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Abstract— In the presence of local network outages, restoration
and protection switching mechanisms redirect the traffic over
alternative paths to mitigate the effect of failures. However, some
failure combinations still lead to loss of ingress-egress connectivity
within a network or to severe congestion due to rerouted traffic.
Congestion may also be caused by unexpected traffic shifts due to
changed user behavior or due to changes of interdomain routing.
This paper presents a framework for the analysis of ingress-egress
unavailability and congestion due to (1) failures, (2) changes of
user behavior, and (3) changed interdomain routing. It proposes
algorithms to find the most probable combinations of (1), (2), and
(3), and to evaluate the connectivity and the relative link load
of the network under these conditions. We have implemented
this concept in a software tool and its visualization of the results
leads to a comprehensive view of the network’s resilience. It
helps to anticipate potential ingress-egress disconnection and
congestion before failures and overload occur or before planned
modifications (new infrastructure, new routing, new customers)
take effect. Thus, it detects weak points in a network, predicts the
effectiveness of potential upgrades, and thereby supports careful
bandwidth overprovisioning.

I. I NTRODUCTION

Internet service providers (ISPs) promise a certain availabil-
ity and quality of service (QoS) to their customers. The nego-
tiated values are part of service level agreements (SLAs). The
ingress-egress unavailability of a network is the expectedtime
fraction during which the network connectivity for a certain
ingress-egress pair is lost. The availability is compromised by
failures if the border-to-border (b2b) connectivity between two
endpoints in the network is lost [1]. QoS in terms of packet
loss and delay degrades if congestion occurs in the network.
It is mostly caused by additional backup traffic in case of
failures [2] (1), overload due to exceptional user behavior(2),
or interdomain rerouting [3] (3). Restoration and protection
switching mechanisms redirect the traffic over alternative
paths in case of failures to mitigate their effect. Capacity
overprovisioning addresses the problem of fluctuations of the
traffic matrix over time and it can also reduce overload due
to redirected traffic [4]. However, some failure combinations
and load situations do still lead to b2b unavailability and to
severe congestion.

Resilience is the ability of a network to provide a good
service also under exceptional conditions. It is an important
issue in carrier grade networks and comprises the main-
tenance of both connectivity and QoS in case of failures
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and extraordinary load. The intention and contribution of
this paper is the efficient calculation and visualization ofa
network’s resilience. For our analysis, we define networking
scenariosz which have effect on the network’s availability
and the utilization of its links. They are characterized with
respect to (1), (2), and (3), and have a certain probability.
As an exhaustive investigation of all possible scenarios isnot
feasible, we first provide an efficient algorithm to generate
the set of most probable networking scenariosZ. This is a
great difference to most other resilience studies that consider
only a certain type of failures, e.g. all single link and/or
router failures. Correlated failures, i.e. shared risk groups
(SRGs) [5], can be modelled and multiple independent failures
are respected automatically. Furthermore, the effect on QoS
caused by simultaneous redirected traffic in failure scenarios,
fluctuations of the traffic matrix, and extra traffic due to
interdomain rerouting can be investigated. We evaluate theb2b
connectivity and the utilization of the links for each considered
networking scenarioz∈Z and collect these data in a statistic.
We propose several graphical representations of these datato
give a comprehensive view of a network’s resilience. They
are intuitive and help service providers with the definitionof
appropriate SLAs and network upgrades as they can visualize
their impact in advance.

This paper is structured as follows. Section II reviews
related work regarding network resilience. Section III explains
the framework for resilience analysis. Section IV illustrates the
results of the analysis using various visualization approaches,
performs sensitivity studies, and motivates the application
of the analysis for network upgrades. Finally, Section V
summarizes this work and draws conclusions.

II. N ETWORK FAILURES AND RESILIENCE

In this section, we review fundamentals about network
failures and resilience mechanisms that deviate the traffic
around outage locations in the network. We give an overview
of related work and clarify our contribution.

A. Network Failures

A good overview and characterization of network failures
is given in [6], [7]. We can distinguish planned outages and
unplanned failures. Planned outages are intentional, e.g.due
to maintenance, and operators can take measures in advance.
Unplanned outages are hard to predict and can be further
subdivided into failures with internal causes (e.g. software
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bugs, component defects, etc.) and those with external causes
(e.g. digging works, natural disaster, etc.).

Quantitative analyses and statistics about frequency and
duration of failure events that occur in operational networks
like the Sprint IP backbone are given in [8], [9]. They show
that link failures are part of common network operation and
the majority of them is short-lived, i.e., their duration isshorter
than 10 minutes. Moreover, they indicate that 20% of all
failures are due to planned maintenance activities. Almost30%
of the unplanned failures are shared by multiple links and can
be attributed to router-related and optical equipment-related
problems, while 70% affect only a single link at a time.

The mean time between failures (MTBF) and the mean time
to repair (MTTR) are used to characterize the unavailability
of a network element which isp= MTTR

MTBF . Different values for
MTBF and MTTR can be found in the literature for nodes
and for links [6], [7], [10]–[12]. In this study, we choose
MTTR=2 h andMTBF=2·106 h for nodes, i.e., each nodev
has the same unavailabilityp(v)=10−6. The unavailability of
a link increases with its length. We assumeMTTR=12 h and
a mean distance per cable cut and year ofMDCCY= 800 km
to calculate theMTBF(l)= MDCCY

L(l) ·365·24 h for a linkl with
lengthL(l). Thus, a linkl with a length ofL(l) = 100 km has
an unavailability ofp= 100 km·MTTR

MDCCY·365·24 h =1.71·10−4.

B. Resilience Mechanisms

In case of a network failure, resilience mechanisms redi-
rect the affected traffic around the failure location. They
can be classified into protection switching and restoration
mechanisms. Protection switching establishes backup paths
in advance while restoration finds a new path only after a
failure occurs. Therefore, protection switching reacts faster
than restoration and is usually applied by lower layers. A
good overview can be found in [6], [7]. In this study, we use
IP rerouting for illustration purposes, but our framework does
not depend on any specific routing or resilience mechanism.

IP networks implement destination based routing and calcu-
late the routing tables in a distributed manner according tothe
shortest path principle. If several shortest paths exist towards a
destination, the traffic may be forwarded to a suitable interface
with the lowest ID [13, Section 7.2.7]1, which is single shortest
path (SSP) routing, or it may be split equally among all
interfaces of the shortest paths, which is called equal-cost
multipath (ECMP) routing. If a link or node fails, the routing
tables are automatically recalculated and the traffic follows
the next shortest paths after some time required for signalling
and path calculations [14]. Thus, the b2b IP connectivity is
maintained as long as the network is physically connected.
In our study, we use ECMP with the standard hop count
metric, i.e., all link costs are set to one. Link costs may be
manipulated for traffic engineering purposes, e.g., to minimize
the link utilization under normal conditions [15] or to make
the network robust against link failures [16]–[20], but this is
not the focus of this paper.

