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Capacity Analysis of Reservation-Based Random
Access for Broadband Wireless Access Networks

Alexey Vinel, Qiang Ni, Dirk Staehle, and Andrey Turlikov

Abstract—In this paper we propose a novel model for the
capacity analysis on the reservation-based random multiple
access system, which can be applied to the medium access control
protocol of the emerging WiMAX technology. In such a wireless
broadband access system, in order to support QoS, the channel
time is divided into consecutive frames, where each frame consists
of some consequent mini-slots for the transmission of requests,
used for the bandwidth reservation, and consequent slots for
the actual data packet transmission. Three main outcomes are
obtained: first, the upper and lower bounds of the capacity are
derived for the considered system. Second, we found through the
mathematical analysis that the transmission rate of reservation-
based multiple access protocol is maximized, when the ratio
between the number of mini-slots and that of the slots per
frame is equal to the reciprocal of the random multiple access
algorithm’s transmission rate. Third, in the case of WiMAX
networks with a large number of subscribers, our analysis takes
into account both the capacity and the mean packet delay criteria
and suggests to keep such a ratio constant and independent of
application-level data traffic arrival rate.

Index Terms—random access, capacity, reservation, medium
access control, WiMAX.

I. INTRODUCTION

RECENTLY, random multiple access (RMA) technologies
have received great attention for broadband wireless

access networks (e.g. WiFi and WiMAX). Since 1970s RMA
is widely known as an efficient method providing commu-
nication between a large number of subscribers with bursty
traffic sources in packet-switched data networks. In [1], Ru-
bin is one of the first authors, who considers centralized
reservation-based random multiple access which can improve
the performance of satellite networks. In Rubin’s model [1],
time-probabilistic characteristics are computed for different
scenarios, particularly considering large propagation delay
values, with the emphasis on reservation performed by means
of time division multiple access (TDMA). The synchronized
subscribers perform reservations, by transferring short requests
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to the central repeater, and then transmit multiple packet
messages. Therefore, the shared broadcast channel is divided
into so-called frames. Each frame consists of consequent
mini-slots for reservation and slots for actual data packet
transmission. In such a reservation-based multiple access
system, access to the slots is normally regulated by a central
base station using time division technique, each mini-slot
can be either assigned periodically (through polling) to a
single subscriber or be potentially used by all subscribers
in a contention manner. The medium access control (MAC)
protocol of contemporary IEEE 802.16 WIMAX broadband
wireless technology in point-to-multipoint mode [2] can be
treated as an example of reservation-based RMA system.

The most commonly used model for RMA system analysis
was described in [5] by Tsybakov. Throughout the rest of the
paper we will refer this model [5] as the basic model. Later its
assumptions were expounded by Gallager in [6]. In contrast
to Rubin’s model, where a finite number of subscribers is
assumed, the basic model assumes an infinite number of
subscribers. Under this assumption the TDMA system is prin-
cipally incapable of providing finite mean packet delay, while
an RMA algorithm is capable of doing it. Obviously, infinite
number of subscribers can not be polled in a TDMA fashion
within a finite time. The RMA tree-algorithm, invented 30
years ago by Tsybakov and Mikhailov [3] and independently
by Capetanakis [4], is the first-known method to provide a
finite mean delay for the infinite number of subscribers model.

Tsybakov and Berkovskii [7] consider the reservation prob-
lem in the framework of the basic model. In contrast to [1],
in [7] requests are not considered and the subscriber indicates
how long it will require the channel in regular packets. Packets
from various subscribers compete with each other according
to some RMA algorithm. If a packet from some subscriber is
received successfully, then all other subscribers in the system
stop their transmissions during the specified time interval,
thus enabling the subscriber sending the packet to transmit
its information without conflict.

In this paper, we propose a novel reservation-based ran-
dom multiple access system model, which is built upon the
combination of the models from [1] and [5]. Using our
model, we perform a novel capacity analysis on the consid-
ered reservation-based broadband wireless access system. Our
model can be utilized to analyze the WiMAX MAC layer. The
usage of infinite number of subscribers model is motivated by
the vision that the number of subscribers in a WiMAX network
is expected to be fairly large. Our main contributions are:

• We first address the problem of the capacity analysis for
the reservation-based WiMAX RMA system. Using our
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analytical model and simulation analysis, we derive the
optimal ratio of contention period and contention-free
intervals in each frame, which maximizes the network
capacity;

• We introduce a simple practical approach for setting the
frame structure in WiMAX based on our analysis and
also examine its efficiency.

The rest of the paper is organized as follows. In Section
II the basic RMA model is explained and some auxiliary
propositions are proved. Our centralized reservation-based
model as well as the problem statement are presented in
Sections III. Upper and lower bounds for the capacity are
constructed in Section IV. Mean delay analysis is performed
in Section V. Section VII concludes the paper.

