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ABSTRACT

Free-to-play models, streaming of games and eSports are
reasons for online gaming to grow in popularity recently.
On the forefront are multiplayer online battle arenas, which
gain high popularity by introducing a competitive format
that is easy to access and requires cooperation and team
play. These games highly rely on fast reaction of the play-
ers, which makes latency the key performance indicator of
such applications. To obtain low latency, this paper pro-
poses moving game servers close to players towards the edge
of the network. The performance of such mechanism highly
depends on the geographic distribution of players. By ana-
lyzing match histories and statistics, we develop models for
the arrival process and location of game requests. This al-
lows us to evaluate the performance of edge server resource
migration policies in an event based simulation. Our re-
sults show that a high number of edge servers is preferable
compared to few larger edge servers to reduce the latency
of players. This supports approaches that allow deploying
virtual server instances in the back-haul.
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•Networks → Network performance modeling; Net-

work simulations; Cloud computing; Location based
services;
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Online gaming is becoming increasingly popular and ac-
counts for a growing proportion of today’s Internet traffic.
It has an expected compound annual growth rate of more
than 40% from 2014 to 2019 [6]. As more and more tra-
ditional games are provided as cloud games, gaming could
become one of the largest Internet traffic categories in the
next years [7].

Currently, especially multiplayer online games such as Mas-
sively Multiplayer Online Games (MMOGs) or Multiplayer
Online Battle Arena (MOBA) games attract a large number
of players. In the beginning of 2014, Riot Game’s League of
Legends1 accounted for 67 million monthly players with up
to 7.5 million playing at the same time [26]. Valve’s Dota 2 2

is currently responsible for more than half a million concur-
rent users on average a month with a peak of 1.2 million
concurrent players in February 2015 [29].

To meet the huge demand, game publishers, like Riot
Games and Valve, allocate a considerable amount of re-
sources for hosting these games. They are commonly hosted
in large data centers and are accessed with client software
that renders the video games locally. User interactions are
uploaded to the game server that maintains the global match
states and distributes pending rendering instructions to the
clients. Those interactive online games are largely affected
by network delay, jitter, and packet loss (e.g., [2, 33]), which
considerably influence the game play and the users’ Qual-
ity of Experience (QoE) [13, 18]. Thus, together with the
emerging trends of service virtualization, network virtual-
ization, and edge computing, there are intentions to bring
virtual game servers closer to the users (e.g., [5]). Thereby,
multiple, typically smaller dimensioned, game servers can be
distributed to servers or small data centers at the edge of
the network near the end users. Hosting game servers at the
network edge is expected to decrease latency and loss and
consequently increase the gaming QoE.

In this work, we look in detail at the possibilities for host-
ing the popular MOBA games at the network edge. First,
we investigate single gameplay statistics of Dota 2 in order
to develop realistic user and traffic models. These models
serve as input for a comprehensive simulative evaluation of
edge-supported online gaming. In particular, we look at
placement strategies for virtual game servers and evaluate
their impact on network traffic and game performance.

1http://leagueoflegends.com
2http://dota2.com



The contribution of the work comprises the following items:

• Common traffic characteristics of the Dota 2 MOBA
online game are presented, such as access patterns or
match duration distribution.

• A system model is specified, which can be used as a ba-
sis for simulative assessment of game server placement
and migration at the network edge.

• Based on the traffic characteristics and simulation, first
results on the impact of edge placement of game servers
are derived.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces background and related work on MOBA,
models for gaming, and placement strategies. Section 3 dis-
cusses the general system model, components, and inves-
tigated strategies. The used models and underlying data
are presented in Section 4, and details of the simulation are
described in Section 5. The obtained results are shown in
Section 6, and Section 7 concludes.

2. BACKGROUND AND RELATED WORK
This section provides background information about the

considered game type and presents relevant literature re-
lated to real-time strategy games.

2.1 Game Concept of Multiplayer Online Bat-
tle Arena Games (MOBA)

This paper considers the Multiplayer Online Battle Arena
(MOBA) computer game genre. Examples of this genre in-
clude Dota 2, considered as the main example in this pa-
per, as well as League of Legends and Heroes of the Storm.
The MOBA genre has an estimated monthly player count of
more than 80 million 3, highlighting the impact of consumed
network and compute resources. MOBA games are are his-
torically derived from the Real Time Strategy (RTS) genre
and share the same hardware and network demands. In a
MOBA game, typically two teams of 5 players compete on
a game map with the ultimate goal of destroying the enemy
base.