1This rule does not hold for OSPF and not all routers running IS-IS
implement it.

C. Related Work Regarding Resilience Analysis

The authors of [21] present calculations for the b2b avail-
ability of various resilience mechanisms, e.g. dedicated and
shared primary and backup path concepts or restoration meth-
ods. When rerouting in networks is considered, multiple fail-
ures affect the availability which leads to complex calculations.
Therefore, either a limited number of the most probable failure
scenarios is taken into account [22] or the analysis is limited
to single or double failures only. In [23]–[26] the impact
of double failures is analyzed in networks that are resilient
to single failures. Most papers regarding resilience issues
consider only the b2b availability [27], but some other studies
also take the expected lost traffic (ELT) as a performance
measure into account to quantify the missing capacity during
failures [10], [12]. To reduce the ELT, backup capacity is
required that may be used by low priority traffic during failure-
free operation of the network [28]. Resilience can also be
considered on the application layer, e.g., the availability of
services can be improved by alternative servers and caching
techniques [29]. NetScope is a tool to calculate the load on
the links of a network to predict the effect of various traffic
matrices, special failure scenarios, or alternate routing[30].
Our approach can be viewed as a statistical analysis of this
idea regarding multiple networking conditions. The authors of
[31] consider the completion time of IP reroutes. Within that
interval routing loops can occur that lead to temporary lossof
connectivity and transient SLA violations. The study provides
various statistics based on simulation experiments and shows
that networks with similar topological properties can lead
to significantly different “goodness factors”. In contrastto
our work and this study addresses only temporary service
disruptions due to routing dynamics but not due to topological
disconnection.

D. Contribution of this Work

The framework presented in the next section calculates
the b2b availability of a network and the complementary
cumulative distribution function (CCDF) of the link load
depending on network failures and traffic fluctuations. It is
a unification of the methods in prior work [27], [32] where
traffic variations have not been considered.

Most approaches in literature are static in the sense that
they respect only explicitly specified failures of one or two
network elements. However, the probability of multiple net-
work failures grows with increasing network size. We respect
these failures if their probability is large enough. Failure
combinations with lower probability are neglected in the
analysis, but we give bounds on the uncertainty of our results.
In addition, our software tool is able to model failures on a
finer scope than links and nodes since line cards and router
interfaces can also be represented. However, in this study,we
model the network only with links and nodes.

Network providers need to know the availability of their
networks. Different views on the availability help them to
discover different weaknesses. Our tool provides statistics
for the consequences of the network availability on specific
b2b aggregates, on the connectivity of a specific node to all
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other nodes in the network, and on the overall traffic in the
network. For most other studies the availability of individual
b2b aggregates is the sole result. Our tool is not limited to
a specific resilience mechanism which is unlike many other
studies. In particular, it handles IP rerouting, the most widely
used restoration mechanism, which is more difficult to ana-
lyze than simple primary-backup path structures. Regarding
potential overload, we provide the CCDF of the load on
every link relative to its bandwidth instead of the overall ELT.
This information helps network providers to decide whether
individual link capacities suffice to provide QoS also in the
presence of the most probable failures and changes of the
traffic matrix [4]. We propose different performance measures
that map the complex information of the CCDFs into a single
number. This is useful in practice because it helps to quickly
identify the links with the largest risk to be overloaded.

III. R ESILIENCE ANALYSIS

Network failures and abnormal traffic matrices lead to un-
availability of the network for ingress-egress pairs and toover-
load on links. The analysis assigns reasonable probabilities to
failure scenarios and abnormal traffic matrices, and identifies
the most relevant combinations of them in order to analyze
them and to derive statistical measures for unavailabilityand
overload in the network.

A. General Notation

A network topology is given by a graph consisting of a
set of nodesV and linksE . We use the Nobel network [33]
in Figure 1 with 28 nodes and 41 bidirectional links for
illustration purposes in Section IV. The bandwidth of a link
l ∈E is denoted byb(l). The network is expected to carry
a set of traffic aggregatesG= {(v,w) : v,w∈V}. The traffic
matrix h determines the ratech(g) of each aggregateg∈G. A
network failure is characterized by its set of failed elements
s⊆(V ∪E). Thus, the empty set ( /0) stands for the failure-free
scenario. We characterize a networking scenarioz=(s,h) by its
failed elementss and its traffic matrixh. There is a multitude
of failure scenarioss and traffic matricesh with a very low
probability p(s) and p(h). They lead to an even larger set of
combined networking scenarios with even lower probabilities
p(z) = p(s) · p(h). Therefore, an exhaustive investigation of
all possible networking scenarios is not feasible. Finally,
the functionu(g, l ,s) describes the routing and indicates the
fraction of the aggregateg using link l in failure scenarios.

B. Generation of Relevant Networking Scenarios

A networking scenarioz needs to be considered only if its
probability is sufficiently high, i.e. it meets a certain threshold
p(z) ≥ pmin. We identify a set of relevant failure scenarios
S and find then for eachs∈ S a set of traffic matrices
H(s) that leads to the set of relevant networking scenar-
ios Z={(s,h) : s∈S,h∈H(s), p(s) · p(h)≥ pmin} for our re-
silience analysis. We first show how the set of relevant failures
S can be obtained efficiently. Then we present exemplary
models for traffic matricesh that capture exceptional user
behavior and interdomain routing, and use them to generate
the networking scenariosZ.

ID(v) name(v) π(v)

2 Stockholm 1 872 900

1 Oslo 801 028

3 Madrid 5 964 143

4 Athens 3 187 734

5 Glasgow 1 168 270

6 Dublin 1 600 000

7 Barcelona 3 120 000

8 Bordeaux 753 931

9 Copenhagen9 1 212 485

10 Warsaw 1 692 854

11 Rome 2 542 003

12 London 8 278 251

14 Belgrade 1 120 092

13 Lyon 1 348 832

15 Zagreb 691 724

16 Budapest 1 695 000

17 Hamburg 2 532 565

18 Prague 1 165 581

19 Milan 1 271 898

20 Vienna 1 878 759

26 Amsterdam 1 453 003

21 Brussels 1 007 000

22 Strasbourg 427 245

24 Zurich 1 075 230

25 Munich 1 920 063

23 Frankfurt 1 902 815

27 Paris 9 644 507

28 Berlin 3 388 477

Fig. 1. European Nobel network and the populations of the corresponding
cities and surrounding areas.