II. BASIC RANDOM MULTIPLE ACCESS SYSTEM MODEL

Here, we briefly explain the basic RMA system model and
review some necessary definitions from [5]. Table I lists the
notation used within this paper.

A. Review of the Basic Model

Actually the basic model can also be treated as an infinite
subscribers model, where each subscriber can have at most one
packet requiring transmission. The subscribers are assumed to
transmit packets of a fixed length whose duration is taken
as a time unit. The system is slotted, so that subscribers can
begin packet transmissions only at times t ∈ {0, 1, 2, . . .}.
The time interval [t, t+ 1) will be called a slot. The channel
is noiseless and it is assumed that each subscriber knows
by time t + 1 which of the following three possible events,
idle slot, successful transmission, or conflict (two or more
simultaneous transmissions) occurred in the slot [t, t+1). The
packet generation times of all subscribers form the overall
input traffic, which is assumed to be discrete Poisson. The
probability that j new packets are generated at some moment
t equals to e−λλj/j!, where λ is the intensity of the overall
input traffic.

In the basic model, an RMA algorithm for the basic system
is defined as a rule that enables any subscriber with a ready-
for-transmission packet at any time t ∈ {0, 1, 2, . . .}, to
determine whether or not it should transmit this packet in the
next slot [t, t+1). Thus we have a function of three arguments.
The first argument is the time x of packet generation. The
second argument is the sequence θ(t) = (θ1, . . . , θt) of
channel events θi, here θi = 0 if [i − 1, i) was an idle slot,
θi = 1 if only one subscriber transmitted in this slot, and
θi = 2 if two or more subscribers transmitted in this slot. The
third argument is the sequence ν(x, t) = (ν1(x), . . . , νt(x))
of events at the subscriber where a packet was generated at
time x. Here νi(x) = 0 if this subscriber has not transmitted
a packet in the slot [i − 1, i), and νi(x) = 1 if it has.
Therefore, formally an RMA algorithm is defined as a function
f0[x, θ(t), ν(x, t)] with values in the interval [0, 1]. Its value
is the probability that a packet generated at time x will be
transmitted in the slot [t, t+ 1).

The delay of a packet is the time interval from the moment
of its generation till the moment of its successful transmission.
The delay δ(0)(λ, f0) is a random variable. Let a packet be

generated at an arbitrary but fixed time t at some subscriber,
and let δ

(0)
t (λ, f0), be its delay. The mean delay (referred

to as virtual mean delay in [5]) is defined as D0(λ, f0) �
lim supt→∞ E[δ

(0)
t (λ, f0)].

The transmission rate, R0 (tenacity), of an RMA algorithm
(f0) is the maximum (more precisely, the supremum) intensity
of the input traffic that can be transmitted by the algorithm
with finite delay: R0(f0) � supλ{λ : D0(λ, f0) < ∞}.

The capacity1 of the basic RMA system is defined as C0 �
supf0∈F0

R0(f0), where F0 is a set of all RMA algorithms.
The exact value of the capacity C0 is still unknown. As it was
mentioned in [8] some researchers conjectured that the optimal
value might be 0.5, but this claim was quickly abandoned as
baseless. The best known upper bound for the capacity C0

was found by Likhanov and Tsybakov in [9] and is shown
to be C0 = 0.587. The fastest known algorithm, a part-and-
try one with rate Rpt = 0.487, was found by Tsybakov and
Mikhailov in [10]. Later it was slightly improved, but the core
of the algorithm remained the same.

Before presenting our model, we will first prove in the next
subsection several auxiliary propositions for the basic RMA
systems having some form of feedback delay.

B. Several Propositions for the Basic Model

In [11] the feedback information θi is assumed to be
announced to all subscribers by time i + N , where N is
the feedback delay. In the basic model the event in slot i is
known by the beginning of slot i+1, meaning that N = 1. In
this paper, we assume that all slots are grouped into equal
consequent segments of length K . The values of function
f0 do not depend on the values of θi related to the current
segment. For a given value of K , any RMA algorithm and
the set of all RMA algorithms justifying this rule are denoted
as f

(K)
0 and F (K)

0 respectively. Note that F (1)
0 � F0. In the

following, we will prove several interesting propositions:
Proposition 1: C

(K)
0 = sup

f
(K)
0 ∈F(K)

0
R0(f0) ≤ C0.

Proof: From the definition of class F (K)
0 , it follows

directly, that for any K: F (K)
0 ⊂ F0 and thus proposition

holds.
Proposition 2: For any algorithm f0 ∈ F0, having trans-

mission rate R0, and any value of K an algorithm f (K) ∈
F (K)