A MOBA requires teams to cooperate with each other and
exploit the capabilities of their game character chosen from
a fixed set, to defeat the opponent. Team work and strat-
egy are key to winning, highlighting the importance of fast
reaction times and the corrosponding network requirements.

2.2 Existing Literature on Online Gaming and
Related Fields

Online gaming has been an active research area in the
past decade, and several studies have been conducted. We
summarize in the following findings according to different di-
rections such as statistics about particular games or findings
about migration in cloud computing in general.

A study on the player performance for the First Person
Shooter (FPS) game Unreal Tournament 2003 (UT2003) is
conducted in [2] under varying amounts of packet loss and
latency. The authors state that UT2003, and possibly FPS
games in general, can tolerate a modest amount of packet

3http://venturebeat.com/2015/07/15/comparing-mobas-
league-of-legends-vs-dota-2-vs-smite-vs-heroes-of-the-
storm/, accessed: November, 27th2016

loss, but shooting is greatly affected by latency. In addition
to these two QoS metrics, Wattimena, et al. [32] examined
the impact of jitter on the gaming experience for the FPS
game Quake IV via subjective and objective measures. The
authors reached similar conclusions as [2], and noted that
the introduction of jitter has a large negative effect on the
gaming QoE. Other studies [8, 25, 19] have also investigated
other classes of online games. The characteristics of a mobile
MMORPG are studied in [22] by a large-scale and long-

term measurement, investigating its population, playersâĂŹ
game usage behavior, the players’ interest and money spent
in game. In the field of traffic modeling, there is especially
work on FPSs [9, 4] and MMORPGs [14, 30]. In [24] the
virtual populations of two MMORPGs World of Warcraft
(WoW) and Warhammer Online are characterized.

Furthermore, research is conducted in [30] for World of
Warcraft. The session times of MMOGs are typically higher
than those of round based action games, like FPSs. The
server to client session times of MMORPG can be fitted
with a Weibull distribution.

Multiple studies have been conducted in the field of vir-
tualization in cloud environments in general. A particular
research area covers the placement of virtual machines inside
the cloud infrastructure that is the basis for migrations [23,
17, 11, 27].

The concept of migrating an ongoing game emerged over
a decade ago. A paper [10], published in 2004, presents
a migration algorithm that “can be adopted on a generic
multiplayer, multi-server online gaming architecture”, which
allows a player to choose a better server and migrate the
game state in the middle of a game. Moreover, the authors
indicate that a good migration heuristic considers at least
two factors: the network latency and server load. The lat-
ter mainly accounts for the possibility that many players
may choose a well-connected server, which may lead to the
saturation of the server capacity. Considering the world-
spanning MOBAs, Beskow, et al. [3] used core selection to
find an optimal node in the system for placing a virtual
region, and correspondingly the players interacting in that
region. Conversely, Jalaparti [12] considered FPS games and
proposed a platform for Seamless Migration of Online Games
(SMOG), which determines not just where, but also when,
to move game servers. For the server placement problem,
SMOG focused on minimizing the number of players in a
game server whose latency is greater than a certain thresh-
old, initiating a migration when the new optimal location
results to a gain better than a pre-defined threshold.

3. SYSTEM MODEL
To define the system model, we describe the machine en-

vironment and the job characteristics.
As machine environment we consider a set of server re-

sources V . For each server resource there is a positive in-
teger size that specifies the capacity to host games. Here
we distinguish between dedicated servers and edge servers,
with capacities CDS and CES respectively. Capacity is de-
termined by resources of server as ram, cpu, storage and
throughput. The total capacity of a server is divided in frac-
tions where a capacity fraction is occupied for each match
hosted on the server. Each resource in V has coordinates de-
scribing its location. The resources are organized in a graph
G = (V,E) with a set of links E. Each link (u, v) ∈ E con-
nects two resources u, v ∈ V . Each link has a throughput



Figure 1: System model.

ρ.
The job characteristics are defined by the matches played

and hosted on the server resources. Users generate demands
for the resources if they want to play a game. The game
requests are generated with rate λ(t) = 1

β
(t), where β(t) is

the average inter-arrival time of game requests at time t. For
each request i the location ξi of the request is determined
randomly. A match is made out of k game requests within
a certain region.