1) Constructing the Set of Relevant Failure ScenariosS:
We assume that single link and node failures can occur as
independent failure events and denote this set byŜ. The
probability p(ŝ) of a failure event ˆs∈Ŝ is the unavailability
p(l) or p(v) of the corresponding link or node in Section II-A.
Our framework can model failure events on a finer scale such
as fiber cuts, line card failures, or other internal failuresof a
router, but we decided to stick with this level of abstraction
for our study. The failure events ˆs∈ Ŝ are assumed to be
independent of each other, but shared risk groups (SRGs) such
as shared risk link or node groups (SRLG, SRNG) [5] can be
modelled by virtual elements ˆs indicating the simultaneous
failure of several resources. We number the events ˆsi in an
ascending order with regard to their probabilityp(ŝi). We
define a compound failure scenarios⊆ Ŝ as a subset of
independent failure events ˆs∈Ŝ that occur simultaneously. Its
probability is

p(s)=(Πŝ∈sp(ŝ)) ·
(

Πŝ∈Ŝr s(1− p(ŝ))
)

. (1)

The setS contains all (compound) failure scenarioss⊆Ŝ with
probability p(s)≥ pmin wherepmin is the probability threshold
for relevant networking scenarios.

Algorithm 1 (RFS) constructs the set of relevant failure
scenariosS starting withS = /0. The recursive procedure is
invoked with RFS(0, /0,1), i.e. the initial independent failure
event to be considered is ˆs0, the initial partial failure scenario
is s∗ = /0, and its preliminary probability isp(s∗) = 1. The
algorithm recursively steps through the set of independent
failure events ˆsi∈Ŝ. It constructs a compound failure scenario
s∗ incrementally and the recursion ends either if the probability
p(s∗) of the partial compound failure scenarios∗ is lower
than pmin or if all independent failure events ˆsi∈Ŝ have been
considered as potential members ofs∗. In the latter case, the
failure scenarios∗ joins S at the end of each recursion. At
program termination, the setS contains all compound failure
scenarios with a probability of at leastpmin.
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Input: failure event numberi, partial scenarios∗,
and its probabilityp(s∗)

if (p(s∗)≥ pmin) then {partial scenarios∗ still probable
enough}

if (i = |Ŝ|) then {all independent failure events ˆsi

have been considered}
S ← S ∪{s∗}

else
s∗2 = s∗

RFS(i +1,s∗∪ ŝi , p(s∗) · p(ŝi))
RFS(i +1,s∗2, p(s∗2) · (1− p(ŝi)))

end if
end if

Algorithm 1: RFS: constructs the set of relevant failure
scenariosS.

2) Generation of Traffic Matrices:Traffic matrices of real
networks fluctuate over time in a 24 h and 7 day period.
However, when we talk about fluctuations of the traffic matrix,
we understand the deviation from the usual maximum of the 7
day period, i.e. the busy hour. We use the simple gravity model
[34] to generate traffic matrices for the illustration of our
analysis. It can be easily replaced by other, more sophisticated
models in the future. Then, we extend it towards overload due
to local hot spots and overload due to interdomain rerouting.
Finally, we explain how to determine those traffic matrices
that need to be considered in our analysis.

a) Normal Traffic Matrix: For the illustration in Sec-
tion IV we use the model from [35] where the ratec(v,w) of
a b2b traffic aggregate between nodev andw is proportional
to the populationπ(v) and π(w) in the area ofv andw. The
population numbers are given for our test network in Figure 1
[36]. Finally, the ratec(g) of a b2b aggregateg=(v,w) can
be calculated based on a given overall traffic rateCtot by the
following equation:

c(g=(v,w)) =

{ π(v)·π(w)·Ctot
∑x,y∈V ,x6=y π(x)·π(y) if v 6= w

0 if v = w
. (2)

b) Changed Traffic Matrix Structure due to Local Hot
Spots: Increased load in networks can occur locally. We
capture this by hot spots according to [4]. A hot spot is a
node with traffic attraction increased by a factorfHS. We use
fHS=2 in our study. We model a hot spot by modifying its
population using

πv
hotspot(w) =

{

π(w) if w 6= v

fHS·π(w) if w = v
. (3)

before Equation (2) is applied. Every node is a potential hot
spot with a probability ofpHS and even several hot spots may
occur simultaneously. Therefore, we characterize simultaneous
hot spots by the set of routers with increased attractiveness
VHS⊆ V. The normal scenario without hot spots is described
by VHS= /0. The probability of a hot spot scenario is

p(VHS) =
(

Πv∈VHSpHS
)

·
(

Πv/∈VHS
(1− pHS)

)

. (4)

This overload model is conservative since it does not increase
the overall traffic in the network. It causes a traffic shift and
changes the structure of the traffic matrix. As a consequence,
an increased or decreased load on the links can be observed.

c) Increased Traffic Rates due to Interdomain Rerouting:
Due to BGP misconfiguration or other failures, interdomain
routing may change, and specific border routers may tem-
porarily receive increased traffic rates. We call this increased
load due to interdomain rerouting. It is a rather complex
phenomenon [3], but we want to keep things simple to
study only fundamental effects in Section IV. We model an
interdomain rerouting locationv by adding thefIR-fold to the
rates of all aggregates starting or terminating inv, which are
calculated according to Equation (2) and Equation (3). Thus,
in contrast to hot spots, interdomain rerouting increases the
traffic rate in the network. Basically, changes of interdomain
routing can also reduce the received rate of a border router,
but this is not of interest in our study. We assume that a
node receives additional traffic from outside its domain with a
probability of pIR and with an additive interdomain rerouting
factor of fIR =1. This can happen to every border node and
also simultaneously to several nodes. This general situation
can be denoted by a setVIR ⊆ V containing the interdomain
rerouting locations, i.e.,VIR= /0 describes the normal scenario.
The probability of a specific interdomain rerouting event is

p(VIR) = (Πv∈VIR pIR) ·
(

Πv/∈VIR
(1− pIR)

)

. (5)

If both endpoints of an aggregate are interdomain rerouting
locations, its traffic rate is(1+2· fIR) times larger than normal.

d) Construction of Relevant Traffic MatricesH(s): A
traffic matrix h=(VHS,VIR) is characterized by the set of hot
spots and the set of nodes that are overloaded due to interdo-
main rerouting. Its probability isp(h) = p(VHS) · p(VIR). The
set of relevant traffic matricesH(s) for a relevant failure sce-
narios comprises all traffic matricesh with p(s) · p(h)≥ pmin.
It can be efficiently computed by an algorithm similar to
Algorithm 1. To guarantee that each relevant failure scenario
s∈ S, i.e. p(s) ≥ pmin, is combined with at least one traffic
matrix, we define that the normal traffic matrixh=( /0, /0) is also
contained in any set of relevant traffic matricesH(s). However,
its probability is only p(h=( /0, /0))=(1−pHS)

|V| · (1−pIR)|V|

which is close to 1, but still smaller than 1. As a result,
some networking scenariosz= (s,h) with h∈H(s) can have a
probability slightly smaller thanpmin. Thus, the set of all rel-
evant networking scenariosZ = {z= (s,h) : s∈ S,h∈H(s)}
we consider in our analysis can be slightly larger than ex-
pected. However, this has no impact on the correctness of the
analysis.