0 exists, which also has the transmission rate R0.
Proof: Let us show how to construct the desired al-

gorithm. Any algorithm f0 ∈ F0 can be modified in the
following way to be in the set F (K)

0 . At the moment of a
packet generation a subscriber chooses a number r uniformly
from {1, 2, . . . ,K} once and then ”applies” algorithm f0 only
to slots having number r in any segment of K slots. This
means, that each subscriber uses feedback from one fixed slot
(which has number r in each segment) and can transmit only
in such slots. Thus, we ”split” our system into K independent
basic systems, where each subscriber randomly chooses one
system for its operation once and then works independently
of those who have chosen a different system according to the

1Note that the capacities can be defined over the class in the sense that
any other class different from F0 can be used in the above definition.
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TABLE I
A SUMMARY OF NOTATION USED IN THIS PAPER.

λ Intensity of the overall input traffic (per unit of time)
α Mini-slot duration
K Number of mini-slots per frame
L Number of slots per frame
f0 RMA algorithm for basic system
F0 Set of all RMA algorithms for basic system

f
(K)
0 RMA algorithm for the basic system with segmentation into K slots

F(K)
0 Set of RMA algorithms for system with segmentation into K slots

f(K) RMA algorithm for reservation-based system with frame with K mini-slots
g(L) Service discipline for reservation-based system with frame with L slots
φ(K) RMA algorithm analogous to part-and-try, but for reservation-based system with K mini-slots per frame
ϕ(L) FIFO service discipline (each frame has L slots)
δ(0) Delay of packet generated at time t in basic system
δn Overall delay of additional packet generated in frame n in reservation-based system

δ
(1)
n Request delay for random access

δ
(2)
n The time from the moment of request successful transmission, to the corresponding packet will be successfully transmitted
D0 Mean packet delay in basic system
D Mean overall packet delay in reservation-based system
D1 Mean request random access delay
R0(f0) Transmission rate of RMA algorithm f0
R(f(K), g(L)) Transmission rate of multiple access protocol (f(K) , g(L))
Rpt Transmission rate of part-and-try algorithm
C0 Capacity of basic RMA system
C0 Best known capacity upper bound for basic system
C Capacity of reservation-based system

C
(K)
0 Capacity achieved over the class F(K)

0

θ
(l)
i Channel event in mini-slot number l of (i− 1)-th frame
θi Channel event in slot [i− 1; i) for the basic system

θ̄i Feedback vector (θ
(1)
i , θ

(2)
i , . . . , θ

(K)
i ) from (i− 1)-th frame for a reservation-based system

θ(n) For basic system: sequence of channel events (θ1, . . . , θn); for reservation-based system: sequence (θ̄1, θ̄2, . . . , θ̄n)
νi(x) Indicator whether a packet generated at time x is transmitted in slot [i− 1; i) for basic system

ν
(l)
i (x) Indicator whether a packet generated at time x is transmitted in slot l of i− 1-th frame for reservation-based system

ν̄i(x) Vector (ν
(1)
i (x), ν

(2)
i (x), . . . , ν

(K)
i (x))

ν(x, n) For basic system: sequence (ν1(x), . . . , νn(x)); for reservation-based system: sequence ν(x, n) = (ν̄1(x), ν̄2(x), . . . , ν̄n(x))
n Number of stations (for finite-user model)
l Parameter of BEB algorithm determining minimum contention window, which equals to lK
m Parameter of BEB algorithm determining maximum contention window, which equals to 2mlK

algorithm having transmission rate R0/K . Thus, the overall
transmission rate achieved is R0.

Note that this approach does not necessarily guarantee, that
the mean delay of the constructed algorithm will be ”good”.
Moreover, it’s easy to give examples when this ”splitting”
approach leads to unwarrantably high delay values [11].

Proposition 3: For any given K , the capacity C
(K)
0

achieved over the class F (K)
0 equals to the capacity of the

basic system C0 (achieved over the class F0).
Proof: On the one hand, from Proposition 1 it follows,

that C
(K)
0 ≤ C0. On the other hand, from Proposition 2

follows, that any algorithm from F0 for any K can be modified
in the way that it can be in F (K)

0 , without reducing its
transmission rate. Thus, C(K)

0 = C0.