We distinguish between party game requests with rate λp

and single player game requests with rate λs. For each match
a job is generated that occupies a fraction of server resources
for a certain game duration that is 1

µ
on average. The jobs

generated depend on the match making of the game, which
depends on the player experience and other factors. For the
sake of simplicity, we do not consider player experience.

The migration policy determines which match is hosted
on which server. If Mt is the set of active matches at a
given time t, then it can be considered as a function that
maps each match m ∈ Mt to a server resource v ∈ V .

f : Mt 7→ V (1)

A migration policy is feasible with respect to the resource
constraints if at any time t the index set Mt, of jobs being
executed at t satisfies

∑
j∈Mt

rhj ≤ Ch(h = 1, . . . , l), where
Ch is the capacity of each resource vh ∈ V .

4. MOBA LOAD CHARACTERISTICS
To realistically model the load on the MOBA game servers,

it is necessary to understand when and where new matches
are created and how long a match strains the server. In order

Table 1: Notation of the paper.

Parameter Description Default

CDS dedicated server capacity 3000
CES edge server capacity 1000
λ arrival rate of requests
k number of players per match 10
µ match service rate
ρ throughput of edge link
σ memory footprint

drnd distance from city center 5 km
dparty distance from party leader 100 km
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Figure 2: Arrival rate of game requests depending on the
time of day.

to obtain these characteristics for Dota 2, the match histo-
ries in the Steam database were crawled, and the SteamWeb
API [28] was used to query the game database. This API al-
lows licensed individuals to retrieve data available via Steam
by using their respective API keys. The data returned by
successful API calls consist of Dota 2 match histories, partic-
ularly, the game start time and date, game duration, and the
server location. A total of 8,470,933 Dota 2 public matches
and 1,786,148 unique public-profiled players’ data have been
crawled. These public matches are worth of exactly one week
(from March 18 to March 25, 2015) with more than 1 mil-
lion games per day and a peak of almost 1.4 million matches
during the weekend.

4.1 Game Requests
Figure 2 depicts the arrival process on Saturday, March

21, 2015 for the different dedicated server regions. The
x-axis depicts the time of day in Central European Time
(CET, UTC+01:00), and the y-axis shows the number of
match requests per second. The arrival process follows typi-
cal dynamics according to day and night time in each region,
which result in periods of high arrival rates during the night
times of the respective region. Moreover, it can be observed
that the peak rates differ. In certain regions, such as SE
Asia or China, peak loads are higher. The least load is on
EU East, US East, and US West.
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(a) non-busy hour (04:00)
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(b) busy hour (18:00)

Figure 3: EU West server inter-arrival times

To model the inter-arrival time of match requests, we use
discrete time steps of one second. For each hour, we compute
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Figure 4: β dynamics in EU West server.

the empirical probability distributions of the inter-arrival
time. We approximate the empirical distributions with an
exponential distribution

f(x, β) =
1

β
exp(

−x

β
) (2)

by fitting the mean parameter β in a least-squares sense.
Figure 3 shows the probability distribution of the inter-
arrival time for the EU West server at a non-busy hour
(04:00) and a busy hour (18:00). The non-busy hour dis-
tribution can be well approximated by an exponential dis-
tribution with β = 3.60, and the busy hour shows a smaller
mean inter-arrival time β = 1.30. The goodness of fit (GoF)
is determined by using the coefficient of determination R2,
which gives the amount of variation of the dependent vari-
able that can be predicted by the independent variable. The
average goodnesses of fit R2 over all 168 hours of the week is
larger than 0.91 for all server regions. Although slightly bet-
ter approximations can be reached with Weibull (R2 > 0.95)

or log-normal (R2 > 0.97), we restrict ourselves to the ex-
ponential fitting to use a simple Poisson process in the sim-
ulation.

Looking at the whole crawled period of one week, the
server load shows a daily repetition of the day patterns.
This pattern can also be observed for the parameters of
the fitted distributions over the course of the week. Fig-
ure 4 illustrates the mean parameter β of the exponential
fitting of the EU West server region as a blue line. Due
to its periodic characteristic this function can be well de-
composed by Fourier analysis (DFT). The green line depicts
an approximation by the five most significant Fourier terms
(sines), which captures the daily periodic patterns and also
the transition of increasing rates and smaller means from
the weekdays to the week-end, and shows a high similarity.
For all server regions, the approximation with the five most
significant Fourier terms resulted in R2 > 0.74, which can
be increased by adding more Fourier terms.