C. Calculation of the Ingress-Egress Unavailability of the
Network

The calculation of the exact network unavailabilitypdis(g)
for a b2b aggregateg=(v,w) is in general too complex since
it requires the consideration of all possible failure scenarios.
It can be approximated based on the set of relevant failure
scenariosS by the conditional probability

pSdis(v,w) =
1

p(S)
·∑

s∈S
p(s) ·DISCONNECTED(v,w,s) (6)

4



which respects only the relevant failure scenariosS. The
function DISCONNECTED(v,w,s) yields 1 if nodesv andw are
disconnected in the presence of failure scenarios; otherwise
it yields 0. The valuespSdis(v,w) are not exact since only the
relevant failure scenarios are considered in Equation (6).We
get a lower and an upper bound forpdis(v,w) by

pmin
dis (v,w) = p(S) · pSdis(v,w) and (7)

pmax
dis (v,w) = p(S) · pSdis(v,w)+(1− p(S)) ·1. (8)

The upper bound is exact ifv and w are disconnected in all
unconsidered failure scenarios. Likewise, the lower boundis
exact if they are connected.

D. Calculation of the Relative Link Load

Another objective of our analysis is the assessment of
potential overload. To that end, we first calculate the load
cz(l) for every link l for all relevant networking scenarios
z∈Z. We consider this loadcz(l) of a link l relative to its
bandwidthb(l) and call it the relative link loadρz(l) = cz(l)

b(l) .
We then compute the complementary cumulative distribution
function (CCDF) of the relative link loads which is induced
by the probabilitiesp(z).

Algorithm 2 computes for alls∈ S the routing function
u(g, l ,s) that determines the fraction of the traffic aggregatesg
which use linkl in the presence of the failure scenarios. Then,
it computes for all relevant networking scenariosz∈Z and
for all links l ∈E in the network a load setL(l) with tuples
(z,cz(l)). The loadcz(l) on the linkl in networking scenarioz
is the sum of the traffic contributions from all traffic aggregates
g∈G to that link. Note that this algorithm is fast because the
routing function is calculated once for every relevantfailure
scenarios∈S in the outer loop of Algorithm 2 and not in the
inner loop for every relevantnetworkingscenarioz∈Z.

Input: set of relevant failure scenariosS
for all s∈ S do

u(., .,s)← CALCULATE ROUTING(s)
for all h∈H(s) do

z← (s,h)
for all l ∈ E do

cz(l)← 0 {initialization}
for all g∈ G do

cz(l)← cz(l)+ch(g) ·u(g, l ,s)
end for
L(l)←L(l)∪ (z,cz(l))

end for
end for

end for

Algorithm 2: CALCULATE LOAD: calculates the loadcz(l) for
each link l ∈E for all relevant networking scenariosz∈Z.

The load setL(l) depends onZ and its information helps
to derive the conditional CCDF of the relative link load by

P(ρ(l) > r|Z) =
1

p(Z)
· ∑
{(z,cz(l))∈L(l):ρz(l)>r}

p(z). (9)

Note that ρ(l) can be viewed as link utilization when its
value is below 1. The CCDF for the relative link load of
Equation (9) is only an approximation because the probability
p(Z)=∑z∈Z p(z) of all considered networking scenariosZ is
usually smaller than 1. However, we can give a lower and an
upper bound for the unconditioned CCDFP(ρ(l) > r) of ρ(l)
by

Pmin(ρ(l)> r) = P(ρ(l)> r|Z) · p(Z) and (10)

Pmax(ρ(l)> r) = P(ρ(l)> r|Z) · p(Z)+(1−p(Z)). (11)

IV. I LLUSTRATION OF THE RESILIENCE ANALYSIS

This section illustrates the application of the presented
resilience analysis in the Nobel network in Figure 1. Single
shortest path routing based on the hop count metric is applied
and in case of network failures, the traffic is rerouted. We
consider in our analysis independent link and node failures,
independent hot spots, and independent extra traffic at border
routers. First, we illustrate the analysis of the network avail-
ability and then the analysis of the relative link load.

A. Analysis of the Network Availability

In this subsection, we calculate the network unavailability
with a minimum probability threshold for relevant failure sce-
narios ofpmin=10−10. This threshold is computationally well
feasible and covers a large set of multiple failure scenarios.
We choose this very low value to obtain very accurate results
for the unavailability and low upper bounds. We present the
unavailability from different perspectives and then show how
incremental upgrades of the network improve its availability.
Finally, we conduct a sensitivity analysis concerning the
assumed link and node failure probabilities.

1) Network Availability from Different Perspectives:We
propose three views on the conditional disconnection proba-
bilities pSdis(v,w) (cf. Equation (6)) with different aggregation
levels. This helps to identify aggregates and points of presence
(PoP) with a high unavailability or give an overall impression
of the network’s unavailability for all aggregates. We consider
first the network unavailability in the default network as
depicted in Figure 1.

a) Network Availability for Specific Aggregates:Fig-
ure 2(a) illustrates the network’s unavailability for the bidi-
rectional aggregates between router Madrid (ID 3) and any of
the 27 other routers in the network. The height of the columns
shows the unavailability of the network on a logarithmic y-axis
for the aggregates between Madrid and the peer routers indi-
cated by the column numbers. The white columns correspond
to the network as presented in Figure 1 while the gray shaded
columns correspond to improved network topologies that are
discussed later. The aggregates are arranged along the x-axis
in descending order of their unavailability. The column widths
are proportional to the traffic volume of the aggregates from
the normal traffic matrix such that their relative importance is
revealed.

Figure 2(a) shows that only low availability can be guaran-
teed especially for the aggregates from Madrid to routers 1,2,
4, 5, 6, and 9 which should be improved or respected in the
SLAs.
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the overall traffic.

Fig. 2. B2B network unavailability from different perspectives.

b) Network Availability for Specific Points of Presence:
We average the network’s conditional unavailability for all
b2b aggregates of a router by a weighted sum and obtain
the conditional average unavailability of the network fromthe
view of a single router by

pSdis(v) =
∑w∈V,w6=v

(

pSdis(v,w) ·c(v,w)+ pSdis(w,v) ·c(w,v)
)

∑w∈V,w6=v (c(v,w)+c(w,v))
(12)

under the condition that only the relevant failure scenarios
S are respected. Figure 2(b) shows the average unavailability
of the network from the perspective of each router. The x-
axis indicates the node IDs. For the sake of easier readability,
we have arranged the node IDs in Figure 1 according to
the descending order of the network’s unavailability from
their perspective. The figure quickly shows that the network’s
unavailability from the perspective of routers 1 – 9 is rather
large and should be improved or respected in SLAs.

c) Network Availability for the Overall Traffic:To char-
acterize the unavailability of the network relative to the overall
traffic, we calculate the CCDF regarding the unavailability
pSdis. To that end, we consider the unavailability of all b2b
aggregates and weight them with their rates:

P(pSdis > x) =
∑g∈G:pSdis(g)>xc(g)

∑g∈G c(g)
(13)

Figure 2(c) shows that for about 45% of the traffic the network
unavailability is about 2· 10−6, and for about 55% of the
traffic it is larger than this value. The value 2· 10−6 is a
lower bound for the minimum b2b network unavailability for
an aggregate because the network is unavailable if the source
or destination router fails and the unavailability of a nodeis
assumed to be 10−6. Figure 2(c) shows that this minimum
value can be reached for about 45% of the overall traffic.
Figure 2(b) illustrates that the network unavailability averaged
over the traffic of a single router is at least 3·10−6 because
every router has some aggregates with rather low availability.