III. OUR NOVEL RESERVATION-BASED RANDOM ACCESS

SYSTEM MODEL

A. Our System Model

Let us consider a broadband wireless access transmission
system (e.g. WiMAX) with one central base station and
infinite number of subscribers. The central station is connected
to all subscribers by means of two communication channels,
namely uplink and downlink. The uplink channel is used
for the data transmission from all subscribers to the central

Frame duration (uplink transmission)

L slots for packets transmission
Time

K mini-slots
for the 

requests

SS1 SS2 SS3 SSn… …

BS

RMA algorithm f(K)

is used to
transmit requests

Successfully transmitted 
requests

Packets are
transmitted

in the assigned slots

Scheduling 
according

to service discipline 
g(L)

Poisson arrival process of packets

Frame duration (uplink transmission)

L slots for packets transmission
Time

K mini-slots
for the 

requests

SS1 SS2 SS3 SSn… …

BS

RMA algorithm f(K)

is used to
transmit requests

Successfully transmitted 
requests

Packets are
transmitted
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Scheduling 
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g(L)

Poisson arrival process of packets

Fig. 1. Illustration for centralized reservation-based random multiple-access
system

station and the downlink channel is used for the information
transmission from the base station to the subscribers (see
Figure 1).

In our system, the traffic model used is the same as in
the basic model - the moments of packets arrivals represent
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a Poisson process, which provides an arrival rate equal to λ
packets per unit of time. However, each subscriber, having a
new packet, transmits a special request message to the central
station in order to reserve uplink channel time. The duration
of the request transmission is supposed to be α < 1 units
of time. In all following considerations we assume, that the
durations of request and packet transmissions are fixed and
the uplink channel usage is organized in the following way.
The time axis is slotted into equal intervals of time, which are
called frames. All frames have a fixed structure. Each frame
comprises K ≥ 1 intervals of time having duration α, which
are called mini-slots, and L ≥ 1 intervals of time having a
duration equal to one unit of time, which are called slots. Slots
are used by the subscribers for transmitting packets, while
mini-slots are used for sending requests.

The system is synchronized. The central station and all
subscribers know the beginning of each i-th frame i(αK+L),
each j-th slot j + αK�(j + 1)/L� and each k-th mini-slot
kα + L�k/K�, where i, j, k ∈ {0, 1, 2, . . .} and transparent
numeration of slots and mini-slots is assumed.

Since simultaneous transmissions of subscribers are pos-
sible in the mini-slots, three different situations can be dis-
tinguished in an arbitrary mini-slot l ∈ {1, 2, . . . ,K} of
frame number (i − 1) (we denote them by θ

(l)
i ): successful

transmission of some subscriber (θ(l)i = 1), empty mini-slot
meaning that there is not any transmission (θ(l)i = 0), and
collision, when two or more subscribers transmit in the mini-
slot (θ(l)i = 2). By the beginning of frame i, the central
station transmits information about the situation in the mini-
slots of frame i − 1 to all subscribers. This information is
represented by the feedback vector θ̄i = (θ

(1)
i , θ

(2)
i , . . . , θ

(K)
i ).

In WiMAX this information is implicitly presented in the
grants to successfully received requests.

Subscribers transmit requests by means of some reservation-
based RMA algorithm f (K), through which each subscriber
determines at the beginning of each frame whether or not
to transmit a request in a mini-slot of this frame taking
into account the situations of previous frames. Analogous
to the basic model f (K) is defined as a function of three
arguments f (K)[x, θ(n), ν(x, n)], n ∈ {0, 1, 2, . . .}. Here,
x is the moment of time, when the packet is generated
and θ(n) = (θ̄1, θ̄2, . . . , θ̄n) is a sequence of feedback
vectors until the beginning of frame n. Finally, ν(x, n) =
(ν̄1(x), ν̄2(x), . . . , ν̄n(x)) is a sequence of vectors for the sub-
scriber x, ν̄i(x) = (ν

(1)
i (x), ν

(2)
i (x), . . . , ν

(K)
i (x)). We denote

ν
(l)
i (x) = 0 if the subscriber whose packet has been generated

at time x did not transmit a request in the l-th mini-slot of the
(i−1)-th frame and ν

(l)
i (x) = 1 otherwise. The possible values

of the function f are vectors p̄ = (p(1), p(2), . . . , p(K)), where
each element p(l) represents the probability of the subscriber’s
transmission in the l-th mini-slot of the n-th frame.

Assume there is an infinite queue buffer for the requests at
the central base station. The central station serves the requests
from the conducted queue according to some rule, which is
referred to as service discipline g(L).

At the beginning of frame i the central station transmits
grants for successfully received requests in frame i− 1 indi-
cating the slots for collision free packet transmission in frame

i. Throughout this paper we assume, that a subscriber can not
make more than one attempt to request a transmission per
frame. This leads to the following restriction for considered
algorithms. For any f (K): the weight of vector ν̄i(x) is either
one or zero for any subscriber x and frame i.

