(t) is assumed to be statistically stationary. Another statistical variable derived
from Eq. (1) is the actual number of events N(At) occurring in a time interval At ranging
from t; to . Thus, N(At) can be expressed as

N(At) = /: 2": 5(t — t;)dt. 2)
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Fig. 2 Occurrence of ratings of the subjective well-being with R > 40 of the entire data set shown in
Fig. 1. The corresponding days are marked by Dirac’s delta functions §(t — ¢;).

The second time derivative of the variance of counts Var[N(At)], the so-called variance-
time curve, is related to the auto-covariance function of y, Cy(At) by®

C,(At) = %( VarlN(AD])' 3)

and therefore the key to determine the low frequency part of the spectrum Sy(f) is to
experimentally obtain Var[N(At)]. If the variance-time curve follows within certain limits

a power law
Var[N(At)] ~ (A1) withb< 1, (4)

then it can be shown using the Wiener-Chinchin theorem that the spectrum Sy, (f) scales as
Sy(f)~ 7 (5)

within fxnin < f < fmax.4’6
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The variance-time curve is defined by the variance of counts for time intervals of length
At as

Var[N (A1) = (NX(At)) - (N(At))? (6)

with (---) denoting expectation values. For estimating Var[N(At)], the entire observation
time T is divided into k counting windows of duration At with T = kAt and the variance
of counts is determined for this particular window At. This is repeated for different values
of At. The results were plotted as Var[N(At)] vs At on a log-log scale and fitted by linear
regression using the least square method.

3. RESULTS

In Fig. 1 the whole data set is shown, i.e., the daily ratings for two years are displayed. It is
obvious from the data, that the state of subjective well-being is not constant but fluctuates
in general from day to day. By no means these fluctuations taken as a whole are simple
oscillations describable by a sine function as it is often assumed by performing the so-called
biorhythm analysis.” In a rough approximation the data look as if the basic underlying
mechanism responsible for the subjective well-being is a two-state (“up”-“down”) system
with a certain endogenic dynamics.

By introducing discriminating rating levels for the occurrence of R > r to reveal the
fluctuations in the “up”, the data shown in Fig. 1 were transformed into a point process.
To obtain Fig. 2 the discriminating rating level was set to R > 40, i.e. the point process
shows the fluctuations of the strong “ups” of the subjective well-being irrespective of their
actual rating. Similar point processes showing the clusters of events described as §(t—t;) for
other discriminating rating levels were obtained and analyzed. In particular, for determining
the fluctuations in the occurrence of the “downs” R < 10 were chosen.

After introducing a certain R > r/ < s, for the resulting point process the low frequency
part of the spectrum S(f) was determined by using counting statistics as described in
Methods. Fig. 3 shows the result of the point process shown in Fig. 2, i.e. the Var[N(At)]
is plotted on a log-log scale versus the counting windows At. From the straight lines fitted
to the data points it is demonstrated that the variance-time curve follows the power law

Var[N(At)] ~ (At)H+065 ©)

for the scaling region 1d < At < 15d and thus the low frequency part of the spectrum scales
as

S(f)~ f70%8. (8)

For At > 15d a second scaling region was observed showing an almost random behavior
(b=0.17). )

Similar results, i.e. similar scaling behavior for the variance-time curve and for the spec-
trum was obtained for other discriminating levels, in particular for R < 10, i.e. for the
“downs”.
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Fig. 3 The variance-time curve Var{N(At)] for the point process shown in Fig. 2 plotted on a log-log scale
versus the counting windows At. The variance-time curve scales as (At)**® for 1d < At < 15d with b = 0.65
obtained by linear regression using the least square method with the indicated correlation coefficient r. For
the second scaling region, i.e. for At > 15d the exponent b = 0.17 indicates more random fluctuations of the
ratings R > 40.

4. DISCUSSION

Recently, also due to the introduction of the concept of self-organized criticality,! attention
has been drawn to the characterization of temporal fluctuations in a number of physical
and biological systems. In the following the discussion will be focused on the fluctuations
of endogenous biological rhythms.