2) Improving the Network Availability:Figure 2(b) sug-
gests that the availability of routers (1) – (9) should be
improved. Therefore, we successively add additional linksand
visualize their impact on the different unavailability reports.
We insert links from Madrid to Lyon, from Barcelona to
Athens, and from Stockholm to Copenhagen and discuss how
they influence the network’s availability. We assume that these
links do not share common risks with other links.

a) Adding the Link Madrid↔Lyon (3↔13): Figure 2(a)
shows that the network unavailability for all aggregates starting
and ending in Madrid is strongly reduced when the link from
Madrid to Lyon is added. The unavailability of most aggregates
approaches even the theoretical value of 2·10−6. Figure 2(b)
illustrates that the average unavailability of PoP Madrid (3)
decreases from more than 6· 10−6 to less than 3· 10−6 and
those of PoPs Barcelona (7) and Bordeaux (8) decrease from
more than 5·10−6 to less than 4·10−6. This is because the
new link reduces the number of double link failures that
disconnect these cities from most of the other cities. The
unavailability for other PoPs is only slightly reduced. The
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CCDF in Figure 2(c) also shows that the b2b unavailability
for a significant amount of traffic is reduced partly to a lower
level of 3· 10−6 and partly even to the theoretical lower
bound of 2·10−6. However, a good portion of the traffic still
faces a large network unavailability. Especially the largecities
Barcelona and Athens contribute to that effect because they
are connected to the network with only two links.

b) Adding the Link Athens↔Barcelona (4↔7): Fig-
ure 2(b) illustrates that adding the link between Athens and
Barcelona decreases the average unavailability of the corre-
sponding PoPs from about 4·10−6 and 6·10−6 down to a bit
more than 2·10−6 while the unavailability for other PoPs is
hardly reduced. The CCDF in Figure 2(c) shows that the b2b
unavailability for a significant amount of traffic decreasesto
the theoretical lower bound of 2·10−6 – this is traffic starting
or ending in Athens or Barcelona.

c) Adding the Link Stockholm↔Copenhagen (2↔9): Fi-
nally, we add a new link between Stockholm and Copenhagen.
Figure 2(a) shows that the network availability for Madrid’s
aggregates to these two cities is significantly improved, but
also the availability for the aggregate from Madrid (3) to
Oslo (1) improves notably. Figure 2(b) illustrates that the
availability of Stockholm (2), Copenhagen (9), and Oslo
(1) is visibly improved, but the unavailability of Stockholm
and Copenhagen remains larger than the one of the ma-
jority of other routers since simultaneous failures of the
links Copenhagen↔Berlin (9↔28)and Stockholm↔Warsaw
(2↔10) still disconnect these cities from the rest of the
network. Therefore, the improvement by the new link is rather
limited. In addition, the Scandinavian cities are rather small
such that only a minor fraction of the overall traffic benefits
from the new link. This can be nicely observed in Figure 2(c).

Our resilience analysis and the graphical summary reports of
the results help to get a quick impression of the network avail-
ability for the overall traffic (Figure 2(c)), PoPs with onlylittle
network availability can be easily found (Figure 2(b)), and
individual aggregates with a large network unavailabilitycan
be identified (Figure 2(a)). This knowledge provides suitable
availability values for SLAs, it gives hints where to upgrade
the network to increase its availability, and supports network
planners in strategic decisions. The network availabilitycan
also be improved by providing alternative border routers for
interdomain traffic. This aspect can be well integrated in our
framework by modifying the routing function in such a way
that traffic is carried in case of an egress node failure to an
alternative egress node.

3) Sensitivity Analysis w.r.t. Unavailability Assumptions:
The above results are based on assumed unavailability val-
ues for nodes and links as described in Section II-A, i.e.
p(v) = 10−6 for nodes, a mean distance per cable cut and
year of MDCCY = 800 km and a mean time to repair of
MTTR= 12 hours. In our sensitivity analysis we consider
p(v) = 10−6 and p(v) = 10−5 and a mean distance per cable
cut and year ofMDCCY= 400 km andMDCCY= 1600 km.
We perform the experiments for the base network without
additional links. Figure 3 shows the impact of different link
and node unavailabilities on the network unavailability seen
by the overall traffic. The minimum network unavailability

is about 2· p(v) and the logarithmic x-axis makes this large
impact of the node availability on the network availabilityof
the overall traffic obvious. The link availability also has asig-
nificant influence. Thus, a careful assessment of the availability
parameters is required before applying this availability analysis
for practical purposes.
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Fig. 3. Conditional CCDF of the b2b network unavailability seen by the
overall traffic: sensitivity against assumptions about linkand node unavail-
ability.

B. Analysis of Potential Overload

We analyze potential overload in networks which is caused
by redirected traffic, traffic hot spots, or by extra traffic due to
interdomain rerouting. As “overload” is not well defined, we
look at the CCDF of the relative link load. We study the impact
of the probability thresholdpmin that controls the size of the
set of relevant networking scenariosZ in our analysis and the
influence of the assumed link and node unavailabilities. Then,
we consider the impact of additional hot spots and interdomain
rerouting on the relative link load. As the information given
by the CCDFs is too complex for practical applications, we
finally propose several functions that map the CCDFs to simple
numbers characterizing the risk of overload on a link.

For the analysis of the relative link load we dimension
the link capacities of our test network such that 20% of
their capacity is utilized in case of failure-free operation and
the normal traffic matrix. This dimensioning rule disregards
available capacity granularities, but we use this setting only for
the illustration of our framework and in particular to facilitate
the interpretation of the presented results.

1) Impact of the Probability Threshold for the Relevant
Networking Scenarios:We consider the resilience of the Nobel
network for the normal traffic matrix without hot spots and
rerouted interdomain traffic. Figures 4(a)–4(c) show the CCDF
of the relative load for the link from Brussels to Frankfurt
on a logarithmic scale. Thus, the curves show the probability
that the relative link load is larger than a certain valuer.
The considered networking scenariosz∈ Z are illustrated by
crosses ‘+’ and their positions indicate their relative link load
and probability (ρz(l), p(z)). They cause the decay of the
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Fig. 4. Conditional CCDF of the relative link loadρ(l) for the link between
Brussels and Frankfurt together with a lower and an upper bound for the
unconditioned CCDF.