4.2 Match Duration
Fig. 5 shows the cumulative distribution function of the

match durations of the EU West region server (1, 368, 703
regular matches from March 18 to March 25). A Dota 2
match has an average match duration of 2590 seconds (ca.
43 minutes) and a standard deviation of 685 seconds. The
distribution of the match duration can be approximated us-
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Figure 5: CDF of match durations in Valve’s EU West
server.

Table 2: Top 5 countries in the EU West server.

Country Players Probability

Russia 115210 0.355
Ukraine 39605 0.122

Great Britain 15078 0.046
Germany 12565 0.039
Belarus 12322 0.038

ing a lognormal distribution

f(x, µ, σ) =
1

xσ
√
2π

exp(− (log(x)− µ)2

2σ2
) . (3)

The lognormal distribution’s location parameter µ and the
scale parameter σ can be computed from the empirical mean
and standard deviation. The fitted lognormal distribution
is a good approximation for all region servers and reaches a
high R2 > 0.94 for each server.

Having analyzed the game request arrival process and the
duration of each match, the server load can then be gener-
ated in simulations according to the fitted distributions.

4.3 Player Locations
In order to determine where game servers need to be

hosted, it is necessary to know how players are distributed
over the Internet. For that purpose, we consider the player
counts per country from public Steam profiles to estimate
the country probabilities in a Dota 2 server. In total, there
were 757,172 public-profiled accounts with a unique player
ID that had set their locations. 324,511 of these played on
the EU West server. Table 2 lists the top 5 countries in the
EU West server by player count and the resulting empiri-
cal probabilities. It can be seen that this server is not only
frequented by players from the populous western European
countries (Great Britain, Germany), but also by eastern Eu-
ropean (Ukraine, Belarus) and Russian players, although
there are separate EU East and Russia region servers.

Additionally, European cities are extracted from Max-
mind’s data on countries by continent [16] and world cities,
which include country, population, latitude and longitude
details [15], to estimate the city probabilities, as well as the
player coordinates. Based on the population distribution
of the cities per country, player locations, which obey the
crawled distribution of players per country, can be gener-



Figure 6: Simulation framework overview.

ated on a per-city granularity by Bayesian inference. The
details will be described in Section 5.1 below.

5. SIMULATION DESCRIPTION
In order to evaluate the proposed migration of Dota 2

matches towards the edge, an event-based simulation frame-
work was implemented in Java using the JSimLib [20] Discrete-
Event Simulation (DES) library. The emphasis is on how the
game server placement impacts on the gaming QoE, hence a
detailed simulation on flow or packet level is not necessary.
In this respect, the framework is developed at application
level, where capacities and loads are defined in terms of the
number of games. Moreover, networks between each player
and the servers are not considered in the simulation.

We consider Valve’s EU West dedicated server (DS) lo-
cated in Luxembourg, LU [31]. Instead of limiting the vir-
tual game servers to the DS, edge servers (ESs) are also con-
sidered to potentially host games through migration. Nev-
ertheless, a match is always set up in the DS (i.e. the server
chosen by the players) in order to take into account other
server selection criteria (e.g., social, popularity, skill level,
etc. [12]). Schemes for geographically distributing user
bases and ESs were implemented in the framework. Further-
more, the framework implements a näıve migration model in
which migration times are obtained by simply dividing the
VM memory size by the available link bandwidth. For the
sake of simplicity, the star topology is considered, assuming
a direct link between the DS and each ES.

An overview of the framework, featuring the events, queues
and their relationships, is shown in Fig. 6. There are
seven events defined in the simulation framework — namely,
GameRequest, NewPartyRequest, JoinPartyRequest, GameS-
tart, Migrate, MigrateEnd, andGameEnd. The GameRequest,
NewPartyRequest and JoinPartyRequest events correspond
to the three sources of game requests. One queue is dedi-
cated for all random players generated by the GameRequest
event, while a new queue is created for each party started by
the NewPartyRequest event; players can join a specific party
via the JoinPartyRequest event. Once a queue contains
k = 10 players (i.e. a typical Dota 2 match), the GameStart
event is triggered. In this event, a match can either be: (1)
migrated; (2) started; or, (3) deferred/dropped, depending
on the mean distances to servers and server loads.