The human heart rate, even in the healthy resting subject, displays a considerable
amount of fluctuations, which have been characterized as 1/f-fluctuations.®11 Further-
more, it was demonstrated that the heart rate variability of healthy men shows periods of
1/ f-fluctuations with interpolated periods of white noise within 24 hours.*13

In animal experiments it has been demonstrated that the fluctuations in respiratory inter-
vals also exhibited 1/ f-fluctuations, but these characteristic types of fluctuation disappeared
into white noise fluctuations when the end-tidal pco, was raised to 50 or 60 mmHg.!*

The fluctuating insulin requirements of an unstable diabetic over an eight-year period
have been subjected to spectral analysis and it was demonstrated that the low frequency
part of the spectrum did exhibit 1/f characteristics.!®

Recently, the spectral analysis of the discharge of neurones located in the mesencephalic
reticular formation during paradoxical sleep of the cat has revealed that in this state of
the animal 1/ f-fluctuations of the neuronal discharge do exist. However, the low frequency
spectral profile became flat, i.e. white noise was found during slow-wave sleep.!®17 So far,
also the thalamic neuronal discharge exhibited 1/ f-fluctuations in the absence of intentional
stimulation, but we have not seen the transition into white noise fluctuations.!®® Earlier,
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even for the discharges in primary afferent auditory fibres 1/f characteristics have been
reported.?°

It is tempting to speculate that the basic mechanisms underlying the neuronal and hu-
moral activity in the central nervous system responsible for the subjective state of well-being
in the absence of intentional stimulation are expressions of a self-organized critical state as
introduced for physical systems.! Self-organized criticality (SOC) describes the tendency of
dissipative systems with many degrees of freedom to drive themselves to a critical state with
a wide range of length and time scales without any fine-tuning of external fields. The idea
complements the concept of chaos, wherein simple systems with a small number of degrees
of freedom can display quite complex behavior.2!

Currently, it is hard to give a rigorous definition for SOC; however, usually this name is
given to those systems which do not need fine-tuning of external fields to give power-law
characteristics for the parameters describing the system. The canonical example of SOC is
the cellular automaton model called “sand-pile model”.! The critical state is characterized
by “avalanches” (activity) with power-law spatial and temporal distribution functions lim-
ited only by the size of the system. We assume that the subjective well-being dynamics can
be described as a self-organized critical process and characterize the temporal fluctuations
by its low frequency part of the power spectrum. The method applied reliably discrimi-
nates f~° fluctuations with b = 0.65 in our case in the first scaling region (cf. Fig. 3) from
a random point process, which would result in b = 0.0.

The exponent b will converge to the theoretical value only for infinite long sequences
of R§(t — t;).* Since in praxi the ratings are confined to limited time periods Tp.x, the
exponent b will be a function of Ty, i.e. b = b(Tmax)- In our case Tmay = 2 years, which
could result in an underestimation of the exponent b (cf. Ref. 4). In any case, the time
sequence of events with R > 40 (Fig. 2) is not the representation of a Poisson process,
1.e., of white noise. Therefore, without external stimulation based on one’s own monitored
biorhythm for a given time period it should be possible to predict future episodes with a
certain probability by applying modified feed-forward neural networks learning with the
backpropagation algorithm.

If the neuronal/humoral system responsible for the subjective well-being is indeed op-
erating at a critical state, an external perturbation can create either a small effect or a
large one. There is in principle no limit on how long the effect may last. The degree of
unpredictability is actually less severe than for chaotic systems; SOC systems are operating
at the “border of chaos”.? In SOC systems due to an external perturbation the maximum
predictability decays as a power law, t=*, where a is some constant.2? Fluctuations due
to external stimulation are much stronger in SOC systems than those being realized in an
equilibrium system and cannot be prevented. In case of the described biorhythm this would
mean that a transition from the “up” state to the “down” state due to a severe external
perturbation is inevitable for the individual.

As a very rough approximation the biorhythm displayed in Fig. 1 may be described by
a two-state, i.e., an “up”-“down” system with an intrinsic dynamics. Currently, with the
limited amount of data it is impossible to decide whether the neuronal /humoral system
responsible for the biorhythm is a representation of a general process which has been stud-
ied under the name stochastic resonance?®?* or is the realization of an alternating fractal

renewal process.?’
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