CCDF. In our software tool the crosses are interactive such
that the respective networking scenarios are displayed when
the mouse is dragged over them.

The curve in Figure 4(a) is calculated based on a threshold
of pmin = 10−4 which leads to a set of|Z|= 42 relevant
networking scenarios with an overall probability ofp(Z)=
0.99937. The solid line is the conditional CCDF of the relative
link load based on the set of relevant networking scenariosZ
only. The graph also shows a lower and an upper bound for
the unconditioned CCDF. The distance between the curves
of these bounds is exactly 1−p(Z), but it looks wider for
smaller probability values due to the logarithmic scale of the
y-axis. The valuepmin=10−4 is rather large and leaves a high
uncertainty regarding the unconditioned CCDF in the range of
interest where the link tends to be overloaded.

We plot the CCDF forpmin = 10−7 and pmin = 10−10 in
Figures 4(b) and 4(c). Their corresponding sets of relevant
networking scenarios are significantly larger with|Z| = 888
and |Z| = 12468 elements such that they cover a probability
of p(Z)=0.9999921 andp(Z)=0.999999910, respectively.
As a consequence, Figure 4(a) contains only one cluster of
networking scenariosz which are only single link failures.
Figure 4(b) contains two clusters as it also includes double
link and single node failures. Figure 4(c) contains even three
clusters because also triple link and combined double link and
single node failures are respected. Furthermore, the conditional
CCDFs have different shapes in the right part of the graph
and the distance between the upper and lower bound for the
conditioned CCDF becomes smaller with decreasingpmin.
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Fig. 5. Conditional CCDF of the relative link loadρ(l) for the link between
Brussels and Frankfurt andpmin = 10−10: sensitivity against assumptions
about link and node unavailability.

2) Sensitivity Analysis w.r.t. Unavailability Assumptions:
The results presented above are based on assumed unavail-
ability values for nodes and links as described in Section II-
A, i.e. p(v) = 10−6 for nodes, a mean distance per cable cut
and year ofMDCCY= 800 km with a mean time to repair of
MTTR= 12 hours. We perform a sensitivity analysis similar
to Section IV-A.3. We considerp(v) = 10−6 and p(v) = 10−4

and a mean distance per cable cut and year ofMDCCY= 400
km and MDCCY = 1600 km and take the Nobel network
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Fig. 6. Impact of failures (1), hot spots (2), interdomain rerouting (3) on the conditional CCDF of the relative link load for pmin=10−10.

without any additional links for our experiments. Figure 5
shows the impact of different link and node unavailabilities
on the overload probabilities of the link between Brussels and
Frankfurt in analogy to Figure 4(c). The major difference is
observed between the curves with different link availabilities
while there is only a small difference between curves with
different node availabilities. Curves forp(v) = 10−6 and
p(v) = 10−5 almost completely coincide, therefore, we used
p(v) = 10−4 instead. This is in contrast to Section IV-A.3
which shows that node availabilities have the larger impacton
the network unavailability for the overall traffic. This canbe
explained as follows. Most (even multiple) link failures donot
disconnect the network such that link failure probabilities do
not impact the network availability. However, every link failure
leads to traffic rerouting, therefore, it is evident that link failure
probabilities have an impact on overload probabilities. The
impact of node failures on the CCDF is smaller than the one
of link failure because node failure probabilities are smaller
than link failure probabilities. Hence, for potential overload
analysis in practice, it is important to have a good estimatefor
link failure probabilities while exact values for node failures

are secondary as long as they are significantly smaller than
link failure probabilities.

3) Impact of Hot Spots and Interdomain Rerouting:In
the following we investigate and compare the impact of
hot spots, inter-domain rerouting, and failures. To that end,
we assume that a node is a hot spot for 15 minutes per
year, i.e.pHS = 15

365·24·60, with a multiplicative hot spot factor
of fHS = 2. The same holds for interdomain rerouting, i.e.
pIR = 15

365·24·60, and an additive interdomain rerouting factor
of fIR = 1. Figures 6(a)–6(b) show the conditional CCDFs
of the relative load of the links from London to Paris and
from Brussels to Frankfurt for this hot spot and interdomain
rerouting model. They take into account the effect of (1)
failures, (2) hot spots with a multiplicative hot spot factor of
fHS=2, (3) interdomain rerouting with an additive interdomain
rerouting factor of fIR = 1, and a combination of all three
possibilities (1), (2), and (3).

We first look at Figure 6(a) which shows the CCDFs from
London to Paris. As the network is dimensioned in such a
way that all links are 20% utilized under normal operation, all
CCDF curves seem to start falling at a relative link load of
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r = 0.2 and a probability ofp(Z)≈ 1.
The dashed curve (2) shows the impact of hot spots only.

It already decays at relative link loads lower thanr = 0.2
because some hot spots divert the traffic from the link and
reduce its load. However, such hot spot scenarios have a
very low probability. Therefore, their impact is not visible on
the logarithmic y-axis. The curve moves to the right mainly
in two different probability ranges that correspond to single
and double hot spots. Single hot spots have a probability
of 2.85 · 10−5 and double hot spots have a probability of
8.14·10−10. Triple hot spots have a probability smaller than
pmin = 10−10 and are not considered. A hot spot factor of
fHS = 2 at most most doubles the rate of an aggregate in
case of a single hot spot and it at most quadruples the
rate of an aggregate between two hot spots. Therefore, the
relative link load for networking scenarios with only hot spots
is bounded by the theoretical value 0.8, but the maximum
observed relative link load is only 32%. That the upper bound
is not reached is due to the fact that at most one aggregate
quadruples its rate in case of a double hot spot. Although
single hot spots double the rate of several aggregates, the
maximum link utilization stays even below 40% because a
single link carries multiple aggregates and not all of them
have increased rates.

The dotted curve (3) shows the relative link load due to
interdomain rerouting only. It moves to the right in the same
probability ranges as the dashed curve because the probability
model for interdomain overload is the same as for hot spots.
If either v or w is an interdomain rerouting location, the
extraordinary traffic matrixh increases the traffic ratech(v,w)
of an aggregate to the(1+ fIR)-fold (i.e. 2) compared to the
normal ratec(v,w) or even to the(1+ 2 · fIR)-fold (i.e. 3) if
both v and w are interdomain rerouting locations. In contrast
to hot spots, the traffic volume of the entire traffic matrix
increases. As a consequence, interdomain rerouting causes
larger load increases than hot spots. The maximum observed
relative link load is 44% instead of the theoretical upper bound
of 60% when both ends of an aggregate are interdomain
rerouting locations. The reason for this phenomenon is the
same as in the case of hot spots.

The solid curve (1) shows the relative link load due to
failures only. It starts moving to the right at higher probabilities
than the curves for hot spots and interdomain rerouting only,
because failures are more likely in our model than hot spots
and interdomain rerouting. The three main decreases of the
curve correspond to single, double, and triple link failures.
Since the solid line is mostly above the dashed and the dotted
line, failures are likely to cause stronger load increases than
hot spots and interdomain rerouting. The maximum observed
relative link load is about 62%.