In this part, both uplink and downlink channels are assumed
to be error-free (noiseless). Neither packets nor requests will
be distorted by noise. Error-prone channels are to be analyzed
in Section VI. Situations in mini-slots are always correctly
distinguished by the central station. Feedback vectors and slot
allocation information is always successfully transmitted to all
subscribers.

B. Definitions and Problem Statement

In this paper, we call the pair (f (K), g(L)) the multiple
access protocol for centralized reservation-based systems with
parameters (K,L). Here, we introduce definitions analogous
to those given previously for the basic RMA model, with
extensions corresponding to our system. The time interval
from the moment when a packet was generated to the
moment it has been successfully transmitted is referred to
as packet transmission delay. Then in some arbitrary but
fixed frame (having number n) let an additional packet
arrive in the system, whose transmission delay is denoted
by δn(λ,K,L, f (K), g(L)). According to the algorithm of
the system operation the transmission delay consists of two
components. The first one is the request delay for random
access δ

(1)
n (λ,K,L, f (K)). It is the time from the moment

of request generation, to the moment of the corresponding
successful request transmission. The second one is the time
from the moment of successful request transmission, to the
time the corresponding packet will be successfully transmitted
δ
(2)
n (λ,K,L, g(L)). We will refer to this value as queuing de-

lay. The value D(λ,K,L, f (K), g(L)) � lim supn→∞ Eδn =

lim supn→∞ E(δ
(1)
n +δ

(2)
n ) for a given arrival rate λ, K mini-

slots, L slots and multiple access protocol (f (K), g(L)) will be
referred to as the mean delay of packet transmission. Further,
the mean request delay for the random access is defined as
D1 � lim supn→∞ Eδ

(1)
n .

The maximal arrival rate (more precisely the supremum of
the arrival rate), which can be transmitted by means of some
multiple access protocol (f (K), g(L)) for some frame struc-
ture (K,L), with finite mean delay R(K,L, f (K), g(L)) �
supλ{λ : D(λ,K,L, f (K), g(L)) < ∞} will be referred to as
transmission rate (tenacity) of the multiple access protocol.

If the multiple access protocol is not fixed, using our model,
the capacity can be calculated as follows:

C(K,L,F (K),G(L)) � sup
f(K)∈F(K)

g(L)∈G(L)

R(K,L, f (K), g(L)),

where F (K) is the set of all RMA algorithms defined for the
system with K mini-slots and G(L) is the set of all service
disciplines, which can be defined for the system with L slots.

Our aim is to compute the upper and lower bounds for
the capacity C(K,L,F (K),G(L)), which will be presented in
detail in Section IV.
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IV. CAPACITY ANALYSIS

Let us first consider only one part of the whole system
operation, the request transmission during the reservation
period, where actual data packet transmission is firstly not
considered. This system is referred to as a reduced one. Then,
transmission rate R1 and capacity C1 definitions analogous to
those previously mentioned can be introduced for the reduced
system, namely R1(K,L, f) � supλ{λ : D1(λ) < ∞} and
C1(K,L,F (K)) � supf∈F(K) R1(K,L, f).

Then the following proposition is proved.
Proposition 4: If there are K mini-slots per frame then the

capacity of the reduced system equals to (C0K)/(αK + L),
where C0 is the capacity of the basic RMA system
(C1(K,L,F (K)) = C0K/(αK + L)).

Proof: It is easy to notice that for K = 1, when each
frame consists of only one mini-slot we have exactly the
basic RMA system, for which vectors θ̄i, ν̄i(x) and the
output of function f turn to scalars. Thus, F (1) = F0. Since
F (K)

0 = F (K) for K ≥ 2, we have the basic RMA system with
slots grouped into segments of length K (as it is explained in
Section II), whose capacity is proved to be C0 in Proposition
3. The only difference is that one ”slot”, which is used in the
basic system corresponds to one frame of length (αK+L) in
our reduced system, what is taken into account by means of
corresponding normalization.

Now we are finishing with the analysis of the reduced
system and consider the overall reservation model. Below are
two necessary conditions for the system stability.

Proposition 5: The mean request delay for the random
access D1 and the mean delay of packet transmission D may
be finite if the inequality

λ(αK + L) < C0K (1)

holds.
Proof: From proposition 4 it directly follows that the

request delay for the random access D1 is infinite if the arrival
rate does not satisfy λ < C0K/(αK+L). Obviously, the same
is valid for the mean delay D.

Proposition 6: Let the arrival rate λ be chosen such that
the request delay for the random access D1 is finite. Then,
the mean delay of packet transmission D may be finite if
inequality

λ(αK + L) < L (2)

holds.
Proof: Generation and transmission of packets can be

described in terms of queueing theory ([12]). We have Poisson
packet arrivals with rate λ(αK + L) per frame. On the other
hand not more than L packets can be transmitted per frame
using any service discipline g(L). Thus this queuing system is
unstable if (2) does not hold.