Case (1): An ES closer to the players is available, to which
the game server can be migrated. Hence, two resources are
allocated for the match — one in the DS and another in the
optimum/suboptimal ES. The Migrate event is triggered to

start the game server migration from the DS to the specified
ES. In this event, the MigrateEnd event is scheduled at a
time given by the migration duration, which updates every
time a flow enters/leaves the link. When the migration is
complete, the GameStart event is again triggered, in which
the resource in the DS is freed and the GameEnd event is
scheduled at a time given by the match duration. When the
match has ended, the resource in the ES is also freed.

Case (2): The DS is either the optimum server for the
match or all closer ESs currently have no resources avail-
able. Hence, a resource is allocated in the DS for hosting
the match. The GameEnd event is scheduled at a time given
by the match duration. When the match has ended, the re-
source in the DS is freed.

Case (3): The DS is fully loaded. Up to 100 new matches
can be placed in the deferred q to wait for an available re-
source in the DS, after which, succeeding matches will be
dropped.

Note that every time a resource in the DS is freed, the
system checks if there are matches waiting in the deferred q.
If so, a new GameStart event is triggered for the first match
in the queue, and the process repeats.

5.1 Player Location Model
Based on the player count per country, the empirical prob-

ability fx that a player originates from country x is

fx =
nx∑
j
nj

, (4)

where nx is the number of players from country x determined
from the player locations in Section 4.3.

Given that a player originates from country x with pop-
ulation Px =

∑
y
P
y
x, the empirical probability fy

x that the
player resides in city y with population P

y
x is

f
y
x =

ny
x

Px

=
ny
x∑

y
P
y
x

. (5)

We approximate the probability fy that a player resides
in city y according to the Bayes theorem, by

f
y ≈ fx · fy

x . (6)

Based on this, the locations of players in a match are
generated according to two schemes: (a) random and (b)
party, in both of which, player coordinates are computed,
given an initial point, angle and geographical distance.

Random: This scheme refers to solo queuing, where a sin-
gle player looks for other random players. As the name im-
plies, this scheme generates player locations randomly, ac-
cording to the country and city probabilities. The location
of player i is then calculated by determining a city y accord-
ing to probability fy . Given the latitude and the longitude
of the center of city y, the exact coordinates ξi of player i are
determined by adding an exponentially distributed distance
with parameter drnd in a uniformly distributed angle.

Party: With this option, players in a match may tend to
be more geographically concentrated. For instance, when
friends play together in one location. This assumption relies
on the fact that according to [1] the probability of friendship
decreases exponentially with distance. In this scheme, the
location of the first player i is generated randomly as in the
random case. The distances of the remaining k − 1 players
from player i is exponentially distributed with mean party



distance dparty. This ensures that the player distribution in a
party is geographically concentrated around player i, while
also covering the cases when one or two players are from
distant locations.

5.2 Server Location Model
Similar to the player locations, the server locations are

also based on the player count per country, as well as the
basic statistics on European cities. The DS remains in the
EUWest location Luxembourg, while ESs can be distributed
by ranking the cities according to fy ≈ fx · fy

x , where city y

is in country x.
The majority of countries have very small values for fx.

On the other hand, fy
x , can have high values (i.e. in countries

where population is concentrated in one city). In this case,
the city rank is greatly influenced by fy

x , putting cities from
countries with lower fx at high ranks.

5.3 Migration Policy
The goal is to improve the gaming experience of players.

On one hand, this entails hosting games in the server cor-
responding to the minimum average latency of interacting
players. On the other hand, it is also important to take into
account that servers have limited capacities. If the optimum
server is full, and new games are still migrated there, play-
ers may have to wait for a long time, or worse, they may
leave, before their game is hosted. These two factors are
considered in the migration policy.

The latter is mainly based on physical distance, which is
one factor influencing latency. The geographical distances
are first computed given the latitude and longitude of players
and servers. Then, considering a typical Dota 2 match of 10
players, the mean distance of the players to each server is
obtained. From this, the servers are sorted by increasing
mean distance.

Besides physical distance, the server load is also consid-
ered. This ensures that a game will not be migrated to a
busy server; instead, it will be migrated to the next available
server in the sorted list, or started if the DS is next in line.

5.4 Parameters and Metrics
First, we introduce the five main parameters whose values

can be varied in the command line, allowing game providers
to conduct customized performance evaluations, according
to their parameters of interest.

Mean Inter-arrival Time of Game Requests: By default,
the mean inter-arrival time of game requests varies according
to β(i, j), where i = 0, 1, . . . , 6 and j = 0, 1, . . . , 23, corre-
sponding to mean inter-arrival time of hour i and day j for
one week, demonstrating the load dynamics.