The dashed-dotted curve (1&2&3) shows the CCDF of
simultaneous failures, hot spots, and interdomain rerouting.
The figure shows that it can be above the curves for failures
only, i.e., failures and simultaneous hot spots or interdomain
rerouting can cause higher potential overload than just failures.
However, this happens only with a very low probability. The
maximum observed link utilization due to possibly combined
failures, hot spots, and interdomain rerouting is also 62%,i.e.

the same value as for failures only.
These findings are extremely link-specific. Figure 6(b)

shows the corresponding data for the link between Brussels
and Frankfurt. The impact of hot spots is about the same,
the impact of interdomain rerouting is weaker, but the impact
of failures is significantly larger. Instead of 62% maximum
link utilization we observe about 116%. Thus, a common
overprovisioning factor for all links is not appropriate, but
the results of this analysis can be used for advanced capacity
overprovisioning. Some links require 3 times more capacity
than under normal operation to be safe against overload, some
other links require 6 times more capacity. Our analysis helps
to quantify this amount.

As an alternative to adding more capacity on a link, routing
optimization may be applied. IP link weights can be set in such
a way that the relative loads of all links are as low as possible
both in the failure-free scenario and in probable failure cases.
This has been studied in [20]. Overload due to hot spots or
interdomain rerouting was not considered.

4) Sensitivity Analysis w.r.t. Hot Spot and Interdomain
Rerouting Assumptions:A prerequisite for application of the
overload analysis in practice is an appropriate overload model
for hot spots, interdomain rerouting, and failures. While the
impact of different failure probabilities was already shown
in Section IV-B.2, we illustrate the impact for different hot
spot and interdomain rerouting probabilities in the following.
Figures 6(c) and 6(d) present the CCDFs for the links from
London to Paris and from Brussels to Frankfurt in analogy
to Figures 6(a) and 6(b), but their underlying overload model
assumes that a node experiences a hot spot or a interdomain
rerouting event for 24 hours per year each instead of just 15
minutes. The CCDFs for HS (2), IR (3), and failures, HS,
and IR (1&2&3) now reflect the impact of single, double,
and triple hot spots or interdomain rerouting locations as their
probabilities are 2.54·10−3, 6.99·10−6, and 1.92·10−8.

Comparing Figures 6(a) and 6(c), we see the impact of
the modified overload model for hot spots and interdomain
rerouting. The curves for hot spots and interdomain rerouting
are lifted towards higher probability ranges. As triple hotspots
or interdomain rerouting locations are now also considered,
we see a third region at small probabilities where the dashed
and the dotted curves move towards higher relative link loads.
The impact of triple interdomain rerouting locations is more
visible than the impact of triple hot spots. Figure 6(c) shows
that the potential overload caused by interdomain rerouting
only can be similarly high or even higher than the potential
overload caused by failures only. In addition, simultaneous
failures, hot spots, and interdomain rerouting can cause visibly
higher relative link load than failures only. Moreover, thecurve
(1&2&3) in Figure 6(c) reveals higher probabilities for large
link loads than the one in Figure 6(a) where hot spots and
interdomain rerouting are less likely.

These observations are link-specific. Figures 6(b) and 6(d)
show that for some links such as from Brussels to Frankfurt
the relative link load due to failures is still a multiple of the
relative link load for hot spots and interdomain rerouting in
spite of their larger probability. Also the effect of combined
failures, hot spots, and interdomain rerouting is almost the
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same as for failures only and the curve for (1&2&3) is not
changed that much due to increased probabilities for hot spots
and interdomain rerouting.

Hence, if hot spots and interdomain rerouting is rather
seldom and not stronger than the multiplicative hot spot factor
fHS = 2 or the additive interdomain rerouting factorfIR = 1,
the relative link load due to failures is for most links an
upper bound for overload due to other reasons. This suggests
that it is most important to look at the required backup
capacity to carry rerouted traffic in failure cases in order to
safely overprovision a network with capacity. This capacity
also suffices to accommodate traffic fluctuations due to hot
spots and interdomain rerouting. Similar conclusions werealso
obtained in [4]. If the probability for hot spots and interdomain
rerouting is larger, this result cannot be generalized. Apart
from that, more research regarding overload models is required
and empirical evidence is needed.

5) Comparison of the CCDFs for Different Links:The
conditional CCDF of the relative loadρ(l) of a link l contains
the complete information about its potential overload. If the
CCDFP(ρ(l0) > r|Z) of a link l0 lies for all utilization values
below the one of another linkl1, then the risk of overload for
l0 is clearly smaller than forl1. However, Figure 7 shows that
this is not a monotone relation. It shows the CCDF of the
link utilization for the links from Munich to Vienna and from
Athens to Belgrade considering only network failures using
pmin = 10−10. For some utilization valuesr, the link from
Munich to Vienna has a larger CCDF value than the link from
Athens to Belgrade (e.g.r =0.5) and for some other relative
link load values this is vice-versa (e.g.r =0.75). Therefore,
the CCDFs are difficult to compare. As a consequence, the
CCDF is not a suitable means to identify the links with the
highest risk to be overloaded in practice. Hence, a function
is required to map the information given by the CCDF into
a single real number representing the risk of a link to be
overloaded. This facilitates a simple comparison of links with
regard to their potential overload. In the following section we
discuss different mapping functions for that purpose.
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Fig. 7. Conditional CCDF of the relative load for the links from Munich to
Vienna and from Athens to Belgrade forpmin=10−10.

6) Mapping Functions for Simple Overload Metrics:One
objective of our resilience analysis is to identify links that
are most likely to be overloaded. We propose three different
functionsR(l) mapping the complex information of the CCDF
of the relative link load for a linkl to real numbers that
characterize its potential overload. These values may be used
to compare the potential overload of different links and to
identify those with the largest risk to be overloaded.

a) Mapping Function Based on Overload Probabilities:
The network provider may use an overload thresholdr that
should not be exceeded by the load of a link. Thus, we define
the assessment function for potential overload on linkl by
Rr(l)=P(ρ(l)> r|Z). Note that this function depends on the
value of the overload thresholdr. Table I presents the mapping
results forr∈{0.3,0.6,0.9} and shows that the valuer indeed
influences the ranking order for a few links. This is similar to
the phenomenon in Figure 7.

TABLE I

MAPPING FUNCTIONS BASED ON THE OVERLOAD PROBABILITYRr (l).

link Rr (l), link Rr (l), link Rr (l),
id r =0.3 id r =0.6 id r =0.9

Rom-Zag 0.0089 Rom-Zag 0.0045 Osl-Sto 0.0042
Fra-Str 0.0088 Osl-Sto 0.0042 Rom-Zag 0.0031
Osl-Sto 0.0069 Fra-Str 0.0013 Fra-Str 0.0013

b) Mapping Functions Based on Relative Link Load Per-
centiles: The relative link load percentilesRq(l)=argmin(r :
P(ρ(l)≤ r|Z)≥ q) help to create a mapping function which
depends on the percentile parameter 0≤ q≤ 1. Table II shows
the mapping results forq∈{0.999,0.99999} and makes the
dependency ofRq on the percentile parameterq obvious.