Now we will construct the upper bound for the system
capacity C.

Proposition 7: For a given mini-slot length α, the inequal-
ity

max
K,L

C(K,L,F (K),G(L)) ≤ 1

1 + α/C0
, (3)

holds for the capacity of centralized reservation-based RMA
systems.
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Fig. 2. Areas of instability of random multiple-access protocol (A1(λ) =
λ/(R0 − αλ), A2(λ) = (1− λ)/(αλ))

Proof: Since from Proposition 5, the mean delay of
packet transmission may be finite if λ(αK + L) < C0K ,
we easily obtain that it may be finite if arrival rate λ satisfies

λ <
C0

K
L

αK
L + 1

. (4)

On the other hand, from Proposition 6, the mean delay of
packet transmission may be finite if λ(αK + L) < L, hence
it may be finite if λ satisfies

λ <
1

αK
L + 1

. (5)

From (4) and (5) we obtain that

λ < min (
C0

K
L

αK
L + 1

,
1

αK
L + 1

),

which leads to maxK/L C(K,L,F (K),G(L)) = 1
α/C0+1 for

K/L = 1/C0 and proves (3). Derived areas of instability for
RMA protocol are illustrated in Figure 2.

Finally, let us construct a lower bound for the system
capacity C. For this purpose, we consider the part-and-try
RMA algorithm, which, as previously mentioned, is the fastest
one known for the basic model. From Proposition 2 it follows
that an algorithm exists in class F (K), which has exactly the
same transmission rate. Moreover, an explicit way to construct
it is provided in the proof of Proposition 2. Let us denote this
RMA algorithm as φ(K). Then the following proposition can
be proven.

Proposition 8: In the centralized reservation-based RMA
system, let φ(K) RMA algorithm and first-input-first-output
(FIFO) service discipline (denoted as ϕ(L)) be used.
Then maximal transmission rate of multiple-access protocol
(φ(K), ϕ(L)) for all K and L can be made arbitrary close to
Rpt

α+Rpt
, where Rpt is the transmission rate of the part-and-try-

algorithm.
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Proof: One can show that the necessary and sufficient
condition for the mean request delay to be finite, is

λ(αK + L) < RptK. (6)

Let λ justify Condition (6). Then, the central station queue
becomes a G/D/L FIFO queuing system. The input traffic
represents the outcome of K basic RMA systems, where
subscribers operate independently according to the part-and-
try algorithm. One can show that for this queuing system, the
Baccelli-Foss conditions [12] are satisfied. Therefore,

λ(αK + L) < L. (7)

is the necessary and sufficient condition, that mean packet
delay in the queue is finite.

From Conditions (6) and (7), and using an approach analo-
gous to the one used in the proof of Proposition 7, we obtain
that mean packet delay is finite if and only if both λ <

Rpt
K
L

αK
L +1

and λ < 1
αK

L +1
hold. Taking into account the fact that for any

ε > 0, a pair (K,L) exists for which |K/L− 1/Rpt| < ε, the
proposition is proven.

From the proof of this proposition the corollary directly
follows: the maximal transmission rate of multiple-access
protocol (φ(K), ϕ(L)) is achieved, when K

L ≈ 1
Rpt

. The
capacity bounds derived in Propositions 8 and 9 are illustrated
in Figure 3.

We introduced the upper and lower bounds for Tsybakov’s
capacity of centralized reservation-based RMA system. If
some ”rational” algorithm f (K) having transmission rate
R0, which is independent of K , and some ”simple” ser-
vice discipline g(L) (like FIFO), are implemented, then the
transmission rate of this multiple-access protocol is R =
min( R0K

αK+L ,
L

αK+L) and maximized, when K
L ≈ 1

R0
.

In contemporary IEEE 802.16 WiMAX network a version
of the so-called binary exponential back-off (BEB) RMA
algorithm is used for bandwidth requests [2]. This algorithm
is shown to have zero transmission rate for infinite-users basic
RMA model in [13]. For a finite, but fairly large number of
users, ln (2)/2 can represent some analog of the transmission
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Fig. 4. Theoretical transmission rate bounds for IEEE 802.16 MAC protocol.
It is assumed that BEB has finite transmission rate.
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Fig. 5. Total mean delay for L=1 and different α values.

rate [14]. With this value, the theoretical transmission rate
bounds for the IEEE 802.16 MAC, are depicted in Figure 4.
Areas on the plane (K,L) indicate the achievable protocol
transmission rates for different α.