Simulation Mode: The simulation mode determines the
game requests arrival processes that will be activated in a
simulation, which can be 1, 2 or 3 (default). The three types
of game request arrival processes correspond to the following
types of players:

1. single players looking for a random match;

2. players who want to set up a party and play together
with friends; and

3. players who want to join a party.

In mode 1 (RANDOM), there is only one game requests
arrival process, which corresponds to player type 1, while

in mode 2 (PARTY), there are two game requests arrival
process, which correspond to player types 2 and 3. The
default mode 3 (MIXED) is the combination of the first
two modes, in which there are three game requests arrival
process, corresponding to all types of players.

Server Capacities: By default, the capacities CDS and
CES are equal to 3000 and 1000 matches, respectively. In
this framework, these values are high enough to ensure that
all games are served, allowing for load analysis. The capaci-
ties can be set to different values to study different resource
allocations. For instance, there could be cases when the
resources at the edge are limited and may not be able to al-
locate such huge capacities. In this respect, the framework
supports different allocation schemes for ESs with uniform
or non-uniform capacities, with or without constraints on
the total capacity among ESs.

Simulation Duration: The simulation duration is set in
terms of weeks, which by default is equal to 1. This can be
varied to study daily and, possibly, weekly patterns.

Further on, we introduce the two performance metrics
considered in the evaluations. With these metrics, the game
providers are able to study the effect of setting up ESs to
both gaming QoE and server infrastructure.

Mean Distance to Server: As previously mentioned, the
network between each player and the servers is not consid-
ered in the simulation; hence, the proximity of interacting
players to the game server is measured in terms of physical
distance, instead of latency. According to [21] there is a sig-
nificant correlation between network delay and geographical
distance. In this respect, the metric for gaming QoE used in
this work is the mean distance of the 10 players in a match to
the server hosting their game. From this, the game provider
will have a view on the improvement of the gaming QoE as
other parameters are varied.

Server Load: Besides the gaming QoE, game providers
may also want to understand how the load on the servers
changes as ESs are deployed. Load analysis can be per-
formed on the DS, as well as on each ESs. Knowing the av-
erage load in a server opens new opportunities for resource
allocation optimization and saving.

6. NUMERICAL EXAMPLES
A variety of parameter studies is conducted to evaluate the

performance of the proposed game server migration towards
the edge. In order to understand how the player distribution
affects the gaming QoE, simulations are run in RANDOM,
PARTY and MIXED simulation modes, with fixed mean
inter-arrival time β. To demonstrate the effect on the DS
load dynamics when migrations are introduced, simulations
are run in MIXED mode dynamically varying mean inter-
arrival times β(t). Up to this point, all evaluations are per-
formed using the default server capacities (i.e., CDS = 3000
and CES = 1000) which are highly over-provisioned. This
ensures that all matches are served in the optimum server.
Further on, different resource allocation schemes are applied
and analyzed based on the performance metrics. The num-
ber of ESs and their respective CES are varied in parameter
studies. The results can help game providers in deciding on
the number and capacity of ESs to be deployed and where.
In order to add significance, simulation runs are repeated 10
times using different random number seeds. The resulting
95% confidence intervals are computed from the obtained
data.
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Figure 7: Effect of the player distribution on the mean dis-
tance to server.

6.1 Simulation Modes
The simulation mode determines how players are distributed

in the matches of a simulation run (i.e., random, party or
their combination). As shown in Fig. 7, game server mi-
gration improves the mean distances to server by at least
30%. Note that it particularly benefits players in parties,
proposing 50% to up to over 90% improvements depending
on the number of ESs deployed. Conversely, the improve-
ment experienced by random players reaches an equilibrium
at around 35% even when more ESs are added. The real-
world gaming scenario (i.e. MIXED mode) depicts a trade-
off between these two cases. These results imply that the
proposed approach greatly improves the gaming QoE.

Although the approach is particularly beneficial to players
in parties, the MIXED mode is considered in the succeeding
evaluations, simulating a more realistic gaming scenario.