TABLE II

MAPPING FUNCTIONS BASED ON THE RELATIVE LINK LOAD PERCENTILE

Rq(l).

link Rq(l), link Rq(l),
id q=0.999 id q=0.99999

Bud-War 0.858 Zag-Vie 1.387
Cop-Osl 0.729 Bud-War 1.267
Zag-Vie 0.425 Cop-Osl 0.923

c) Mapping Functions Based on Weighted Relative Link
Loads: The above overload measures consider only a single
point of the conditional CCDF of the relative link loadρ(l),
but operators might wish to take the information of the entire
CCDF into account. We achieve this by weighting the CCDF
with a suitable weight functionw(r):

Rw(l) =
∫ rmax

0
P(ρ(l) > r|Z) ·w(r)dr (14)

and we choosew(r)=10emlwd·
r

rmax wherebyemlwd is the max-
imum logarithmic weight difference which is an arbitrary
parameter. This assessment function respects all relativelink
load values up tormax in the diagram. Thus, the ranking
depends onrmax and emlwd. Table III shows the rankings for
rmax=1 andemlwd∈{2,4,6} and makes the influence of the
latter parameter explicit.

The three proposed mapping functions define metrics for the
risk of overload on a link. Each of them depends on its typical
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TABLE III

MAPPING FUNCTIONS BASED ON WEIGHTED RELATIVE LINK LOADSRw(l).

link Rw(l), link Rw(l), link Rw(l),
id emlwd=2 id emlwd=4 id emlwd=6

Mun-Vie 0.065 Mun-Vie 0.094 Fra-Str 0.550
Fra-Str 0.034 Cop-Osl 0.053 Mun-Vie 0.141

Cop-Osl 0.034 Fra-Str 0.052 Cop-Osl 0.126

parameter(s) leading to different link rankings. Their results
are mainly the same, but we showed that the overload order of
at least some links depends on the parameters of the mapping
functions. An operator needs to choose the most appropriate
mapping function and the corresponding parameter(s) to define
overload for his purpose.

Fig. 8. The colors of the links in the Nobel network indicate their potential
overload due to network failures: dark links are more likely to be overloaded;
in this example, overload is defined as the probability for relative link load
ρ(l) > 0.6.

d) Potential Overload at a Glance:The risk of overload
in a network can be shown at a glance based on the overload
metrics of the mapping functions. Our software tool translates
the result of the mapping functionR(l) into a color value
which is used to display the corresponding links in the
topology. Our tool allows to choose any of the above proposed
mapping functions and the corresponding parametersr, q,
or emlwd. Changing them does not require any further time-
consuming analysis because the stored CCDF of the relative
link loads are sufficient to calculate new link colors.

Figure 8 shows an example using the mapping function
based on overload probabilities taking only network failures

into account. Overload is defined as relative link load larger
than r = 0.6. For better readability, we have discretized the
colors into only 3 values: light gray forp(ρ(l) > 0.6) <
0.0001, medium gray for 0.0001≤ p(ρ(l) > 0.6) < 0.002, and
dark gray for 0.002≤ p(ρ(l) > 0.6). Thus, 7 links have a high
overload probability, another 6 links have a medium overload
probability, and all other 28 links have only a low overload
probability. While changes of the critical relative link load r
can change the overload order of some links (cf. Table I), we
obtain at least similar plots for different mapping functions
and parameters as long as we look at typical overload values.

V. CONCLUSION

In this paper, we proposed an analysis to assess potential
network unavailability and link overload due to exceptional
events. In case of network failures, restoration and protection
switching mechanisms can reroute traffic from broken paths
to backup paths provided that the network is still physically
connected; otherwise the network becomes unavailable for
some ingress-egress pairs. Traffic redirection increases the load
and utilization on the links of the backup paths and may cause
overload. This happens similarly in the presence of local traffic
shifts within a network (hot spots) or in case of additional
transit traffic due to interdomain rerouting. The contribution
of this paper is twofold.

The first contribution is an algorithmic framework for the
assessment of network unavailability and overload. The idea
of our analysis is to derive statistical results for networkun-
availability and link overload from a probabilistic description
of (1) network failures, (2) local hot spots, and (3) interdomain
rerouting. The presented analysis is very general as it copes
with different routing and resilience mechanisms and arbitrary
shared risk groups. Our approach requires the analysis of
different networking scenariosz=(s,h) consisting of failure
scenarioss and traffic matricesh. With a certain probability,
each link and node of a network can fail, different hot spots
can occur, and extra traffic can enter the network at any
border router. However, an exhaustive analysis of all possible
networking scenarios is prohibitive due to limited calculation
time. We solved this problem mainly by two approaches. First,
only networking scenarios with a minimum probability ofpmin

are respected in the analysis of potential overload such that
computation speed can be traded for accuracy, and upper and
lower bounds are given for the approximated results. Second,
we designed efficient algorithms that reuse intermediate results
in different computations.

The second contribution is the graphical summary of the
vast amount of statistical data in order to make them compre-
hensible which is necessary for resilience analysis in practice.
To that end, we illustrated the application of the analysis for
the topology of the European Nobel network. We proposed
different summary reports for network unavailability thateas-
ily show the impact of topology changes on the network
resilience. Potential overload of a link is presented by the
complementary cumulative distribution function (CCDF) ofits
relative load. Sensitivity studies showed that the resultsfor the
unavailability analysis significantly depend on estimatesfor
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link and node unavailabilities while the results for the overload
analysis mainly depend on estimates for link unavailabilities.
Failures have probably a larger impact on the expected over-
load than increased traffic rates due to hot spots or interdomain
rerouting, but more research on overload models is required
and empirical data are needed. The CCDF of the relative link
load carries the full information about potential link overload.
However, CCDFs are difficult to understand and compare, so a
single number indicating the risk of a link to be overloaded is
desired. We proposed different mapping functions that serve
as definitions for the risk of a link to be overloaded. The
individual methods and their parameterizations have an impact
on the exact overload order of links. The result of these
mapping functions allows to draw network maps where the
color of the links characterizes their potential overload which
can be easily interpreted by network engineers.

After all, the proposed resilience analysis and the visualiza-
tion of its results can assist network and service providerswith
the operation of their networks. Our software tool gives hints
for appropriate availability values which are useful for the
definition of feasible SLAs. It detects underprovisioned links
before overload occurs, it supports economic capacity overpro-
visioning, and it predicts the impact of potential infrastructure
changes or upgrades on the resilience of the network.
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