V. MEAN DELAY ANALYSIS

We implemented our simulation model in Matlab (explained
in [16] and [17]) to estimate the mean delay of the WiMAX
MAC protocol with a finite number of subscribers and using
the BEB algorithm. The sercive discipline is FIFO.

We use the following hypothesis for estimating the minimal
mean delay2: the ratio K/L, which minimizes the mean

2Computation of the mean packet delay in the centralized reservation-based
RMA system for the general case is an open question and is out of the scope
of this paper.

packet delay value D(λ,K,L, f (K), g(L)), is a non-decreasing
function of arrival rate λ and for any α, values of this function
lie in a narrow interval not wider than [1, 1/R0]. Moreover,
mean delay itself is minimized, when K and L are minimal
among those satisfying optimal ratio K/L. Thus, taking into
account our hypothesis, frame structure can be optimally
designed and is almost independent of the ratio between the
duration of request and packet transmission. In the following
we validate our hypothesis by means of simulations.

If our hypothesis is valid then the performance of the system
is maximized, when K/L ∈ {1, 2, 3} (note that 2/ ln (2) ≈ 3)
and never using larger values of this ratio is reasonable.
Thus, if we need the simplicity of implementation it may be
reasonable to keep K/L = 3 always. Now we would like
to check the feasibility of this approach. For simplicity we
provide the results of the experiments for L = 1 (although,
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similar results may be obtained for the L > 1 case). The
following values of the parameters were used: number of
users n = 50, BEB parameters l = 1 and m = 10 [16].
Transmissions during 2 × 104 frames have been simulated
(Figure 5, cases a-d). We observe that:

a) For a small arrival rate, e.g. λ = 0.01, setting K = 1
minimizes the mean delay independent of α.

b) For λ = 0.1, the optimum is K = 2 independent of
α ∈ {0.01, 0.1, 0.2}.

c) For λ = 0.3, the optimum is K = 3 for long mini-
slot length α ∈ {0.1, 0.2} and K = 5 for the short mini-slot
length α = 0.01. However, the mean delay for K = 3 is not
significantly larger.

d) For λ = 0.5, the optimum is K = 3 for α = 0.2 and
K = 4 for α = 0.1. For α = 0.01 the delay stays almost
the same for 3 ≤ K ≤ 10. We clearly see two asymptotes of
the delay function that correspond to the theoretically derived
capacity bounds.

We now depict the relationship between λ and optimal value
of K (which minimizes the mean delay - denote Kopt) for
different α (Figure 6, upper). Also we calculate

Δ =
|D(λ;Kopt;1;BEB;FIFO)−D(λ,3,1,BEB,FIFO)|

D(λ,3,1,BEB,FIFO)

which indicates the relative mean delay difference, when K is
chosen optimally and when K is set to 3 (Figure 5, cases (c)
and (d)). First, we may see that for our scenario hypothesis is
not valid, because, for instance, α = 0.01 function Kopt(λ)
is not monotone-increasing having values from the interval
[1, 3], but has maximum for arrival rate 0.5, with optimal K
equals to 7. However, remember that the hypothesis is stated
for the infinite subscribers model, but we have simulated a
system with 50 subscribers, only. If we increase the number
of subscribers to n = 500, the function Kopt(λ) behaves
significantly smoother for α = 0.01 (Figure 7, a) and is
monotone increasing for α ∈ {0.1, 0.2} (Figure 7, b,c). This
is a clear indication that the hypothesis is valid in the extreme
case of infinite n. The second observation is, that we loose
from the mean delay point of view, when K is set to 3 for high
λ values if n = 50 and α = 0.01. However, this degradation
decreases as n increases. Here, it should be noticed, that RMA
will be used only when arrival rates are small, while for large
λ, polling in TDMA fashion should be used. If, for example,
λ < 0.5 the delay lose, when K = 3 instead of optimal value
Kopt is used, will not exceed 10%. For α equals to 0.1 and 0.2
the increased delay occurs for small arrival rates only and does
not exceed 25%. The overall conclusion from the L = 1 series
of experiments is, that if α is rather small (e.g 0.01), like in the
IEEE 802.16 protocol, it is reasonable to set K = 3 always. If
α is larger (e.g. 0.1) it may be reasonable to choose K from
{1, 2, 3} depending on the arrival rate. Once again, remember,
that this conclusion is valid for ”typical” RMA usage scenarios
namely large number of subscribers and small arrival rates.

VI. INFLUENCE OF CHANNEL ERRORS

In the previous sections, an error-free RMA channel is
assumed. This assumption of Tsybakov’s model is first relaxed
by Evseev in [19] as well as by Vvedenskaya in [20], where
the so-called false collision model is introduced. In this
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between delay value, when K=3 and optimal delay value for different α.

section, we generalize the results obtained in the previous
sections for the case of an error-prone channel.