6.2 DS Load Dynamics
In order to investigate the impact of migrating to ES on

the DS load, we evaluate the DS load dynamics. Fig. 8 shows
the DS load dynamics when 0(baseline), 1, 2, 4, . . . , 64 ESs
are deployed. The load on the DS server is given in number
of matches dependent on the time of the day in the term of
one week. The request process in the simulation framework
fits the daily dynamics of the game request inter-arrival time
β. Deploying 1 ES with decent capacity already reduces the
peak load on the DS by around 75%. This implies that the
location of the DS is not optimal for most of the players
connecting to it. Placing an ES in Moscow, would highly
improve the system performance because of the high number
of players from Russia.

6.3 Resource Allocation Schemes
In the previous evaluations, the server capacities were con-

figured high enough to ensure that all matches are served
in the optimal server. However, there are cases where the
resources at the edge are limited and may not be able to al-
locate sufficient capacities. In this case, the optimal server
may be unavailable at some point, and the system must mi-
grate the game server to the next best server available or
host the game in the DS.

To understand their effect on the performance metrics,
different resource allocation schemes are analyzed in this
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Figure 8: DS load dynamics with migrations.
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Figure 9: Effect of CES on the mean distance to server.

section. Particularly, ESs were allocated with uniform and
non-uniform capacities, with and without constraints on the
total capacity among ESs.

Without CES,tot constraints: In this resource allocation
scheme, ESs were allocated with uniform capacities without
constraints on the CES,tot (i.e. regardless of the number
of ESs deployed, each is allocated with the specified CES).
Simulations were run with CES = 1, 2, 4, . . . , 128 match(es),
and 1, 2, 4, . . . , 128 ESs deployed.

Fig. 9 illustrates the behavior of the mean distances to
server as the number of ESs and CES are varied. These
results help game providers visualize the effect of the al-
location on the expected latency and the response time of
games, allowing them to find the best compromise between
resources and user satisfaction. For instance, deploying 16
ESs with at least CES = 16 matches is a good option, since
adding more ESs only offers little improvements. Of course,
the decision still depends on the availability of resources at
the edge.

The same trend is observed in the behavior of the average
DS load, as shown in Fig. 10. Understanding how the DS
load changes with the allocation can help game providers in
optimizing the resources in the DS. For instance, deploying 8
ESs with CES = 16 matches reduces the average DS load by
about 90%. This means that most of the resources originally
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Figure 10: Effect of CES on the DS load.
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Figure 11: Effect of fixing the CES,tot on the mean distance
to server.

allocated for hosting the game can now be allocated for other
applications.

With CES,tot constraints: In the following resource allo-
cation schemes, CES,tot is fixed and distributed among ESs
in two different ways: (a) uniform and (b) non-uniform. As
the name implies, the former distributes the CES,tot, among
the ESs equally, by simply dividing it by the number of ESs;
conversely, the latter distributes the CES,tot among the ESs
according to the population in the ES locations. These can
help game providers find out which is better, if any, between
having few big ESs or many small ESs. Simulations were run
with CES,tot = 128, 256, 512 matches and 1, 2, 4, . . . , 128 ESs
deployed.

Fig. 11 shows similar performance of the uniform and
non-uniform allocation, except when CES,tot = 128 matches,
where the former yields better results. The mean distances
to server are considerably increased if 128 ESs are deployed
with non-uniform allocation, representing its drawback —
it cannot support the deployment of more ESs for smaller
CES,tot values, as it tends to allocate CES = 0 to ESs located
in cities with relatively small population. This means that
at some point the effective number of ESs deployed is less
than what is intended, and the ES(s) allocated with CES =
0 is/are actually those that would have been the optimal
choice for a significant number of matches.

7. CONCLUSION
Multiplayer online battle arenas are rising online gaming

services that have high requirements on the network param-
eters. The performance of the player and the gaming ser-
vice highly depend on the distance and latency to the game
server. To reduce latency, servers can be migrated to the
edge of the network where they are in close proximity to the
players.

In order to evaluate the impact of migration policies on
the latency and load of game servers, we determined the load
dynamics of the multiplayer online battle arena Dota 2, by
evaluating match histories from the provided API. Based on
the load dynamics we developed generic statistic models for
game request processes with daily dynamics and match du-
ration. We use the models to evaluate migration policies in
an event-based simulation framework under realistic server
load conditions.

Our results show that deploying one additional edge server
can already reduce the mean distance to the server by one
half and highly reduce the load on the dedicated server. For
a fixed total capacity of edge resources, a high number of
edge servers with smaller capacities is beneficial for the dis-
tance to the server, but also results in a higher operational
overhead.
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