Due to potential noise in the wireless channel, base station
makes mistakes when determining the actual channel situa-
tions. The false collision probability decision for a mini-slot
can be calculated by

q = Pr{ζ(l)i = 2|θ(l)i = 0} = Pr{ζ(l)i = 2|θ(l)i = 1} (8)

and false collisions in different mini-slots are assumed to be
statistically independent. Thus, in order to take into account an
error-prone channel in all previous discussions, the feedback
vector ζ̄i = (ζ

(1)
i , ζ

(2)
i , . . . , ζ

(K)
i ) should be used instead of

θ̄i, where the variable ζ
(l)
i ∈ {0, 1, 2} corresponds to the

decision of the base station about empty channel, successful
transmission or conflict in the l-th mini-slot of the (i− 1)-th
frame.

Moreover, we assume that the probability Q for a packet
to be distorted by noise is 0 ≤ Q < 1 (in real systems it can
be assumed that Q > q) and the events corresponding to the
packet’s distortion are statistically independent. Furthermore,
a noiseless downlink channel is assumed. Let the subscribers
know about the success/failure result of their transmitted pack-
ets in the current frame by the beginning of the next frame.
Packets are retransmitted until their successful transmission.
Feedback vectors and slot allocation information are always
successfully transmitted in the downlink to all the subscribers.

Therefore, we have now two more parameters in our model:
(q,Q). All definitions (RMA algorithm, transmission rate,
capacity, etc.) can be easily extended for the case of an error-
prone channel. Core propositions from Section IV can be
modified for the case of an error-prone channel as follows.

Proposition 9 (error-prone channel case of Proposition 5):
The mean request delay D1 for the random access phase and
the mean delay D of the packet transmission may be finite if
the inequality λ(αK + L) < C0(q)K holds, where C0(q) is
the basic RMA system’s capacity in the error-prone channel.
For the case of an error-prone channel with 0 ≤ q < 1, an
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upper bound for the capacity was constructed by Tsybakov
and Likhanov in [21].

Proposition 10 (error-prone channel case of Proposition 6):
Let the arrival rate value λ be chosen such that the request
delay for the random access D1 is finite. Then, the mean
delay of the packet transmission in the system D may be
finite if the inequality λ(αK + L) < L(1−Q) holds.

Proposition 11 (error-prone channel case of Proposition 7):
For a given α value, inequality

max
K,L

C(K,L, F (K), G(L), q, Q) ≤ 1
α

C0(q)
+ 1

1−Q

holds for the capacity of centralized reservation-based RMA
systems in the noisy channel.

Consider the fast tree RMA algorithm from [22], which
provides a non-zero transmission rate for any probability 0 ≤
q < 1 (we will refer to this algorithm as ”noise-resistant tree
algorithm”). It can be shown that an algorithm exists in class
F (K), which has exactly the same transmission rate. Let us
denote this RMA algorithm as Φ(K).

Proposition 12 (error-prone channel case of Proposition 8):
Let the Φ(K) algorithm and a first-input-first-output (FIFO)
service discipline (denoted as φ(L) as before) be used. Then,
the maximal transmission rate of multiple-access protocol
(Φ(K), φ(L)) for all K and L can be made arbitrary close to
R(q)/(α + R(q)) , where R(q) is the maximal transmission
rate of the noise-resistant tree algorithm for a given q.

Here we omit the detailed proofs due to the page limit. Note
that there are no fundamental difficulties in integrating the
error-prone channel into our model. Therefore, if we consider
the error-prone channel case, from practical point of view it is
reasonable to keep the ratio K/L constant and approximately
equal to (1−Q)/R0(q), where R0(q) is the rate of the used
RMA algorithm in the error-prone channel case.

VII. CONCLUSION

In this paper, the method to estimate the upper and lower
capacity bounds of centralized reservation-based random mul-
tiple access systems is developed. It is shown that the maximal
transmission rate of a reservation-based multiple access proto-
col is equal to 1/(1+α/R0) and it is achieved when the ratio
between the number of mini-slots (K) for bandwidth request
transmission and the number of slots (L) for data packet
transmission equals to the reciprocal of the transmission
rate of the used random multiple access algorithm (1/R0).
Specifically, in the case of IEEE 802.16 MAC with a large
number of subscribers, it is shown that from both capacity
and delay points of view, it is reasonable to keep the ratio
constant (K/L = 3), independently of α and application-level
data arrival rate value.

Our future research will include: a) to investigate a
reservation-based random multiple access system with TDMA
used for the reservation; b) to consider multiple-packets mes-
sages transmissions; c) to consider multi-cell situations.
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